Plant Propagation by Tissue Culture
3rd Edition

Volume 1. The Background

Edited by

Edwin F. George
Merriott, Somerset, United Kingdom

Michael A. Hall
Institute of Biological Sciences, University of Wales, Aberystwyth,
United Kingdom

and

Geert-Jan De Klerk
Plant Research International, Wageningen, The Netherlands
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Biographical Notes on Contributors</td>
<td>ix</td>
</tr>
<tr>
<td>1</td>
<td>Plant Tissue Culture Procedure - Background</td>
</tr>
<tr>
<td>E.F. George</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Micropropagation: Uses and Methods</td>
</tr>
<tr>
<td>E.F. George and P.C. Debergh</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients</td>
</tr>
<tr>
<td>E.F. George and G-J. de Klerk</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems</td>
</tr>
<tr>
<td>T. Thorpe, C. Stasolla, E.C. Yeung, G-J. de Klerk, A. Roberts and E.F. George</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>Plant Growth Regulators I: Introduction; Auxins, their Analogues and Inhibitors</td>
</tr>
<tr>
<td>I. Machakova, E. Zazimalova and E.F. George</td>
<td>175</td>
</tr>
<tr>
<td>6</td>
<td>Plant Growth Regulators II: Cytokinins, their Analogues and Antagonists</td>
</tr>
<tr>
<td>J. van Staden, E. Zazimalova and E.F. George</td>
<td>205</td>
</tr>
<tr>
<td>7</td>
<td>Plant Growth Regulators III: Gibberellins, Ethylene, Abscisic Acid, their Analogues and Inhibitors; Miscellaneous Compounds</td>
</tr>
<tr>
<td>I.E. Moshkov, G.V. Novikova, M.A. Hall and E.F. George</td>
<td>227</td>
</tr>
<tr>
<td>8</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>D. Chriqui</td>
<td>283</td>
</tr>
<tr>
<td>9</td>
<td>Somatic Embryogenesis</td>
</tr>
<tr>
<td>S. Von Arnold</td>
<td>335</td>
</tr>
<tr>
<td>10</td>
<td>Adventitious Regeneration</td>
</tr>
<tr>
<td>P.B. Gahan and E.F. George</td>
<td>355</td>
</tr>
<tr>
<td>11</td>
<td>Stock Plant Physiological Factors Affecting Growth and Morphogenesis</td>
</tr>
<tr>
<td>J. Preece</td>
<td>403</td>
</tr>
<tr>
<td>12</td>
<td>Effects of the Physical Environment</td>
</tr>
<tr>
<td>E.F. George and W. Davies</td>
<td>423</td>
</tr>
<tr>
<td>13</td>
<td>The Anatomy and Morphology of Tissue Cultured Plants</td>
</tr>
<tr>
<td>M. Ziv and J. Chen</td>
<td>465</td>
</tr>
<tr>
<td>Index</td>
<td>479</td>
</tr>
</tbody>
</table>
Preface

It is now more than twenty years since the first edition of this work appeared and nearly fifteen since the second. Whilst much of the information in those editions has stood the test of time, inevitably, because of the pace of research, a new edition is clearly timely.

This is true, not only because many more species have been the subject of propagation studies, but because the background to the field – with which this volume deals – has changed almost out of all recognition. In particular, our knowledge of plant development, genetics physiology, biochemistry and molecular biology has expanded exponentially – often through work on mutants of Arabidopsis – and opened up many new avenues for the plant propagator to explore. Equally, the commercial significance of plant propagation has increased significantly. As an example, in the second edition there was a single chapter on plant growth regulators – in this there are three, reflecting the fact that not only is there more information on those PGRs we recognised in 1993, but that several new ones are now known. Equally, fifteen years ago we knew little of the molecular basis of plant development e.g. flower and shoot development, in this edition it has merited a whole chapter, much of which relates to discoveries in the last decade.

Because of these factors, it was felt that a different approach was required for this edition. The second edition was researched and written by Edwin George alone but it would now be very difficult for a single author to gain the breadth of expertise necessary to cover all the relevant aspects of this many-faceted subject. Hence, it was decided to adopt a multi-author approach, with chapters written by experts in their fields. These build upon the sound framework of the previous editions (which those with a knowledge of the previous works will recognise). Many sections of the previous work have been retained, but inevitably, apart from up-to-date reference lists, the text has undergone major revision in many areas.

Like the previous edition, the current one will appear in two volumes, but coverage has been extended and the order in which subjects are covered has been changed. Therefore, some topics, previously covered in Part 1, will now be discussed in Part 2. The ethos of the work is, as before, to produce an encyclopaedic text.

The first initiative to begin the new revision of Plant Propagation by Tissue Culture was made by Prof. A.C. Cassells and the editors are grateful to him for his early leadership. No work of this size can be accomplished successfully without much goodwill and hard work by the contributors, and to them the editors express their deepest thanks. We also express our sincere thanks to all those who have allowed us to use their material in diagrams and illustrations. We are very appreciative of the hard work by Dr. Susan Rafferty-McArdle of University College Cork in formatting the text, and to Dr. Jacco Flipsen of Springer for his support.

Edwin George
Mike Hall
Geert-Jan de Klerk
May 2007
Biographical Notes on Contributors

Chapter 1.

Edwin F. George trained as a botanist at Imperial College, London and subsequently gained a PhD, working on breeding and selection of sugar cane at the Mauritius Sugar Industry Research Institute. He was later employed by ICI Ltd. and Plant Protection Ltd. to study plant growth regulating compounds and subjects for corporate research. He finally became an independent consultant and researched extensively into plant genetic engineering and especially plant tissue culture. This resulted in the books *Plant Culture Media, Vols. 1 and 2* (1987), and *Plant Propagation by Tissue Culture*. The latter work was first published in 1984 and then extensively revised and extended to two volumes in 1993 and 1996. The present book is based on the first volume of the 2nd edition of *Plant Propagation by Tissue Culture*. Dr. George prepared the diagrams for the current revision although he is now retired.

Chapter 2.

Pierre C Debergh is Emeritus-Professor of the University of Gent (Belgium) since 2004 and specialised in micropropagation since 1968. His major interest is in tissue culture (sensu laro) and horticulture applied to western and developing countries (Asia, Africa and the Carribbean). He is editor of *Plant Cell Reports; Plant Cell, Tissue and Organ Culture* and the *South African Journal of Botany*. He is author of approx. 100 publications and supervisor of 35 PhD dissertations and more than 250 MSc dissertations.

Chapter 3.

Geert-Jan de Klerk is senior scientist in plant tissue culture since 1986, first in The Centre for Plant Tissue Culture Research in Lisse (Netherlands) and now in Plant Research International, Wageningen University (Netherlands). His main research interests concern plant developmental biology. He is editor-in-chief of *Plant Cell Tissue and Organ Culture* and editor of *Propagation of Ornamental Plants*.

Chapter 4.

Trevor A Thorpe was a PhD student of Toshio Murashige at the University of California, Riverside (USA). He was a Faculty Professor and now Professor Emeritus in the Department of Biological Sciences at the University of Calgary, Alberta, Canada. He retired in 1997 but is still an active researcher. His areas of interest include developmental plant physiology, experimental plant morphogenesis and micropropagation, mainly of woody plants. He was a former Chairman of the International Association for Plant Tissue Culture and former editor-in-chief of *In Vitro Cellular and Developmental Biology – Plant*.

Edward C Yeung was a PhD student of I Sussex at Yale University. He is an Assistant Professor in the Department of Plant Science at the University of Manitoba (Canada). His research interests are structural, physiological and biochemical ontogeny of plant embryogenesis and floral biology of orchids.

Claudio Stassolla was a PhD student of Edward Yeung at the University of Manitoba, (Canada). His research is on plant somatic embryogenesis in vitro.

Andy V Roberts is Emeritus Professor in the School of Health and Biosciences at the University of East London (UK). His research interests are the use of in vitro methods for the propagation and genetic improvement of woody plants, particularly roses.

Geert-Jan de Klerk (see chapter 3)

Chapter 5.

Ivana Machackova is a Professor at the Institute of Experimental Botany of the Academy of Sciences of the Czech Republic in Prague (Czech Republic). She is Head of the Laboratory of Plant Morphogenesis and Director of the Institute. She lectures in the Department of Plant Physiology at the Charles University in Prague. Her research interests are in the area of plant growth substances (auxins, ethylene, abscisic acid and melatonin); their modes of action and metabolism, regulation of their levels in relation to plant development and electrophysiology.

Eva Zazimalova is an Associate Professor of Plant Physiology at the Institute of Experimental Botany of the Academy of Sciences of the Czech Republic in Prague. She is Head of the Laboratory of Hormonal Regulation in Plants and Deputy Director of the Institute. She also teaches in the Department of Plant Physiology at the Charles University in Prague. Her research is in the fields of auxin and cytokinins (mode of action of auxin, auxin binding site(s), regulation of levels of auxins and cytokinins in relation to cell division and elongation and the mechanism of polar transport of auxin).
Chapter 6.

Johannes van Staden was awarded his PhD (Botany) in 1970 and lectured in this field until 2003. He is a Professor and Director of the Research Institute for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal (South Africa). His main interests are in the hormonal regulation of plant growth, seed germination, plant tissue culture and ethnobotany/medicine.

Eva Zazimalova (see chapter 5).

Chapter 7.

Igor E Moshkov is a Leading Researcher in plant physiology and biochemistry and Deputy Director at the Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow. His research is focussed on ethylene signal perception and transduction, the interaction between ethylene and cytokinin at the level of hormone perception and signal transduction pathways and GTP-binding proteins in phytohormone signalling.

Galina V Novikova is a Leading Researcher in plant physiology and biochemistry at the Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow. Her research is related to the mode of action of phytohormone action (cytokinins and ethylene) and interactions of the phytohormones, protein phosphorylation/dephosphorylation in relation to phytohormone signal perception and transduction and MAPK cascades in phytohormone signal transduction.

Michael A Hall has been Professor of Botany at the University of Wales, Aberystwyth (UK) since 1981. His research is involved with signal perception and transduction mechanisms for plant hormones, especially ethylene, as well as the role of hormones in the responses of plants to environmental stress.

Chapter 8.

Dominique Chriqui is Professor and Director of a laboratory of plant development at the University Pierre and Marie Curie, Paris (France). She has been involved for many years in research on the cellular and molecular features that underlie morphogenic events such as rhizogenesis and shoot regeneration, both in planta and in vitro. She is now particularly interested in the early events of the regenerative process and in the interfaces between hormones, cell cycle and developmental genes and has published approx. 100 papers in the field of plant morphogenesis.

Chapter 9.

Sara von Arnold holds a PhD from Uppsala University (1979), Sweden. She has been a full Professor in the Cell Biology of forest trees at the Swedish University of Agricultural Sciences, Uppsala since 1988. Her research focusses on developmental processes in conifers and especially somatic embryogenesis.

Chapter 10.

Peter B Gahan is Emeritus Professor of Cell Biology at King’s College London (UK) with fifty years of research and teaching experience in plant and animal biology. He is interested in the mechanism of competence and recalcitrance of plant cells to regenerate and also in the role of DNA as a messenger between cells and tissues.

Chapter 11.

John Preece is a horticulture professor in the Department of Plant, Soil and Agricultural Systems at Southern Illinois University Carbondale (USA). He teaches courses in General Horticulture, Plant Propagation and Plant Growth and Development. He conducts research on various aspects of woody plant propagation. Along with his postgraduates, he was the first to publish micropropagation protocols for a number of woody species and the first to work out somatic embryogenesis and shoot morphogenesis of Fraxinus americana (white ash) and Juglans nigra (eastern black walnut).

Chapter 12.

William (Bill) Davies is currently Professor of Environmental Plant Biology at Lancaster University (UK) and Director of the Lancaster Environmental centre, one of the largest groups of environmental researchers in Europe. He obtained his first degree in Horticultural Science from the University of Reading (UK) and his PhD in Forestry and Botany from the University of Wisconsin, Madison (USA). His research interests include regulation of growth and functioning of plants experiencing environmental stress; stomatal physiology, root to shoot communication via chemical signalling in plants; environmental physiology of crops and native species; crop improvement for water-scarce environments; irrigation science and enhancing the efficiency of crop water use through novel management techniques. He has published more than 200 papers in international plant science journals and edited 17 books. He is a member of the ISI database of ‘Highly Cited Researchers’ in Plant and Animal Sciences. He is a member of the Defra Horticulture
Link programme Management Committee and editor-in-chief of the *Journal of Experimental Botany*.

Chapter 13.
Meira Ziv is a Professor in the Robert H Smith Institute of Plant Science and Genetics at the Hebrew University of Jerusalem (Israel). Her research interests are in the physiology and morphogenesis of plant organogenesis and somatic embryogenesis in large scale liquid cultures; shoot-malformation, hyperhydricity and the role of oxidative stress in the control of plant development in bioreactor cultures for efficient acclimatization and survival *ex vitro*; bulb and corm development in geophytes cultured in liquid cultures in relation to carbohydrate metabolism.

Jianxin Chen is a research scientist in the Department of Biology at Brock University, Ontario (Canada). His interests are in large-scale micropropagation, metabolic pathways and cloning of medicinal plants and plant breeding.
Chapter 1
Plant Tissue Culture Procedure - Background

1. INTRODUCTION

Plant tissue culture is the science of growing plant cells, tissues or organs isolated from the mother plant, on artificial media. It includes techniques and methods used to research into many botanical disciplines and has several practical objectives. Before beginning to propagate plants by tissue culture methods, it is necessary to have a clear understanding of the ways in which plant material can be grown and manipulated in ‘test tubes’. This chapter therefore describes the techniques that have been developed for the isolation and in vitro culture of plant material, and shows where further information can be obtained. Both organised and unorganised growth are possible in vitro.

1.1. ORGANISED GROWTH

Organised growth contributes towards the creation or maintenance of a defined structure. It occurs when plant organs such as the growing points of shoots or roots (apical meristems), leaf initials, young flower buds or small fruits, are transferred to culture and continue to grow with their structure preserved. Growth that is coherently organised also occurs when organs are induced. This may occur in vitro either directly upon an organ or upon a piece of tissue placed in culture (an explant), or during the culture of previously unorganised tissues. The process of de novo organ formation is called organogenesis or morphogenesis (the development of form).

1.2. UNORGANISED GROWTH

The growth of higher plants depends on the organised allocation of functions to organs which in consequence become differentiated, that is to say, modified and specialised to enable them undertake their essential roles. Unorganised growth is seldom found in nature, but occurs fairly frequently when pieces of whole plants are cultured in vitro. The cell aggregates, which are then formed, typically lack any recognisable structure and contain only a limited number of the many kinds of specialised and differentiated cells found in an intact plant. A differentiated cell is one that has developed a specialised form (morphology) and/or function (physiology). A differentiated tissue (e.g. xylem or epidermis) is an aggregation of differentiated cells. So far, the formation of differentiated cell types can only be controlled to a limited extent in culture. It is not possible, for example, to maintain and multiply a culture composed entirely of epidermal cells. By contrast, unorganised tissues can be increased in volume by subculture and can be maintained on semi-solid or liquid media for long periods. They can often also be used to commence cell suspension cultures. Differentiation is also used botanically to describe the formation of distinct organs through morphogenesis.

2. TISSUE CULTURE

2.1. CULTURES OF ORGANISED STRUCTURES

Organ culture is used as a general term for those types of culture in which an organised form of growth can be continuously maintained. It includes the aseptic isolation from whole plants of such definite structures as leaf primordia, immature flowers and fruits, and their growth in vitro. For the purposes of plant propagation, the most important kinds of organ culture are:

- Meristem cultures, in which are grown very small excised shoot apices, each consisting of the apical meristematic dome with or without one or two leaf primordia. The shoot apex is typically grown to give one single shoot.
- Shoot tip, or shoot cultures, started from excised shoot tips, or buds, larger than the shoot apices employed to establish meristem cultures, having several leaf primordia. These shoot apices are usually cultured in such a way that each produces multiple shoots.
- Node cultures of separate lateral buds, each carried on a small piece of stem tissue; stem pieces carrying either single or multiple nodes may be cultured. Each bud is grown to provide a single shoot.
- Isolated root cultures. The growth of roots, unconnected to shoots: a branched root system may be obtained.

© 2008 Springer.
• Embryo cultures, where fertilised or unfertilised zygotic (seed) embryos are dissected out of developing seeds or fruits and cultured *in vitro* until they have grown into seedlings. Embryo culture is quite distinct from somatic embryogenesis (see below).

These types of cultures are described in more detail later in this chapter.

2.2. CULTURES OF UNORGANISED TISSUES

‘Tissue culture’ is commonly used as a collective term to describe all kinds of *in vitro* plant cultures although strictly it should refer only to cultures of unorganised aggregates of cells. In practice the following kinds of cultures are most generally recognised:

- **Callus (or tissue) cultures.** The growth and maintenance of largely unorganised cell masses, which arise from the uncoordinated and disorganised growth of small plant organs, pieces of plant tissue, or previously cultured cells.
- **Suspension (or cell) cultures.** Populations of plant cells and small cell clumps, dispersed in an agitated, that is aerated, liquid medium.
- **Protoplast cultures.** The culture of plant cells that have been isolated without a cell wall.
- **Anther cultures.** The culture of complete anthers containing immature pollen microspores. The objective is usually to obtain haploid plants by the formation of somatic embryos (see below) directly from the pollen, or sometimes by organogenesis via callus. Pollen cultures are those initiated from pollen that has been removed from anthers.

2.3. USING TISSUE CULTURES FOR PLANT PROPAGATION

The objective of plant propagation via tissue culture, termed micropropagation, is to propagate plants true-to-type, that is, as clones. Plants obtained from tissue culture are called microplants and can be derived from tissue cultures in three ways:

- from pre-existing shoot buds or primordial buds (meristems) which are encouraged to grow and proliferate;
- following shoot morphogenesis when new shoots are induced to form in unorganised tissues or directly upon explanted tissues of the mother plant;
- through the formation of somatic embryos which resemble the seed embryos of intact plants, and which can grow into seedlings in the same way. This process is called somatic embryogenesis.

To obtain plants by the first two of these methods, it is necessary to treat shoots of an adequate size as miniature cuttings and induce them to produce roots.

The derivation of new plants from cells, which would not normally have taken part in the process of regeneration, shows that living, differentiated plant cells may express totipotency, i.e. they each retain a latent capacity to produce a whole plant. Totipotency is a special characteristic of cells in young tissues and meristems. It can be exhibited by some differentiated cells, e.g. cambial cells and leaf palisade cells but not those which have developed into terminally differentiated structures (e.g. sieve tubes or tracheids).

Theoretically, plant cells, organs, or plants, can all be cloned, i.e., produced in large numbers as a population where all the individuals have the same genetic constitution as the parent. Present tissue culture techniques do not permit this in every case and irregularities do sometimes occur, resulting in ‘somaclonal variants’ (Larkin and Scowcroft, 1981). Nevertheless, as will be described in the chapters, which follow, a very large measure of success can be achieved and cultures of various kinds can be used to propagate plants.

2.4. INITIATING TISSUE CULTURES

2.4.1. Explants

Tissue cultures are started from pieces of whole plants. The small organs or pieces of tissue that are used are called explants. The part of the plant (the stock plant or mother plant) from which explants are obtained, depends on:

- the kind of culture to be initiated;
- the purpose of the proposed culture;
- the plant species to be used.

Explants can therefore be of many different kinds. The correct choice of explant material can have an important effect on the success of tissue culture. Plants growing in the external environment are invariably contaminated with micro-organisms and pests. These contaminants are mainly confined to the outer surfaces of the plant, although, some microbes and viruses may be systemic within the tissues (Cassells, 1997). Because they are started from small explants and must be grown on nutritive media that are also favourable for the growth of micro-organisms, plant tissue cultures must usually be established and maintained in aseptic conditions.

Most kinds of microbial organism, and in particular bacteria and fungi, compete adversely with plant material growing *in vitro*. Therefore, as far as
possible, explants must be free from microbial contaminants when they are first placed on a nutrient medium. This usually involves growing stock plants in ways that will minimise infection, treating the plant material with disinfecting chemicals to kill superficial microbes, and sterilising the tools used for dissection and the vessels and media in which cultures are grown (for a review see Cassells and Doyle, 2005). Some kinds of plants can, however, be micropropagated in non-sterile environments (see Chapter 3).

2.4.2. Isolation and incubation

The work of isolating and transferring cultured plant material is usually performed in special rooms or inside hoods or cabinets from which microorganisms can be excluded. Cabinets used for isolation can be placed in a draught-free part of a general laboratory, but are much better situated in a special inoculation or transfer room reserved for the purpose. The accommodation, equipment and methods that are required for successful inoculation and transfer are described in Volume 2. Cultures, once initiated, are placed in incubators or growth rooms where lighting, temperature and humidity can be controlled. The rate of growth of a culture will depend on the temperature (and sometimes the lighting) regime adopted.

2.4.3. The cultural environment

Plant cultures are commenced by placing one or more explants into a pre-sterilised container of sterile nutrient medium. Some explants may fail to grow, or may die, due to microbial contamination: to ensure the survival of an adequate number, it therefore is usual to initiate several cultures at the same time, each being started from an identical organ or piece of tissue. Explants taken from stock plants at different times of the year may not give reproducible results in tissue culture. This may be due to variation in the level of external contaminants or because of seasonal changes in endogenous (internal) growth regulator levels in the stock plant (see Chapter 11).

2.4.4. Media

Plant material will only grow in vitro when provided with specialised media. A medium usually consists of a solution of salts supplying the major and minor elements necessary for the growth of whole plants, together with:

- various vitamins (optional);
- various amino acids (optional);
- an energy source (usually sucrose).

The components of plant tissue culture media are discussed in Chapters 3 and 4. The compositions of specific media are described in Volume 2. Growth and development of plant cultures usually also depends on the addition of plant growth regulators to the medium (see Chapters 5, 6 and 7). Plant growth regulators are compounds, which, at very low concentration, are capable of modifying growth or plant morphogenesis. Many workers define a medium as a completed mixture of nutrients and growth regulators. This is a rather inflexible method, as growth regulators frequently need to be altered according to the variety of plant, or at different stages of culture, whilst the basic medium can stay unchanged. It is therefore recommended that nutritional and regulatory components should be listed separately. Plant material can be cultured either in a liquid medium or on a medium that has been partially solidified with a gelling agent (see Chapter 4). The method employed will depend on the type of culture and its objective.

2.4.5. Solidified media

Media which have had a gelling agent added to them, so that they have become semi-solid, are widely used for explant establishment; they are also employed for much routine culture of callus or plant organs (including micropropagation), and for the long-term maintenance of cultures. Agar is the most common solidifying agent, but a gellan gum is also widely used (Chapter 4).

Cultures grown on solid media are kept static. They require only simple containers of glass or plastic, which occupy little space. Only the lower surface of the explant, organ or tissue is in contact with the medium. This means that as growth proceeds there may be gradients in nutrients, growth factors and the waste products of metabolism, between the medium and the tissues. Gaseous diffusion into and out of the cells at the base of the organ or tissue may also be restricted by the surrounding medium.

2.4.6. Liquid media

Liquid media are essential for suspension cultures, and are preferred for critical experiments on the nutrition, growth and cell differentiation in callus tissues. They are also used in some micropropagation work. Very small organs (e.g. anthers) are often floated on the top of liquid medium and plant cells or protoplasts can be cultured in very shallow layers of
static liquid, providing there is sufficient gaseous diffusion. Larger organs such as shoots (e.g. proliferating shoots of shoot cultures) can also often be grown satisfactorily in a shallow layer of non-agitated liquid where part of the organ protrudes above the surface. However, some method of support is necessary for small organs or small pieces of tissue, which would otherwise sink below the surface of a static liquid medium, or they will die for lack of aeration. Systems of support which have been found to be effective and which can be used instead of agar-solidified media are described in Chapters 4.

Many tissues and organs, small and large, also grow well unsupported in a liquid medium, providing it is aerated by shaking or moving (see below). Some kind of agitation is essential for suspension cultures to prevent cells and cell aggregates settling to the bottom of the flask. Other purposes served by agitation include: the provision of increased aeration, the reduction of plant polarity, the uniform distribution of nutrients and the dilution of toxic explant exudates (Lim-Ho, 1982).

There are several alternative techniques. Plant cell suspensions can be cultured very satisfactorily when totally immersed in a liquid culture medium, providing it is shaken (by a rotary or reciprocating shaking machine) or stirred (e.g. by a magnetic stirrer) to ensure adequate aeration. This method may also be used for culturing organs of some plants (e.g. proliferating shoot cultures), but the fragmentation, which occurs, can be disadvantageous.

Periodic immersion may be achieved by growing cultured material in tubes or flasks of liquid medium which are rotated slowly. Steward and Shantz (1956) devised so-called ‘nipple flasks’ for this purpose which had several side-arms. They were fixed to a wooden wheel, which was rotated so that tissue in the arms of each flask was alternately bathed in medium and drained or exposed to the air (Fig. 1.1). This technique ensured that callus tissue for which they were used was well aerated. The medium usually became turbid as cells dissociated from the callus and started a cell suspension. Flasks of this sort are seldom used to-day because of their cost. A similar alternating exposure can be achieved by placing calluses in vessels, which are rotated slowly.

An alternative to the costly rotating systems to achieve periodic immersion of the cultures, is the increasingly popular temporary immersion system in which static vessels are periodically or temporarily flooded with culture medium (Fig. 1.2; Teisson and Alvard, 1995). Medium is pumped from a reservoir container into the culture vessel for experimentally determined time intervals repeated over a 24 hour cycle. This system prevents anoxia and has the advantage that the medium can easily be changed in the reservoir.

![Fig. 1.1 A nipple flask for growing callus in a liquid medium.](image-url)
Liquid medium in flasks or column bio-reactors (fermentors) can be circulated and at the same time aerated, by the introduction of sterile air. Shearing forces within air-lift reactors are much less than in mechanically-stirred vessels so that plant cell suspensions suffer less damage. Bio-reactors are
used in the pharmaceutical industry to produce high value plant secondary products and to carry out substrate conversions. Low cost bio-reactors developed for micropropagation have been described in detail in Hvoslef-Eide and Preil (2005) (Fig. 1.3).

Rather than immersing callus or organ cultures, liquid medium may be slowly dripped onto the growing tissues or applied as a mist and afterwards the liquid drained or pumped away for recirculation (Weathers and Giles, 1987). A particular advantage of this technique is the ability to grow cultures in a constant and non-depleted medium; nutrients can be varied frequently and rapidly and their availability controlled by altering either concentration or flow rate. Toxic metabolites, which in a closed container might accumulate and inhibit growth, can be removed continuously. As complicated apparatus is needed, the method has not been widely used.

The relative merits of solid and liquid media (and combinations of both) are discussed further in Chapter 12.

2.5. PROBLEMS OF ESTABLISHMENT
2.5.1. Phenolic oxidation

Some plants, particularly tropical species, contain high concentrations of phenolic substances that are oxidised when cells are wounded or senescent. Isolated tissue then becomes brown or black and fails to grow. The prevention of blackening, which can be a serious problem in tissue culture, is discussed in Chapter 11.

2.5.2. Minimum inoculation density

Certain essential substances can pass out of plant cells by diffusion. Substances known to be released into the medium by this means include alkaloids, amino acids, enzymes, growth substances and vitamins (Street, 1969). The loss is of no consequence when there is a large cluster of cells growing in close proximity or where the ratio of plant material to medium is high. However, when cells are inoculated onto an ordinary growth medium at a low population density, the concentration of essential substances in the cells and in the medium can become inadequate for the survival of the culture. For successful culture initiation, there is thus a minimum size of explant or quantity of separated cells or protoplasts per unit culture volume. Inoculation density also affects the initial rate of growth in vitro. Large explants generally survive more frequently and grow more rapidly at the outset than very small ones. In practice, minimum inoculation density varies according to the genotype of plant being cultured and the cultural conditions. For commencing suspension cultures it is commonly about 1-1.5 x 10^4 cells/ml.

The minimum cell density phenomenon is sometimes called a ‘feeder effect’ because deficiencies can often be made up by the presence of other cells growing nearby. Suspension cultures can be started from a low density of inoculum by ‘conditioning’ a freshly prepared medium - i.e. allowing products to diffuse into it from a medium in which another culture is growing actively, or adding a quantity of filter-sterilised medium which has previously supported another culture. The use of conditioned media can reduce the critical initial cell density by a factor of about 10 (Stuart and Street, 1969).

It is possible to overcome the deficiencies of plant cells at low starting densities by adding small amounts of known chemicals to a medium. For example, Kao and Michayluk (1975) have shown that Vicia hajastana cells or protoplasts can be cultured from very small initial inocula or even from individual cells: a standard culture medium was supplemented with growth regulators, several organic acids, additional sugars (apart from sucrose and glucose), and in particular, casein hydrolysate (casamino acids) and coconut milk.

There is often a maximum as well as a minimum plating or inoculation density for plant cells or protoplasts. In a few cases the effective range has been found to be quite narrow. Some effects of inoculation density on morphogenesis are described in Chapter 10.

2.6. PATTERNS OF GROWTH AND DIFFERENTIATION

A typical unorganised plant callus, initiated from a new explant or a piece of a previously-established culture, has three stages of development, namely:
- the induction of cell division;
- a period of active cell division during which differentiated cells lose any specialised features they may have acquired and become dedifferentiated;
- a period when cell division slows down or ceases and when, within the callus, there is increasing cellular differentiation.

These phases are similarly reproduced by cell suspensions grown in a finite volume of medium (a batch culture), where according to a variety of different parameters that can be used to measure growth (e.g. cell number, cell dry weight, total DNA
An S-shaped growth curve is generally obtained (Fig. 1.4).

The phases are:
- a lag phase;
- a period of exponential and then linear growth;
- a period when the rate of growth declines;
- a stationary phase when growth comes to a halt.

Some differentiation of cells may occur in cell cultures during the period of slowed and stationary growth, but generally it is less marked and less complete than that which occurs in callus cultures. Cultures cannot be maintained in stationary phase for long periods. Cells begin to die and, as their contents enter the nutrient medium, death of the whole culture accelerates. Somewhat similar patterns of growth also occur in cultures of organised structures. These also cease growth and become moribund as the components of the medium become exhausted.

2.7. SUBCULTURING

Once a particular kind of organised or unorganised growth has been started *in vitro*, it will usually continue if callus cultures, suspension cultures, or cultures of indeterminate organs (see below) are divided to provide new explants for culture initiation on fresh medium. Subculturing often becomes imperative when the density of cells, tissue or organs becomes excessive; to increase the volume of a culture; or to increase the number of organs (e.g. shoots or somatic embryos) for micropropagation. The period from the initiation of a culture or a subculture to the time of its transfer is sometimes called a passage. The first passage is that in which the original explant or inoculum is introduced.

Suspensions regularly subcultured at the end of the period of exponential growth can often be propagated over many passages. However, many cultures reach a peak of cell aggregation at this time and aggregation often becomes progressively more pronounced in subsequent passages (Street, 1977b). Subculture is therefore more conveniently carried out during the stationary phase when cell aggregation is least pronounced. Rapid rates of plant propagation depend on the ability to subculture shoots from proliferating shoot or node cultures, from cultures giving direct shoot regeneration, or callus or suspensions capable of reliable shoot or embryo regeneration.

![Diagram showing the phases of growth in batch suspension culture.](image)
A further reason for transfer, or subculture, is that the growth of plant material in a closed vessel eventually leads to the accumulation of toxic metabolites and the exhaustion of the medium, or to its drying out. Thus, even to maintain the culture, all or part of it must be transferred onto fresh medium. Callus subcultures are usually initiated by moving a fragment of the initial callus (an inoculum) to fresh medium in another vessel. Shoot cultures are subcultured by segmenting individual shoots or shoot clusters. The interval between subcultures depends on the rate at which a culture has grown: at 25°C, subculturing is typically required every 4-6 weeks. In the early stages of callus growth it may be convenient to transfer the whole piece of tissue to fresh medium, but a more established culture will need to be divided and only small selected portions used as inocula. Regrowth depends on the transfer of healthy tissues. Decontamination procedures are theoretically no longer necessary during subculturing, although sterile transfer procedures must still be used. However, when using shoot or node cultures for micropropagation, some laboratories do re-sterilise plant material at this stage as a precaution against the spread of contaminants (see Volume 2). Cultures which are obviously infected with micro-organisms should not be used for subculturing and should be autoclaved before disposal.

2.8. SUBCULTURING HAZARDS

There are several hazards in subculturing which are discussed more fully in other chapters of this book. Several kinds of callus may arise from the initial explant, each with different morphogenic potential. Strains of callus tissue capable of giving rise to somatic embryos and others without this capability can, for instance, arise simultaneously from the culture of grass and cereal seed embryos. Careful selection of the correct strain is therefore necessary if cultures capable of producing somatic embryos are ultimately required. Timing of the transfer may also be important, because if left alone for some while, non-embryogenic callus may grow from the original explant at the expense of the competent tissue, which will then be obscured or lost.

Although subculturing can often be continued over many months without adverse effects becoming apparent, cultures of most unorganised cells and of some organised structures can accumulate cells that are genetically changed. This may cause the characteristics of the culture to be altered and may mean that some of the plants regenerated from the culture will not be the same as the parent plant. This subject is discussed further in Chapter 2. Cultures may also inexplicably decline in vigour after a number of passages, so that further subculture becomes impossible.

3. TYPES OF TISSUE CULTURE

3.1. ORGAN CULTURES

Differentiated plant organs can usually be grown in culture without loss of integrity. They can be of two types:
- Determinate organs which are destined to have only a defined size and shape (e.g. leaves, flowers and fruits);
- Indeterminate organs, where growth is potentially unlimited (apical meristems of roots and non-flowering shoots).

In the past, it has been thought that the meristematic cells within root or shoot apices were not committed to a particular kind of development. It is now accepted that, like the primordia of determinate organs such as leaves, apical meristems also become inherently programmed (or determined) into either root or shoot pathways (see Chapter 8).

The eventual pattern of development of both indeterminate and determinate organs is often established at a very early stage. For example, the meristematic protrusions in a shoot apex become programmed to develop as either lateral buds or leaves after only a few cell divisions have taken place (see Chapter 10).

3.1.1. Culture of determinate organs

An organ arises from a group of meristematic cells. In an indeterminate organ, such cells are theoretically able to continue in the same pattern of growth indefinitely. The situation is different in the primordium of a determinate organ. Here, as meristematic cells receive instructions on how to differentiate, their capacity for further division becomes limited.

If the primordium of a determinate organ is excised and transferred to culture, it will sometimes continue to grow to maturity. The organ obtained in vitro may be smaller than that which would have developed on the original plant in vivo, but otherwise is likely to be normal. The growth of determinate organs cannot be extended by subculture as growth ceases when they have reached their maximum size.
Organs of limited growth potential, which have been cultured, include leaves (Caponetti and Steeves, 1963; Caponetti, 1972); fruits (Nitsch, 1951, 1963; Street, 1969); stamens (Rastogi and Sawhney, 1988); ovaries and ovules (which develop and grow into embryos) and flower buds of several dicotyledonous plant species (Table 1.1).

Until recently, a completely normal development was obtained in only a few cases. This was probably due to the use of media of sub-optimum composition. By experimenting with media constituents, Berghoef and Bruinsma (1979a) obtained normal growth of *Begonia franconis* buds and were thus able to study the effect of plant growth substances and nutritional factors on flower development and sexual expression (Berghoef and Bruinsma, 1979b). Similarly, by culturing dormant buds of *Salix*, Angrish and Nanda (1982a,b) could study the effect of bud position and the progressive influence of a resting period on the determination of meristems to become catkins and fertile flowers. In several species, flowers have been pollinated *in vitro* and have then given rise to mature fruits (e.g. Ruddat *et al.*, 1979).

Table 1.1 Some species in which flower buds have been cultured

<table>
<thead>
<tr>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumis sativus</td>
<td>Galun et al. (1962)</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Hicks and Sussex (1970)</td>
</tr>
<tr>
<td>Aquilegia formosa</td>
<td>Bilderback (1971)</td>
</tr>
<tr>
<td>Cleome iberidella</td>
<td>De Jong and Bruinsma (1974)</td>
</tr>
<tr>
<td>Nicotiana offinis</td>
<td>Deaton et al. (1980)</td>
</tr>
</tbody>
</table>

Plants cannot be propagated by culturing meristems already committed to produce determinate organs, but providing development has not proceeded too far, flower meristems can often be induced to revert to vegetative meristems *in vitro*. In some plants the production of vegetative shoots from the flower meristems on a large inflorescence can provide a convenient method of micropropagation (see Chapter 2).

3.1.2. Culture of indeterminate organs

Meristem and shoot culture. The growing points of shoots can be cultured in such a way that they continue uninterrupted and organised growth. As these shoot initials ultimately give rise to small organised shoots which can then be rooted, their culture has great practical significance for plant propagation. Two important uses have emerged:

Meristem culture. Culture of the extreme tip of the shoot, is used as a technique to free plants from virus infections. Explants are dissected from either apical or lateral buds. They comprise a very small stem apex (0.2-1.0 mm in length) consisting of just the apical meristem and one or two leaf primordia;

Shoot culture or shoot tip culture. Culture of larger stem apices or lateral buds (ranging from 5 or 10 mm in length to undissected buds) is used as a very successful method of propagating plants.

The size and relative positions of the two kinds of explant in a shoot apex of a typical dicotyledon is shown in Fig. 1.5. Node culture is an adaptation of shoot culture.

Fig. 1.5 A diagrammatic section through a bud showing the locations and approximate relative sizes of a meristematic dome, the meristem tip and shoot tip explants.
If successful, meristem culture, shoot culture and node culture can ultimately result in the growth of small shoots. With appropriate treatments, these original shoots can either be rooted to produce small plants or ‘plantlets’, or their axillary buds can be induced to grow to form a cluster of shoots. Plants are propagated by dividing and reculturing the shoot clusters, or by growing individual shoots for subdivision. At a chosen stage, individual shoots or shoot clusters are rooted. Tissue cultured shoots are removed from aseptic conditions at or just before the rooting stage, and rooted plantlets are hardened off and grown normally. Shoot culture, node culture and meristem tip culture are discussed in greater detail in Chapter 2.

Embryo culture. Zygotic or seed embryos are often used advantageously as explants in plant tissue culture, for example, to initiate callus cultures. In embryo culture however, embryos are dissected from seeds, individually isolated and ‘germinated’ *in vitro* to provide one plant per explant. Isolated embryo culture can assist in the rapid production of seedlings from seeds that have a protracted dormancy period, and it enables seedlings to be produced when the genotype (e.g. that resulting from some interspecific crosses) conveys a low embryo or seed viability.

During the course of evolution, natural incompatibility systems have developed which limit the types of possible sexual crosses (see De Nettancourt and Devreux, 1977). Two kinds of infertility occur:

- Pre-zygotic incompatibility, preventing pollen germination and/or pollen tube growth so that a zygote is never formed;
- Post-zygotic incompatibility, in which a zygote is produced but not accepted by the endosperm. The embryo, not receiving sufficient nutrition, disintegrates or aborts.

Pre-zygotic incompatibility can sometimes be overcome in the laboratory using a technique developed by Kanta *et al.* (1962) called *in vitro* pollination (*or in vitro* fertilisation). For a description of this technique see review articles by Ranga Swamy (1977), Zenketer (1980) and Yeung *et al.* (1981). Reviews of embryo culture have been provided by Torrey (1973), Norstog (1979) and Raghavan (1967, 1977a, 1980).

Embryo culture has been used successfully in a large number of plant genera to overcome post-zygotic incompatibility which otherwise hampers the production of desirable hybrid seedlings. For example, in trying to transfer insect resistance from a wild *Solanum* species into the aubergine, Sharma *et al.* (1980a) obtained a few hybrid plants (*Solanum melongena* x *S. khasianum*) by embryo culture. Embryo culture in these circumstances is more aptly termed embryo rescue. Success rates are usually quite low and the new hybrids, particularly if they arise from remote crosses, are sometimes sterile. However, this does not matter if the plants can afterwards be propagated asexually. Hybrids between incompatible varieties of tree and soft fruits (Tukey, 1934; Skirm, 1942) and *Iris* (in Reuther, 1977) have been obtained by culturing fairly mature embryos.

Fruits or seeds are surface sterilised before embryo removal. Providing aseptic techniques are strictly adhered to during excision and transfer to a culture medium, the embryo itself needs no further sterilisation. To ease the dissection of the embryo, hard seeds are soaked in water to soften them, but if softening takes more than a few hours it is advisable to re-sterilise the seed afterwards. A dissecting microscope may be necessary to excise the embryos from small seeds as it is particularly important that the embryo should not be damaged.

Culture of immature embryos (pro-embryos) a few days after pollination frequently results in a greater proportion of seedlings being obtained than if more mature embryos are used as explants, because incompatibility mechanisms have less time to take effect. Unfortunately dissection of very small embryos requires much skill and cannot be done rapidly: it also frequently results in damage which prevents growth *in vitro*. In soybean, Hu and Sussex (1986) obtained the best *in vitro* growth of immature embryos if they were isolated with their suspensors intact. Excised embryos usually develop into seedlings precociously (i.e. before they have reached the size they would have attained in a normal seed).

As an alternative to embryo culture, in some plants it has been possible to excise and culture pollinated ovaries and immature ovules. Ovule culture, sometimes called ‘in ovulo embryo culture’, can be more successful than the culture of young embryos. Pro-embryos generally require a complex medium for growth, but embryos contained within the ovule require less complicated media. They are also easily removed from the plant and relatively insensitive to the physical conditions of culture (Thengane *et al*., 1986). The difference
between embryo and ovule culture is shown diagrammatically in Fig. 1.6.

Because seedlings, which resulted from ovule culture of a *Nicotiana* interspecific cross all died after they had developed some true leaves, Iwai *et al.* (1985) used leaves of the immature seedlings as explants for the initiation of callus cultures. Most shoots regenerated from the callus also died at an early stage, but one gave rise to a plant, which was discovered later to be a sterile hybrid. Plants were also regenerated from callus of a *Pelargonium* hybrid by Kato and Tokumasu (1983). The callus in this case arose directly from globular or heart-shaped zygotic embryos which were not able to grow into seedlings.

The seeds of orchids have neither functional storage organs, nor a true seed coat, so dissection of the embryo would not be possible. In fact, for commercial purposes, orchid seeds are now almost always germinated *in vitro*, and growth is often facilitated by taking immature seeds from green pods (see Volume 2).

Many media have been especially developed for embryo culture and some were the forerunners of the media now used for general tissue culture. Commonly, mature embryos require only inorganic salts supplemented with sucrose, whereas immature embryos have an additional requirement for vitamins, amino acids, growth regulators and sometimes coconut milk or some other endosperm extract. Raghavan (1977b) encouraged the incorporation of mannitol to replace the high osmotic pressure exerted on proembryos by ovular sap. Seedlings obtained from embryos grown *in vitro* are planted out and hardened off in the same manner as other plantlets raised by tissue culture (Chapter 2 and Volume 2).

Although embryo culture is especially useful for plant breeders, it does not lead to the rapid and large scale rates of propagation characteristic of other micropropagation techniques, and so it is not considered further in this book. More details can be found in papers by: Sanders and Ziebur (1958); Raghavan (1967, 1980); Torrey (1973); Zilis and Meyer (1976); Collins and Grosser (1984), Monnier (1990) and Ramming (1990). Yeung *et al.* (1981) have suggested a basic protocol, which with modifications, should be applicable to any species.

The induction of multiple shoots from seeds is described in Chapter 2.

Isolated root culture. Root cultures can be established from root tips taken from primary or lateral roots of many plants. Suitable explants are small sections of roots bearing a primary or lateral root meristem. These explants may be obtained, for example, from surface sterilised seeds germinated in aseptic conditions. If the small root meristems continue normal growth on a suitable medium, they produce a root system consisting only of primary and lateral roots (Fig. 1.7). No organised shoot buds will be formed.

The discovery that roots could be grown apart from shoot tissue was one of the first significant developments of modern tissue culture science. Root culture initially attracted a great deal of attention from research workers and the roots of many different species of plants were cultured successfully (see the comprehensive reviews of Street, 1954, 1957, 1969; and Butcher and Street, 1964).

Plants fall generally into three categories with regard to the ease with which their roots can be cultured. There are some species such as clover, *Datura*, tomato and *Citrus*, where isolated roots can be grown for long periods of time, some seemingly, indefinitely (Said and Murashige, 1979) providing regular subcultures are made. In many woody species, roots have not been grown at all successfully in isolated cultures. In other species such as pea, flax and wheat, roots can be cultured for long periods but ultimately growth declines or insufficient lateral roots are produced to provide explants for subculture.

The inability to maintain isolated root cultures is due to an induced meristematic dormancy or ‘senescence’, related to the length of time that the
roots have been growing in vitro. Transferring dormant meristems to fresh medium does not promote regrowth, possibly due to the accumulation of naturally-occurring auxinic growth substances at the root apex. The addition of so-called anti-auxin, or cytokinin growth regulators can often prolong active growth of root cultures, whereas placing auxins or gibberellic acid in the growth medium, causes it to cease more rapidly. Cultures, which cannot be maintained by transferring root apices, can sometimes be continued if newly-initiated lateral root meristems are used as secondary explants instead.

Isolated plant roots can usually be cultured on relatively simple media such as White (1954) containing 2% sucrose. Liquid media are preferable, as growth in or on a solid medium is slower. This is presumably because salts are less readily available to the roots from a solidified medium and oxygen availability may be restricted. Although roots will accept a mixed nitrate/ammonium source, they will not usually grow on ammonium nitrogen alone. Species, and even varieties or strains, of plants, are found to differ in their requirement for growth regulators, particularly for auxins, in the root culture medium.

Isolated root cultures have been employed for a number of different research purposes. They have been particularly valuable in the study of nematode infections and provide a method by which these parasites can be cultured in aseptic conditions. Root cultures may also be used to grow beneficial mycorrhizal fungi, and to study the process of root nodulation with nitrogen-fixing Rhizobium bacteria in leguminous plants. For the latter purpose, various special adaptations of standard techniques have been adopted to allow roots to become established in a nitrate-free medium (Raggio et al., 1957; Torrey, 1963).

Unlike some other cultured tissues, root cultures exhibit a high degree of genetic stability (see Chapter 10). It has therefore been suggested that root cultures could afford one means of storing the germplasm of certain species (see Volume 2). For suitable species, root cultures can provide a convenient source of explant material for the micropropagation of plants, but they will only be useful in micropropagation if shoots can be regenerated from roots. There are however, several ways in which this can be done, although they are likely to be effective in only a small number of plant genera which have a natural tendency to produce suckers, or new shoots from whole or severed roots:

- From direct adventitious shoots;
- From shoots or embryos originating indirectly on root callus;
- By conversion of the apical root meristem to a shoot meristem.

Adventitious shoots form readily on the severed roots of some plant species, and root cuttings are employed by horticulturists to increase plants in vivo (see, for example, the review by Hodge, 1986). Shoot regeneration from roots has not been widely used as a method of micropropagation, even though direct shoot regeneration from roots has been observed in vitro on many plants. Sections of fleshy roots used as primary explants are especially likely to form new shoots. Adventitious shoots always develop at the proximal end of a root section while, as a rule, new roots are produced from the distal end. Isolated root cultures would be useful in micropropagation if shoots could be induced to form directly upon them. Unfortunately plants seem to have a high degree of genetic specificity in their
capacity to produce shoots directly on isolated root cultures. Shoot induction often occurs after the addition of a cytokinin to the medium. Seeliger (1956) obtained shoot buds on cultured roots of *Robinia pseudoacacia* and Torrey (1958), shoot buds on root cultures of *Convulvulus*. Direct shoot formation was induced in three species of *Nicotiana* and on *Solanum melongena* by Zelcer et al. (1983) but in *N. tabacum* and *N. petunoides* shoots were only obtained after callus formed on the roots. The most optimistic report we have seen comes from Mudge et al. (1986), who thought that the shoot formation, which they could induce in raspberry root cultures would provide a convenient and labour-saving method of multiplying this plant *in vitro*.

Plants may also be regenerated from root-derived callus of some species e.g. tomato (Norton and Boll, 1954); *Isatis tinctoria* (Danckwardt-Lilliestrom, 1957); *Atropa belladonna* (Thomas and Street, 1972). Embryogenesis, leading to the formation of protocorm-like bodies, occurs in the callus derived from the root tips of certain orchids e.g. *Catasetum trulla* x *Catasetum* (Kerbauy, 1984a); *Epidendrum obrienianum* (Stewart and Button, 1978); *Oncidium varicosum* (Kerbauy, 1984b).

Changing the determined nature of a root meristem, so that it is induced to produce a shoot instead of a root, is a very rare event but has been noted to occur *in vitro* in the orchid *Vanilla planifolia*. The quiescent centre of cultured root tip meristems was changed into a shoot meristem so that cultured root tips grew to produce plantlets or multiple shoots (Philip and Nainar, 1986). Ballade (1971) maintained that newly initiated root initials, arising from single nodes of *Nasturtium officinale*, could be made to develop into shoot meristems by placing a crystal of kinetin on each explant which was then transferred to a medium containing 0.05% glucose.

3.2. CULTURE OF UNORGANISED CELLS

3.2.1. Callus cultures

Callus is a coherent and amorphous tissue, formed when plant cells multiply in a disorganised way. It is often induced in or upon parts of an intact plant by wounding, by the presence of insects or microorganisms, or as a result of stress. Callus can be initiated *in vitro* by placing small pieces of the whole plant (explants) onto a growth-supporting medium under sterile conditions. Under the stimulus of endogenous growth regulators or growth regulating chemicals added to the medium, the metabolism of cells, which were in a quiescent state, is changed, and they begin active division. During this process, cell differentiation and specialisation, which may have been occurring in the intact plant, are reversed, and the explant gives rise to new tissue, which is composed of meristematic and unspecialised cell types.

During dedifferentiation, storage products typically found in resting cells tend to disappear. New meristems are formed in the tissue and these give rise to undifferentiated parenchymatous cells without any of the structural order that was characteristic of the organ or tissue from which they were derived. Although callus remains unorganised, as growth proceeds, some kinds of specialised cells may again be formed. Such differentiation can appear to take place at random, but may be associated with centres of morphogenesis, which can give rise to organs such as roots, shoots and embryos. The *de novo* production of plants from unorganised cultures is often referred to as plant regeneration.

Although most experiments have been conducted with the tissues of higher plants, callus cultures can be established from gymnosperms, ferns, mosses and thallophytes. Many parts of a whole plant may have an ultimate potential to proliferate *in vitro*, but it is frequently found that callus cultures are more easily established from some organs than others. Young meristematic tissues are most suitable, but meristematic areas in older parts of a plant, such as the cambium, can give rise to callus. The choice of tissues from which cultures can be started is greatest in dicotyledonous species. A difference in the capacity of tissue to give rise to callus is particularly apparent in monocotyledons. In most cereals, for example, callus growth can only be obtained from organs such as zygotic embryos, germinating seeds, seed endosperm or the seedling mesocotyl, and very young leaves or leaf sheaths, but so far never from mature leaf tissue (e.g. Green and Phillips, 1975; Dunstan et al., 1978). In sugar cane, callus cultures can only be started from young leaves or leaf bases, not from semi-mature or mature leaf blades.

Even closely associated tissues within one organ may have different potentials for callus origination. Thus when embryos of *Hordeum distichum* at an early stage of differentiation are removed from developing seeds and placed in culture, callus proliferation originates from meristematic mesocotyl cells rather than from the closely adjacent cells of the scutellum and coleorhiza (Granatek and Cockerline, 1979).
The callus formed on an original explant is called ‘primary callus’. Secondary callus cultures are initiated from pieces of tissue dissected from primary callus (Fig. 1.8). Subculture can then often be continued over many years, but the longer callus is maintained, the greater is the risk that the cells thereof will suffer genetic change (see Chapter 10).

Fig. 1.8 Typical steps in the initiation of callus and suspension cultures.

Callus tissue is not of one single kind. Strains of callus differing in appearance, colour, degree of compaction and morphogenetic potential commonly arise from a single explant. Sometimes the type of callus obtained, its degree of cellular differentiation and its capacity to regenerate new plants, depend upon the origin and age of the tissue chosen as an explant. Loosely packed or ‘friable’ callus is usually selected for initiating suspension cultures (see below).

Some of the differences between one strain of callus tissue and another can depend on which genetic programme is functioning within the cells (epigenetic differences). Variability is more likely when callus is derived from an explant composed of more than one kind of cell. For this reason there is often merit in selecting small explants from only morphologically uniform tissue, bearing in mind that a minimum size of explant is normally required to obtain callus formation.

The genetic make up of cells is very commonly altered in unorganised callus and suspension cultures. Therefore another reason for cell strains having different characteristics, is that they have become composed of populations of cells with slightly different genotypes. Genetic and epigenetic changes occurring in cultures are described in greater detail in Chapters 10 and Volume 2. The growth, structure, organisation and cytology of callus are discussed in various chapters of the book edited by Street (1977a), and also in the review by Yeoman and Forche (1980).

3.2.2. Cell suspension cultures

Unorganised plant cells can be grown as callus in aggregated tissue masses, or they can be freely dispersed in agitated liquid media. Techniques are similar to those used for the large-scale culture of bacteria. Cell or suspension cultures, as they are called, are usually started by placing an inoculum of friable callus in a liquid medium (Fig. 1.8). Under agitation, single cells break off and, by division, form
maintained by continuous replenishment of sterile continuous cultures in which cell growth is volume of medium until growth ceases, and after 4 days on a rotary shaker they can be disintegrated completely to release a great number of cells into suspension (Geile and Wagner, 1980).

Because the walls of plant cells have a natural tendency to adhere, it is not possible to obtain suspensions that consist only of dispersed single cells. Some progress has been made in selecting cell lines with increased cell separation, but cultures of completely isolated cells have yet to be obtained. The proportion and size of small cell aggregates varies according to plant variety and the medium in which the culture is grown. As cells tend to divide more frequently in aggregates than in isolation, the size of cell clusters increases during the phase of rapid cell division. Because agitation causes single cells, and small groups of cells, to be detached, the size of cell clusters decreases in batch cultures as they approach a stationary growth phase (see below).

The degree of cell dispersion in suspension cultures is particularly influenced by the concentration of growth regulators in the culture medium. Auxinic growth regulators increase the specific activity of enzymes, which bring about the dissolution of the middle lamella of plant cell walls (Torrey and Reinert, 1961). Thus by using a relatively high concentration of an auxin and a low concentration of a cytokinin growth regulator in the culture medium, it is usually possible to increase cell dispersion (Narayanaswamy, 1977). However, the use of high auxin levels to obtain maximum cell dispersion will ensure that the cultured cells remain undifferentiated. This may be a disadvantage if a suspension is being used to produce secondary metabolites. Well-dispersed suspension cultures consist of thin-walled undifferentiated cells, but these are never uniform in size and shape. Cells with more differentiated structure, possessing, for example, thicker walls and even tracheid-like elements, usually only occur in large cell aggregates.

Many different methods of suspension culture have been developed. They fall into two main types: batch cultures in which cells are nurtured in a fixed volume of medium until growth ceases, and continuous cultures in which cell growth is maintained by continuous replenishment of sterile nutrient media. All techniques utilise some method of agitating the culture medium to ensure necessary cell dispersion and an adequate gas exchange.

Batch cultures. Batch cultures are initiated by inoculating cells into a fixed volume of nutrient medium. As growth proceeds, the amount of cell material increases until nutrients in the medium are depleted or there is the accumulation of an inhibitory metabolite. Batch cultures have a number of disadvantages that restrict their suitability for extended studies of growth and metabolism, or for the industrial production of plant cells, but they are nevertheless widely used for many laboratory investigations. Small cultures are frequently agitated on orbital shakers onto which are fixed suitable containers, which range in volume from 100 ml (Erlenmeyer conical flasks) to 1000 ml (spherical flasks); the quantity of medium being approximately the same as the flask volume. The shakers are usually operated at speeds from 30-180 rpm with an orbital motion of about 3 cm. Alternatively, stirred systems can be used.

Continuous cultures. Using batch cultures, it is difficult to obtain a steady rate of production of new cells having constant size and composition. Attempts to do so necessitate frequent sub-culturing, at intervals equivalent to the doubling time of the cell population. Satisfactorily balanced growth can only be produced in continuous culture, a method, which is especially important when plant cells are to be used for the large-scale production of a primary or secondary metabolite. Continuous culture techniques require fairly complicated apparatus. Agitation of larger cultures in bio-reactors is usually achieved by stirring with a turbine and/or by passing sterile air (or a controlled gaseous mixture) into the culture from below and releasing it through plugged vents. Mechanically stirred reactors damage plant cells by shearing. This is minimised in air-lift reactors. Different bioreactor designs are illustrated in Fig. 1.9.

The use of suspension cultures in plant propagation. The growth of plant cells is more rapid in suspension than in callus culture and is also more readily controlled because the culture medium can be easily amended or changed. Organs can be induced to develop in cell suspensions: root and shoot initiation usually commences in cell aggregates. Somatic embryos may arise from single cells. Cells from suspensions can also be plated onto solid media where single cells and/or cell aggregates grow into callus colonies from which plants can often be regenerated. For these reasons suspension cultures
might be expected to provide a means of very rapid plant multiplication. There are two methods:
• plants may be obtained from somatic embryos formed in suspensions. Once embryos have been produced, they are normally grown into plantlets on solid media, although other methods are potentially available (Chapter 2);
• cells from suspensions are plated onto solid media where single cells and/or cell aggregates grow into callus colonies from which plants can often be regenerated.

In practice neither of these techniques has been sufficiently reliable for use in plant propagation.

![Fig.1.9 Four types of bioreactors used for plant cell culture.](image)

Immobilised cell cultures. Plant cells can be captured and immobilised by being cultured in a gel which is afterwards solidified (see Chapter 4). This technique has only limited application to plant micropropagation, but is now employed quite widely when plant cells are grown for the production of their secondary products or for the bio-transformation of chemical compounds (Lindsey and Yeoman, 1983).

3.3. CULTURES OF SINGLE CELL ORIGIN

3.3.1. Single cell clones

Cultures can be initiated from single plant cells, but only when special techniques are employed. Frequently these comprise passing suspension-cultured cells through a filter which removes coarse cell aggregates and allows only single cells and very small cell clusters to pass through. Small groups of cells are then assumed to have originated from single cells. The suspension obtained is usually plated onto (or incorporated into) a solidified medium in Petri dishes at a sufficient density to permit cell growth (see below), but with the cells sufficiently dispersed so that, when growth commences, individual callus colonies can be recognised under a binocular microscope and transferred separately to fresh medium. Cell lines originating from single cells in this way are sometimes called single cell clones or cell strains. The derivation of single cell clones was reviewed by Street (1977c).

Each cell clone has a minimum effective initial cell density (or minimum inoculation density) below which it cannot be cultured. The minimum density varies according to the medium and growth regulators in which the cells are placed; it is frequently about 10–15 cells/ml on standard media. Widely dispersed cells or protoplasts will not grow because they lose essential growth factors into the surrounding medium. The minimum inoculation density can therefore be lowered by adding to a standard medium either a filtered extract of a medium in which a culture has
been previously grown (the medium is then said to be conditioned), or special organic additives (when it is said to be supplemented).

Cells or protoplasts (see below) plated at a density which is insufficient for spontaneous cell division may also be nurtured into initial growth by being ‘nursed’ by tissue growing nearby. One way of doing this is to place an inoculum onto a filter paper disc (a raft) or some other inert porous material, which is then put in contact with an established callus culture of a similar species of plant, the cells of which are called nurse cells, and the tissue a feeder layer. An alternative technique is to divide a Petri dish into compartments (Fig. 1.10.). Nurse tissues cultured in some segments assist the growth of cells or protoplasts plated in the other areas.

Another method of producing cell colonies which are very likely to have had a single cell origin, has been described by Bellincampi et al. (1985). A filtered cell suspension with a high proportion of single cells, is cultured at high density in a medium which contains only 0.2% agar. At this concentration the agar does not solidify the medium, but keeps apart the cell colonies growing from individual cells, preventing them from aggregating. When clusters of approximately 10-15 cells have been formed, they can be plated at a dilution of 50 (20% plating efficiency) to 200 plating units/ml (60% plating efficiency) on a medium gelled with 1% agar where they grow as separate callus colonies. Plating efficiency is the percentage of plating units (cell aggregates in this case) which give rise to callus colonies.

The establishment of single cell clones is one way to separate genetically different cell lines from a mixed cell population. By artificially increasing the genetic variation between cells in a culture, and then applying a specific selection pressure, resistant cell lines have been obtained (e.g. those resistant to certain drugs, herbicides or high levels of salt), and in some instances plants with similar resistances have then been regenerated from the resulting cells or callus (Dix, 1990).

3.3.2. Separated cells

Single cells can be separated directly from intact plants. They are often more easily isolated and less liable to damage than protoplasts, because the cell wall remains intact. Consequently, single cells can be used in robust operations, such as direct physiological studies. It has been said that, for this purpose, they are more representative of differentiated tissues than cells derived from tissue cultures (Miksch and Beiderbeck, 1976); but the disruption caused by separation may induce atypical responses.

Fig. 1.10 Two methods of assisting the growth of cells plated at low density.
Mechanical separation. In some plant species, disrupting the tissue mechanically can separate intact cells of certain organs. Viable mesophyll cells, for example, can be obtained easily from Asparagus cladodes (Colman et al., 1979) and from leaves of Macleaya cordata (Kohlenbach; 1966, 1967). These cells can be grown either in suspension or solid culture and induced into morphogenesis, including somatic embryo formation (Kohlenbach, 1977). Schwenk (1980, 1981) simply placed pieces of the young cotyledons of sweet potato in water inside an abrasive tube in which a vortex was created. After removing debris, a cell suspension could be obtained from which cells grew and formed callus when plated on nutrient agar.

However, the capacity to isolate separated cells directly from higher plants appears to be limited (Jullien and Rossini, 1977). The type of tissue used seems to be important both to permit cell separation and to obtain subsequent growth. Cells separated from the leaves, instead of from the cotyledons, of sweet potato (above) had no capacity for growth, and it was not possible to even separate cells by mechanical means from several other plants.

Enzymatic separation. Cell separation can be assisted by treating plant tissue with enzyme preparations such as crude pectinase or polygalacturonase, which loosen the attachment between individual cells in a tissue. Zaitlin first used this technique in 1959 to separate viable cells from tobacco leaves. Methods of isolation have been described by Takebe et al. (1968); Servaites and Ogren (1977) and Dow and Callow (1979). Cells isolated in this way can be suspended in culture medium and remain metabolically active.

Separated cells from leaf tissue of tobacco pre-infected with Tobacco Mosaic Virus have been used to study the formation of viral RNA’s in the infected cells, and for studies on the interaction between leaf tissue cells and elicitor chemicals produced by fungal pathogens (Dow and Callow, 1979). Button and Botha (1975) produced a suspension of single cells of Citrus by macerating callus with 2-3% Macerase enzyme: the degree of dispersion of cells from suspension cultures can also be improved by enzyme addition (Street, 1977c).

3.3.3. Protoplasts

A protoplast is the living part of a plant cell, consisting of the cytoplasm and nucleus with the cell wall removed. Protoplasts can be isolated from whole plant organs or tissue cultures. If they are then placed in a suitable nutrient medium, they can be induced to re-form a cell wall and divide. A small cluster of cells eventually arises from each cell and, providing the protoplasts were originally plated at a relatively low density, can be recognised as one of many discrete ‘callus colonies’. Plants can often be regenerated from such callus. Protoplast culture therefore provides one route whereby plants can be multiplied, but it is not yet used for routine micropropagation work, although the number of species in which plant regeneration has been achieved is steadily increasing.

At present isolated protoplasts are used chiefly in research into plant virus infections, and for modifying the genetic information of the cell by inserting selected DNA fragments. Protoplasts may also be fused together to create plant cell hybrids. Genetically modified cells will be only of general practical value if whole plants having the new genetic constitution can be regenerated from them. The ability to recover plants from protoplast cultures is therefore of vital importance to the success of such genetic engineering projects in plant science.

Methods of protoplast preparation. There are several different methods by which protoplasts may be isolated:

- by mechanically cutting or breaking open the cell wall;
- by digesting away the cell wall with enzymes;
- by a combination of mechanical and enzymatic separation.

For successful isolation it has been found essential to cause the protoplast to contract away from the cell wall, to which, when the cell is turgid, it is tightly adpressed. Contraction is achieved by plasmolysing cells with solutions of salts such as potassium chloride and magnesium sulphate, or with sugars or sugar alcohols (particularly mannitol) (see Chapter 4). These osmotica must be of sufficient concentration to cause shrinkage of the protoplasm, but of insufficient strength to cause cellular damage.

In the past, protoplasts have been mechanically isolated from pieces of sectioned plant material, but only very small numbers were obtained intact and undamaged. This method has therefore been almost completely replaced by enzymatic isolation techniques. Commercially available preparations used for protoplast isolation are often mixtures of enzymes from a fungal or bacterial source, and have pectinase, cellulase and/or hemicellulase activity: they derive part of their effectiveness from being of mixed composition (Evans and Cocking, 1977).
Protoplasts are usually isolated using a combination of several different commercial products. Plasmolysis helps to protect the protoplast when the cell wall is ruptured during mechanical separation and also appears to make the cell more resistant to the toxic effects of the enzymes used for cell wall digestion. It also prevents the plasmodesmata linking adjacent cells and so prevents the amalgamation of protoplasts when the cell walls are digested away.

Tissue from an entire plant to be used for protoplast separation, is first surface sterilised. Some further preparation to allow the penetration of osmotic solutions and the cell wall degrading enzymes, is often advantageous. For instance, when protoplasts are to be separated from leaf mesophyll, the epidermis of the leaf is first peeled away, or the leaf is cut in strips and the tissue segments are then plasmolysed. The next step is to incubate the tissue with pectinase and cellulase enzymes for up to 18 hours in the same osmoticum, during which time the cell walls are degraded. Agitation of the incubated medium after this interval causes protoplasts to be released. The yield of viable protoplasts can sometimes be increased by pre-treatment of the chosen tissue with growth substances before separation is attempted (Kirby and Cheng, 1979). Protoplasts are also commonly isolated by enzymatic treatment of organs or tissues that have been cultured in vitro. Cells from suspension cultures, which have been subcultured frequently, and are dividing rapidly, are one suitable source.

The successful isolation of viable protoplasts capable of cell division and growth, can depend on the manner in which the mother plant was grown. For example, Durand (1979) found that consistently successful protoplast isolation from haploid Nicotiana sylvestris plants depended on having reproducible batches of young plants in vitro. The composition of the medium on which these plants were cultured had a striking effect on protoplast yield and on their ability to divide. A low salt medium devoid of vitamins was particularly disadvantageous.

The light intensity under which the plants were grown was also critical.

Protoplast culture. Isolated plant protoplasts are very fragile and particularly liable to either physical or chemical damage. Thus if they are suspended in a liquid medium, it must not be agitated, and the high osmotic potential of the medium in which isolation was carried out must be temporarily maintained. As growth depends on adequate aeration, protoplasts are usually cultured in very shallow containers of liquid or solid media; fairly high plating densities (5 x 10^4 to 10^5 protoplasts/ml) may be necessary, possibly because endogenous chemicals are liable to leak away from such unprotected cells. To promote growth, it may also be beneficial to add to the medium supplementary chemicals and growth factors not normally required for the culture of intact cells.

The capability of plant protoplasts to divide appears to be closely related to their ability to form a cell wall (Meyer and Abel, 1975a,b). The type of wall that is produced initially can be controlled to some extent by the nature of the culture medium. A non-rigid wall can be produced on tobacco mesophyll protoplasts, for example, by culture in a medium containing a relatively high concentration of salts; but although such cells will divide 2–3 times, further cell division does not occur unless a rigid wall is induced to be formed by a change in the culture medium (Meyer, 1974). Under favourable circumstances, formation of a cell wall seems to occur as soon as protoplasts are removed from hydrolysing enzyme preparations, and the first signs of cellulose deposition can be detected after only about 16 hours in culture medium. Once wall formation is initiated, the concentration of osmoticum is reduced to favour cell growth. This is readily accomplished in a liquid medium, but where protoplasts have been plated onto a solidified medium it will be necessary to transfer the cells on blocks of agar, to another substrate.

When it has formed a cell wall, the regenerated plant cell generally increases in size and may divide in 3–5 days. If further cell divisions occur, each protoplast gives rise to a small group of intact cells and then a small callus colony. Green chloroplasts in cells derived from leaf mesophyll protoplasts, lose their integrity and disappear as callus formation proceeds. Protoplasts may originate from cells of the intact plant, which are not all of the same genetic composition. If such cells are grown in liquid medium, they may stick together and form common cell walls. Colonies of mixed callus will result which
could give rise to genetically different plants (see Chapter 3) or plant chimeras (D’Amato, 1978).

To avoid cell aggregation, protoplasts should be freely dispersed and cultured at as low a density as possible. This may mean that, as in the culture of intact cells at low density (see above), nurse tissue, or a conditioned or specially supplemented medium, must be employed. A method of the latter kind was devised by Raveh et al. (1973). A fabric support has been used to suspend protoplasts in a liquid medium so that media changes can be made readily (Kirby and Cheng, 1979).

For further information, readers should consult one or other of the following references:
• Bajaj (1977), Evans and Cocking (1977) and Evans and Bravo (1983), who provide good basic reviews of the subject
• Gamborg et al. (1981), describe methods and protocols for protoplast isolation, culture (and fusion)
• Constabel (1982) and Fowke (1982a), chapters describing methods and equipment for protoplast isolation and culture

An entire plant was first regenerated from callus originated from an isolated protoplast in 1971 (Takebe et al., 1971). Since then plants have been produced from the protoplasts of a wide range of species, using indirect shoot morphogenesis or indirect embryogenesis (Davey and Power, 1988). The direct formation of somatic embryos (see below) from cultured protoplasts is also possible (Zapata and Sink, 1980).

Protoplast fusion. Although fusion of plant protoplasts was observed many years ago, it has become especially significant since methods have been developed for protoplast isolation and subsequent regeneration into intact plants. Isolated protoplasts do not normally fuse together because they carry a superficial negative charge causing them to repel one another. Various techniques have been discovered to induce fusion to take place. Two of the most successful techniques are the addition of polyethylene glycol (PEG) in the presence of a high concentration of calcium ions and a pH between 8-10, and the application of short pulses of direct electrical current (electro-fusion). By mixing protoplasts from plants of two different species or genera, fusions may be accomplished:

• (a) between protoplasts of the same plant where fusion of the nuclei of two cells would give rise to a homokaryon (synkaryon);
• (b) between protoplasts of the same plant species (intravarietal or intraspecific fusion);
• (c) between protoplasts of different plant species or genera (interspecific or intergeneric fusion).

Fusions of types (b) and (c) above can result in the formation of genetic hybrids (heterokaryocytes), which formally could only be obtained rarely through sexual crossings. By separating the fused hybrid cells from the mixed protoplast population before culture, or by devising a method whereby the cells arising from fused cells may be recognised once they have commenced growth, it has been possible to regenerate new somatic hybrid (as opposed to sexually hybrid) plants. Some novel interspecific and intergeneric hybrid plants have been obtained by this means. A fusion of the cytoplasm of one kind of plant with the nucleus of another is also possible. Such cybrid plants can be useful in plant breeding programmes for the transfer of cytoplasmic genes.

The following references give further details about this research topic and its implications for crop improvement:
• Schieder and Vasil (1980). A well-referenced review which lists somatic hybrid cell lines or plants obtained by protoplast fusion.
• Ferencezy and Farkas (1980) is a book on protoplast research in fungi, yeasts and plants. Several papers describe the results of fusions between protoplasts of different plant species or genera.
• Dodds and Roberts (1982), a short chapter describing methods and techniques.
• Keller et al. (1982), a useful review of the production and characterisation of somatic hybrids and the practical applications of protoplast fusion technology.
• Kao (1982) and Fowke (1982a,b) describe protocols for protoplast fusions in great detail.
• Mantell et al. (1982). An introduction to plant genetic engineering of various kinds.
• Davey and Power (1988). Progress in protoplast culture, fusion and plant regeneration

4. CYTODIFFERENTIATION

In an intact plant there are many kinds of cells all having different forms and functions. Meristematic cells, and soft thin-walled parenchymatous tissue, are said to be undifferentiated, while specialised cells are
Chapter 1

said to be differentiated. The cells of callus and suspension cultures are mainly undifferentiated, and it is not yet possible to induce them to become of just one differentiated type. This is partly because culture systems are usually designed to promote cell growth: differentiation frequently occurs as cells cease to divide actively and become quiescent. Furthermore, the formation of differentiated cells appears to be correlated with organ development, therefore the prior expression of genes governing organogenesis may often be required. The in vitro environment can also be very different to that in the whole plant where each cell is governed by the restraint and influence of other surrounding cells. In suspension cultures, for example, cells are largely deprived of directional signals, influences from neighbouring differentiated tissues, and correlative messages that may normally pass between adjacent cells by way of interconnecting strands of protoplasm (plasmodesmata).

The differentiated state is also difficult to preserve when cells are isolated from a plant. Askani and Beiderbeck (1988) tried to keep mesophyll cells in a differentiated state. The character of palisade parenchyma cells with regard to size, cell form, colour and size, and distribution of chloroplasts could be preserved for 168h, but after this the chloroplasts became light green, their distribution was no longer homogeneous and some of the cells began to divide. Differentiated cells are most effectively produced in vitro within organs such as shoots and roots; even here there may not be the full range of cell types found in intact plants in vivo.

4.1. DIFFERENTIATED CELLS IN CALLUS AND CELL CULTURES

Three types of differentiated cells are commonly found in callus and cell cultures; these are vessels and tracheids (the cells from which the water-conducting vascular xylem is constructed), and cells containing chloroplasts (organelles carrying the green photosynthetic pigment, chlorophyll). Phloem sieve tubes may be present but are difficult to distinguish from undifferentiated cells.

4.1.1. Tracheid formation

Callus cultures are more likely to contain tracheids than any other kind of differentiated cell. The proportion formed depends on the species from which the culture originated and especially upon the kind of sugar and growth regulators added to the medium. This is discussed further in Chapter 10. Tracheid formation may represent or be associated with an early stage in the development of shoot meristems. Nodules containing xylem elements in callus of Pelargonium have, for example, been observed to develop into shoots when moved to an auxin-free medium (Chen and Galston, 1967; Cassells, 1979). The rapid cell division initiated when tissue is transferred to a nutrient medium usually occurs in meristems formed around the periphery of the explant. Cell differentiation does not take place in callus cultures during this phase but begins when peripheral meristematic activity is replaced or supplemented by the formation of centres of cell division deeper in the tissue. These internal centres generally take the form of meristematic nodules that may produce further expanded and undifferentiated cells (so contributing to callus growth) or cells that differentiate into xylem or phloem elements. Nodules can form primitive vascular bundles, with the xylem occurring centrally and the phloem peripherally, separated from the xylem by a meristematic region.

4.1.2. Chloroplast differentiation

The formation and maintenance of green chloroplasts in cultured plant cells represents another form of cellular differentiation which is easy to monitor, and which has been studied fairly extensively. When chloroplast-containing cells from an intact plant are transferred to a nutrient medium they begin to dedifferentiate. This process continues in the event of cell division and results in a loss of structure of the membranes containing chlorophyll (thylakoids) and the stacks (grana) into which they are arranged, and the accumulation of lipid-containing globules. The chloroplasts eventually change shape and degenerate.

Callus cells frequently do not contain chloroplasts but only plastids containing starch grains in which a slightly-developed lamellar system may be apparent. All the same, many calluses have been discovered that do turn green on continued exposure to light and are composed of a majority of chloroplast-containing cells. Chloroplast formation can also be connected with the capacity of callus to undergo morphogenesis. Green spots sometimes appear on some calluses and it is from these areas that new shoots arise. By subculturing areas with green spots, a highly morphogenic tissue can sometimes be obtained. The formation of chloroplasts and their continued integrity is also favoured by cell aggregation. When
green callus tissue is used to initiate suspension cultures, the number of chloroplasts and their degree of differentiation are reduced. Nevertheless, there can be some increase in chlorophyll content during the stationary phase of batch cultures.

The level of chlorophyll so far obtained in tissue cultures is well below that found in mesophyll cells of whole plants of the same species, and the rate of chlorophyll formation on exposure of cultured cells to the light is extremely slow compared to the response of etiolated organised tissues. The greening of cultures also tends to be unpredictable and even within individual cells, a range in the degree of chloroplast development is often found. In the carbon dioxide concentrations found in culture vessels, green callus tissue is normally photomixotrophic (i.e. the chloroplasts are able to fix part of the carbon that the cells require) and growth is still partly dependent on the incorporation of sucrose into the medium (Vasil and Hildebrandt, 1966). However, green photoautotrophic callus cultures have been obtained from several different kinds of plants. When grown at high carbon dioxide concentrations (1–5%), without a carbon source in the medium, they are capable of increasing in dry weight by photosynthetic carbon assimilation alone (see Street, 1977a).

Photoautotrophic cell suspensions have also been obtained. They too normally require high carbon dioxide levels, but cell lines of some species have been isolated capable of growing in ambient CO₂ concentration (Xu et al., 1988). Why cultured cells do not freely develop fully functional chloroplasts is not fully known. Some hypotheses have been summarised by Dalton (1980). The cytology of chloroplast formation is described in Yeoman and Street (1977). Photoautotrophic growth of shoots is described in Chapter 2.

5. MORPHOGENESIS

5.1. NATURE AND INDUCTION

New organs such as shoots and roots can be induced to form on cultured plant tissues. Such freshly originated organs are said to be adventive or adventitious. The creation of new form and organisation, where previously it was lacking, is termed morphogenesis or organogenesis. Tissues or organs that have the capacity for morphogenesis/organogenesis are said to be morphogenic (morphogenetic) or organogenic (organogenetic). So far it has been possible to obtain the de novo (adventitious) formation of:

- shoots (caulogenesis) and roots (rhizogenesis) separately. The formation of leaves adventitiously in vitro usually denotes the presence of a shoot meristem. Sometimes leaves appear without apparent shoot formation: opinions are divided on whether such leaves can have arisen de novo, or whether a shoot meristem must have been present first of all and subsequently failed to develop.

- embryos that are structurally similar to the embryos found in true seeds. Such embryos often develop a region equivalent to the suspensor of zygotic embryos and, unlike shoot or root buds, come to have both a shoot and a root pole. To distinguish them from zygotic or seed embryos, embryos produced from cells or tissues of the plant body are called somatic embryos (or embryoids) and the process leading to their inception is termed embryogenesis. The word ‘embryoid’ has been especially used when it has been unclear whether the embryo-like structures seen in cultures were truly the somatic equivalent of zygotic embryos. Somatic embryogenesis is now such a widely observed and documented event that somatic embryo has become the preferred term.

- flowers, flower initials or perianth parts. The formation of flowers or floral parts is rare, occurring only under special circumstances and is not relevant to plant propagation.

6. HAPLOID PLANTS

6.1. ANther AND POLLEN CULTURE

In 1953 Tulecke discovered that haploid tissue (i.e. tissue composed of cells having half the chromosome number that is characteristic of a species), could be produced by the culture of Ginkgo pollen. Little notice was taken of his work until Guha and Maheshwari (1964, 1967) managed to regenerate haploid plants from pollen of Datura innoxia by culturing intact anthers. Since then a great deal of research has been devoted to the subject.

The basis of pollen and anther culture is that on an appropriate medium the pollen microspores of some
Chapter 1

Plant species can be induced to give rise to vegetative cells, instead of pollen grains. This change from a normal sexual gametophytic pattern of development into a vegetative (sporophytic) pattern, appears to be initiated in an early phase of the cell cycle when transcription of genes concerned with gametophytic development is blocked and genes concerned with sporophytic development are activated (Sunderland and Dunwell, 1977). The result is that in place of pollen with the capacity to produce gametes and a pollen tube, microspores are produced capable of forming haploid pro-embryos (somatic embryos formed directly from the microspores), or callus tissue. The formation of plants from pollen microspores in this way is sometimes called androgenesis. Haploid plants are more readily regenerated by culturing microspores within anthers than by culturing isolated pollen. The presence of the anther wall provides a stimulus to sporophytic development. The nature of the stimulus is not known but it may be nutritional and/or hormonal. Embryogenesis has only been induced from isolated pollen of a very small number of plants.

The number of plants species from which anther culture has resulted in haploid plants is relatively few. It comprised about 70 species in 29 genera up to 1975 (Sunderland and Dunwell, 1977) and 121 species or hybrids in 20 families by 1981-1982 (Maheshwari et al., 1982) and by now, very many more. The early stages of embryogenesis or callus formation without plant regeneration have been obtained in several other kinds of plants. Fifty-eight per cent of the reports of embryogenesis or plant regeneration in Maheshwari et al. (1982) was attributable to species within the family Solanaceae. Species in which haploid plants can be regenerated reliably and at high frequency remain a comparatively small part of the total. They again mainly comprise Solanaceous species such as Datura, Nicotiana, Hyoscyamus, Solanum and some brassicas.

For further information on pollen and anther culture, which is outside the scope of the present book, the reader should consult the following books or review articles: Dunwell (1985); Foroughi-Wehr and Wenzel (1989); Giles and Prakash (1987); Heberle-Bors (1985); Hu and Yang (1986); Jain et al. (1996); Keller and Stringham (1978); Maheshwari et al. (1980, 1982); Morrison and Evans (1988); Nitsch (1977, 1981; 1983); Palmer et al. (2005); Raghavan (1990); Reinert and Bajaj (1977); Sangwan and Sangwan-Norreel (1990); Vasil (1980c).

6.2. GYNOGENESIS

Another theoretical source of haploid plants in angiosperms is the female egg nucleus or ovum; this is contained within the nucellus of an ovule (the megasporangium or ovary). The ovum cannot be separated readily from other associated nuclei in the megaspore and so haploid plants can normally be produced from it, only by stimulating the development of unfertilised ovules into seedlings. In some species [e.g. Gerbera jamesonii (Sitbon, 1981; Meynet and Sibi, 1984); maize (Truong-Andre and Demarly, 1984); sugar beet (Hosemans and Bossoutrot, 1983); onion (Keller, 1990)], some haploid plants can be obtained by culturing unpollinated ovules, ovaries or flower buds. In some other plants (Pavlova, 1986), larger numbers of haploids are obtained if ovaries are pollinated by a distantly-related species (or genus) or with pollen which has been irradiated with X- or γ-rays. Successful pollination results in stimulation of endosperm growth by fusion of one of the generative nuclei of the pollen tube with the central fusion nucleus of the megaspore, but fusion of the other generative nucleus with the egg cell does not occur and the egg cell is induced to grow into a seedling without being fertilised (gynogenesis). An alternative technique, which has resulted in haploid Petunia seedlings (Raquin, 1986) is to treat ovaries with γ-rays and then pollinate them with normal pollen. Gynogenesis has so far been employed much less frequently than androgenesis for the production of haploids. A review of progress in this area has been provided by Yang and Zhou (1990).

Haploid cells and haploid plants produced by androgenesis or gynogenesis have many uses in plant breeding and genetics (Vasil and Nitsch, 1975). Most recent research on anther culture has concentrated on trying to improve the efficiency of plantlet regeneration in economically important species. Haploid plants of cereals are particularly valuable in breeding programmes, but in the Gramineae, the frequency and reliability of recovery through anther culture is still too low for routine use.

FOWKE L.C. 1982a Isolation and culture of protoplasts from green algae. pp. 57-61 in Wetter and Constabel (eds.) 1982 (q.v.).

HU C.-Y. & SUSSEX I. 1986 Suspension and in vitro culture of immature soybean embryos. p. 41 in Somers et al. (eds.) 1986 (q.v.).

KELLER J. 1990 Haploids from unpollinated ovaries of Allium cepa - single plant screening, haploid determination, and long term storage.

MAHESHWARI P. & RANGA SWAMY N.S. (eds.) 1963 Plant Tissue and Organ Culture. Int. Soc. Plant Morphologists, Delhi, India.

MANTELL S.H., MATTHEWS J.A. & McKEE R.A. 1985 Principles of Plant Biotechnology. An Introduction to Genetic...
MEYNET J. & SIBI M. 1984 Haploid plants from in vitro culture of unfertilized ovules in Gerbera jamesonii. Z. Pflanzenzucht. 93, 78-85.
NARAYANASWAMY S. 1977 Regeneration of plants from tissue cultures. pp. 179-206 in Reinert & Bajaj (eds.) 1977 (q.v.).
NITSCH C. 1977 Culture of isolated microspores. pp. 268-278 in Reinert & Bajaj (eds.) 1977 (q.v.).
NITSCH J.P. 1963 The in vitro culture of flowers and fruits. pp. 198-214 in Maheshwari & Ranga Swamy (eds.) 1963 (q.v.).
NORTÓG K. 1979 Embryo culture as a tool in the study of comparative and developmental morphology. pp. 179-202 in Sharp et al. (eds.) 1979 (q.v.).
PAVLOVA M.K. 1986 Experimental gynogenesis in vitro. p. 94 in Somers et al. (eds.) 1986 (q.v.).
RAGHAVAN V. 1977a Applied aspects of embryo culture. pp. 375-397 in Reinert and Bajaj (eds.) 1977 (q.v.).
RAGHAVAN V. 1990 From microspore to embryoid: faces of the angiosperm pollen grain. pp. 213-221 in Nijkamp et al. (eds.) 1990 (q.v.).
RAQUIN C. 1986 Induction of haploid and “haploid plus” Petunias by combining gametophyte irradiation and in vitro ovary culture. p. 123 in Somers et al. (eds.) 1986 (q.v.).
RAVEH D., HUBERMANN E. & GALUN E. 1973 In vitro culture of tobacco protoplasts: Use of feeder techniques to support division of cells plated at low densities. In Vitro 9, 216-222.
Chapter 1

Solanum, a cross between S. melongena and S. khasianum through embryo culture. Z. Pflanzenzucht. 85, 248-253.

SKIRM G.W. 1942 Embryo culturing as an aid to plant breeding. J. Hered. 33, 211-215.

SUNDERLAND N. 1979 Comparative studies of anther and pollen culture. pp. 203-219 in Sharp et al. (eds.) 1979 (q.v.).

Chapter 2
Micropropagation: Uses and Methods

1. SEED VERSUS SOMA

Plants can be propagated through their two developmental life cycles; the sexual, or the asexual. In the sexual cycle new plants arise after fusion of the parental gametes, and develop from zygotic embryos contained within seeds or fruits. In most cases seedlings will be variable and each one will represent a new combination of genes, brought about during the formation of gametes (meiotic cell division) and their sexual fusion. By contrast, in the vegetative (asexual) cycle the unique characteristics of any individual plant selected for propagation (termed the mother plant, stock plant or ortet) are usually perpetuated because, during normal cell division (mitosis), genes are typically copied exactly at each (mitotic) division. In most cases, each new plant (or ramet) produced by this method may be considered to be an extension of the somatic cell line of one (sexually produced or mutant) individual. A group of such asexually reproduced plants (ramets) is termed a clone. In the natural environment sexual and asexual reproduction have their appropriate selective advantages according to the stage of evolution of different kinds of plants. Plants selected and exploited by man also have different propensities for propagation by seed or by vegetative means.

1.1. PROPAGATION USING SEEDS

Seeds have several advantages as a means of propagation:
• they are often produced in large numbers so that the plants regenerated from them are individually inexpensive;
• many may usually be stored for long periods without loss of viability;
• they are easily distributed;
• most often plants grown from seed are without most of the pests and diseases which may have afflicted their parents.

For many agricultural and horticultural purposes it is desirable to cultivate clones or populations of plants which are practically identical. However, the seeds of many plants typically produce plants which differ genetically, and to obtain seeds which will give uniform offspring is either very difficult, or impossible in practical terms. Genetically uniform populations of plants can result from seeds in three ways:
• from inbred (homozygous) lines which can be obtained in self-fertile (autogamous) species. Examples of autogamous crops are wheat, barley, rice and tobacco.
• from F1 seeds produced by crossing two homozygous parents. Besides being uniform, F1 plants may also display hybrid vigour. F1 seeds of many flower producing ornamentals and vegetables are now available, but due to high production costs, they are expensive.
• from apomictic seedlings. In a few genera, plants that are genotypically identical to their parents are produced by apomixis. Seeds are formed without fertilisation and their embryos develop by one of several asexual processes that ensure that the new plants are genetically identical to the female parent (i.e. they have been vegetatively reproduced) (reviewed by Van Dijk and Van Damme, 2000).

Some plants do not produce viable seeds, or do so only after a long juvenile period. Alternatively, to grow plants from seed may not provide a practical method of making new field plantings. In such instances vegetative propagation is the only means of perpetuating and multiplying a unique individual with desirable characteristics.

1.2. VEGETATIVE PROPAGATION

Many important crop plants are increased vegetatively and grown as clones. They include cassava, potato, sugar cane and many soft (small) fruits and fruit trees. A very large number of herbaceous and woody ornamental plants are also propagated by these means. Suitable methods for vegetative propagation have been developed over many centuries. These traditional ‘macro-propagation’ techniques (or ‘macro-methods’) which utilise relatively large pieces of plants, have been refined and improved by modern horticultural research. For instance, methods of applying fine water mist to prevent the desiccation of cuttings, better rooting composts and the control of temperature in the rooting zone, have considerably enhanced the rate at which many plants of horticultural or agricultural interest can be multiplied.

© 2008 Springer.
Research to improve macropropagation methods continues, but has lost some impetus in recent years with the continued extension of tissue culture for plant multiplication.

Whether it will be most rewarding to propagate a plant by seed, by traditional vegetative techniques, or by tissue culture, will often not only depend on the plant species, but also on the development of proven techniques, relative costs and agronomic objectives. The extent to which tissue culture methods can be used for genetic manipulations and for propagation is changing continuously. Until recently, potato plants have been raised from seed during breeding programmes to select new varieties; tissue culture may have been employed to multiply certain lines and to propagate disease-tested stocks of established cultivars, while macropropagation of field-grown tubers has been used to provide normal planting material. New research into genetic manipulations and methods of propagation using tissue culture techniques, can alter this situation: diversity can be introduced and controlled through genetic engineering while certified stock of new varieties can be produced on a large scale by micropropagation.

The selection of a propagation method for any given plant is constrained by its genetic potential. For example, some plants readily produce adventitious shoot buds on their roots, while others do not; trying to propagate a plant, which does not have this capability, from root cuttings or root explants, will be more problematic both in vivo and in vitro. Plant tissue culture does overcome some genetically imposed barriers, but a clear effect of genotype is still apparent. It is not yet possible to induce an apple tree to produce tubers!

2. PROPAGATION IN VITRO

2.1. ADVANTAGES

Methods available for propagating plants in vitro are largely an extension of those already developed for conventional propagation. In vitro techniques have the following advantages over traditional methods:

- Cultures are started with very small pieces of plants (explants), and thereafter small shoots or embryos are propagated (hence the term ‘micropropagation’ to describe the in vitro methods). Only a small amount of space is required to maintain plants or to greatly increase their number. Propagation is ideally carried out in aseptic conditions (avoiding contaminations). The often used term “axenic” is not correct, because it means “free from any association with other living organisms”. Once cultures have been started there should be no loss through disease, and the plantlets finally produced should be ideally free from bacteria, fungi and other micro-organisms. (Most often this is not the case, see Vol. 2).
- Methods are available to free plants from specific virus diseases. Providing these techniques are employed, or virus-tested material is used for initiating cultures, certified virus-tested plants can be produced in large numbers. Terminology such as virus-free and bacteria-free should not be used, as it is impossible to prove that a plant is free of all bacteria or viruses. One can only prove that a plant has been freed from a specific contaminant provided the appropriate diagnostic tools are available.
- A more flexible adjustment of factors influencing vegetative regeneration is possible such as nutrient and growth regulator levels, light and temperature. The rate of propagation is therefore much greater than in macropropagation and many more plants can be produced in a given time. This may enable newly selected varieties to be made available quickly and widely, and numerous plants to be produced in a short while. The technique is very suitable when high volume production is essential.
- It may be possible to produce clones of some kinds of plants that are otherwise slow and difficult (or even impossible) to propagate vegetatively.
- Plants may acquire a new temporary characteristic through micropropagation which makes them more desirable to the grower than conventionally-raised stock. A bushy habit (in ornamental pot plants) and increased runner formation (strawberries) are two examples.
- Production can be continued all the year round and is more independent of seasonal changes.
- Vegetatively-reproduced material can often be stored over long periods.
- Less energy and space are required for propagation purposes and for the maintenance of stock plants (ortets).
- Plant material needs little attention between subcultures and there is no labour or materials requirement for watering, weeding, spraying etc.; micropropagation is most advantageous when it costs less than traditional methods of multiplication; if this
is not the case there must be some other important reason to make it worthwhile.

2.2. DISADVANTAGES

The chief disadvantages of *in vitro* methods are that advanced skills are required for their successful operation.

- A specialised and expensive production facility is needed; fairly specific methods may be necessary to obtain optimum results from each species and variety and, because present methods are labour intensive, the cost of propagules is usually relatively high (Vol. 2). Further consequences of using *in vitro* adaptations are that they may be produced in large numbers, the plantlets obtained are initially small and sometimes have undesirable characteristics.

- In order to survive *in vitro*, explants and cultures have to be grown on a medium containing sucrose or some other carbon source. The plants derived from these cultures are not initially able to produce their own requirement of organic matter by photosynthesis (i.e. they are not autotrophic) and have to undergo a transitional period before they are capable of independent growth. More recently techniques have been proposed which allow the production of photo-autotrophic plants *in vitro* (Kozai and Smith, 1995).

- As they are raised within glass or plastic vessels in a high relative humidity, and are not usually photosynthetically self-sufficient, the young plantlets are more susceptible to water loss in an external environment. They may therefore have to be hardened in an atmosphere of slowly decreasing humidity and increased light. The chances of producing genetically aberrant plants may be increased.

A more extended discussion of all these points will be found in other sections.

2.3. TECHNIQUES

The methods that are theoretically available for the propagation of plants *in vitro* are illustrated in Fig 2.1 and described in the following sections of this Chapter. They are essentially:

- by the multiplication of shoots from axillary buds;
- by the formation of adventitious shoots, and/or adventitious somatic embryos, either a) directly on pieces of tissue or organs (explants) removed from the mother plant; or b) indirectly from unorganised cells (in suspension cultures) or tissues (in callus cultures) established by the proliferation of cells within explants; on semi-organised callus tissues or propagation bodies (such as protocorms or pseudo-bulbs) that can be obtained from explants (particularly those from certain specialised whole plant organs).

The techniques that have been developed for micropropagation are described in greater detail in the following sections of this Chapter. In practice most micropropagated plants are produced at present by method (i), and those of only a few species (which will be instanced later) by method (ii). Shoots and/or plantlets do not always originate in a culture by a single method. For example, in shoot cultures, besides axillary shoots, there are sometimes adventitious shoots formed directly on existing leaves or stems, and/or shoots arising indirectly from callus at the base of the explant. The most suitable and economic method for propagating plants of a particular species could well change with time. There are still severe limitations on the extent to which some methods can be used. Improvements will come from a better understanding of the factors controlling morphogenesis and genetic stability *in vitro*.

Rooting Somatic embryos have both a root and a shoot meristem. Under ideal conditions they can grow into normal seedlings. The shoots procured from axillary or adventitious meristems are miniature cuttings. Sometimes these small cuttings form roots spontaneously, but usually they have to be assisted to do so (Fig 2.2). The small rooted shoots produced by micropropagation are often called plantlets.

2.4. STAGES OF MICROPROPAGATION

Professor Murashige of the University of California (Riverside) defined three steps or stages (I-III) in the *in vitro* multiplication of plants (Murashige, 1974). These have been widely adopted by both research and commercial tissue culture laboratories because they not only describe procedural steps in the micropropagation process, but also usually represent points at which the cultural environment needs to be changed.

Some workers have suggested that the treatment and preparation of stock plants should be regarded as a separately numbered stage or stages. We have adopted the proposal of Debergh and Maene (1981) that such preparative procedures should be called Stage 0. A fourth stage (IV), at which plants are transferred to the external environment, is now also commonly recognised. A general description of Stages 0-IV is therefore provided below, while the manner in which Stages I-III might be applied to different methods of micropropagation is given in Table 2.1.
Table 2.1 Stages in the available methods of micropropagation.

<table>
<thead>
<tr>
<th>Methods of Micropropagation</th>
<th>Stage of culture</th>
<th>Stage of culture</th>
<th>Stage of culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Initiating a culture</td>
<td>Growth of excited tissues/organs in vitro free from algae, bacteria, fungi and other contaminants.</td>
<td>II. Increasing propagules</td>
<td>III. Preparation for soil transfer</td>
</tr>
<tr>
<td>Shoot Cultures</td>
<td>Transfer of disinfected shoot tips or lateral buds to solid or liquid media and the commencement of shoot growth to ca. 10mm.</td>
<td>Inducing the cultures to produce numbers of shoots or somatic embryos.</td>
<td>Separating and preparing propagules to have a high rate of survival as individual plants in the external environment.</td>
</tr>
<tr>
<td>Shoots from floral meristems</td>
<td>Aseptic isolation of pieces of compound floral meristems.</td>
<td>Inducing multiple (axillary) shoot formation and growth of the shoots to a sufficient size for separation, either as new Stage II explants or for passage to III.</td>
<td>Elongation of buds formed at Stage II to uniform shoots. Rooting the shoots in vitro or outside the culture vessel.</td>
</tr>
<tr>
<td>Multiple shoots from seeds</td>
<td>Aseptic germination of seeds on a high cytokinin medium.</td>
<td>Inducing the many meristems to produce vegetative shoots, then as shoot tip culture.</td>
<td>As for shoot tip cultures.</td>
</tr>
<tr>
<td>Meristem culture</td>
<td>Transfer of very small shoot tips (length 0.2-0.5mm) to culture. Longer shoot tips (1-2mm) can be used as explants if obtained from heat treated plants.</td>
<td>Growth of shoots to ca. 10mm, then as shoot tip culture, or as shoot multiplication omitted and shoots transferred to Stage III.</td>
<td>As for shoot tip cultures.</td>
</tr>
<tr>
<td>Node culture</td>
<td>As for shoot tip culture but shoots grown longer to show clear internodes.</td>
<td>Propagation by inducing the axillary bud at each node to grow into a single shoot. Subculturing can be repeated indefinitely.</td>
<td>As for shoot tip cultures.</td>
</tr>
<tr>
<td>Direct shoot regeneration from explants</td>
<td>Establishing suitable explants of mother plant tissue (e.g. leaf or stem segments) in culture without contamination.</td>
<td>The induction of shoots directly on the explant with no prior formation of callus. Shoots so formed can usually be divided and used as explants for new Stage II subcultures or shoot tip culture.</td>
<td>As for shoot tip cultures.</td>
</tr>
<tr>
<td>Direct embryogenesis</td>
<td>Establishing suitable embryogenic tissue explants or previously-formed somatic embryos.</td>
<td>The direct induction of somatic embryos on the explants without prior formation of callus.</td>
<td>Growth of the embryos into plantlets which can be transferred to the outside environment.</td>
</tr>
<tr>
<td>Indirect shoot regeneration from morphogenic callus</td>
<td>Initiation and isolation of callus with superficial shoot meristems.</td>
<td>Repeated subculture of small callus pieces followed by transfer to a shoot-inducing medium. The growth of shoots ca. 10mm in length.</td>
<td>Individual shoots are grown and rooted.</td>
</tr>
<tr>
<td>Indirect embryogenesis from embryogenic callus or suspension cultures</td>
<td>Initiation and isolation of callus with the capacity to form somatic embryos, OR obtaining embryogenic suspension cultures from embryogenic callus or by de novo induction.</td>
<td>Subculture of the embryogenic callus or suspension culture followed by transfer to a medium favouring embryo development.</td>
<td>Growth of the somatic embryos into “Seedlings”.</td>
</tr>
<tr>
<td>Storage organ formation</td>
<td>Isolation and culture of tissue/organ capable of forming storage organs.</td>
<td>Inducing the formation of storage organs and sometimes dividing them to start new Stage II cultures.</td>
<td>Growing shoots/plantlets obtained from storage organs for transfer to soil: OR growing the storage organs themselves to a size suitable for soil planting.</td>
</tr>
</tbody>
</table>
Requirements for the completion of each stage of micropropagation vary according to the method being utilised; the progress of cultures will not always fit readily into neat compartments. Furthermore, it is not always necessary to follow each of the prescribed steps. The stages are therefore described here for general guidance but should not be applied too rigidly.

Practices adopted at the various stages of micropropagation are discussed throughout the book, but are particularly mentioned in Volume 2.

Stage 0: Mother plant selection and preparation

Before micropropagation commences, careful attention should be given to the selection of stock plants. They must be typical of the variety or species, and free from any symptoms of disease. It may be advantageous to treat the chosen plant (or parts of it) in some way to make in vitro culture successful.

Steps to reduce the contamination level of explants (Vol. 2) were considered sufficiently important by Debergh and Maene (1981) to constitute a separate essential stage in a commercial micropropagation programme. Growth, morphogenesis and rates of propagation in vitro can be improved by appropriate environmental and chemical pre-treatment of stock plants: this subject is discussed in Chapter 11.

Procedures to detect and reduce or eliminate systemic bacterial and virus diseases (see Vol. 2) may also be required. Disease indexing and disease elimination should be a definite part of all micropropagation work; but these precautions are unfortunately often omitted, sometimes with adverse consequences. The difficulties which may be encountered in trying to propagate chimeras by tissue culture methods are discussed in Chapter 10.

It seems appropriate to include all procedures adopted in plant selection and pre-treatment within ‘Stage 0’. The recognised numbering of Murashige's stages is then unaltered.

Stage I: Establishing an aseptic culture

The customary second step in the micropropagation process is to obtain an aseptic culture of the selected plant material. Success at this stage firstly requires that explants should be...
transferred to the cultural environment, free from obvious microbial contaminants; and that this should be followed by some kind of growth (e.g. growth of a shoot tip, or formation of callus). Usually a batch of explants is transferred to culture at the same time. After a short period of incubation, any container found to have contaminated explants or medium is discarded. Stage I would be regarded as satisfactorily completed if an adequate number of explants had survived without contamination, and was growing on. The objective is reproducibility, not 100% success.

Stage II: The production of suitable propagules

The object of Stage II is to bring about the production of new plant outgrowths or propagules, which, when separated from the culture are capable of giving rise to complete plants. According to the *in vitro* procedure that is being followed (Fig 2.1), multiplication can be brought about from newly-derived axillary or adventitious shoots, somatic embryos, or miniature storage or propagative organs. In some micropropagation methods, Stage II will include the prior induction of meristematic centres from which adventitious organs may develop. Some of the propagules produced at Stage II (especially shoots) can also be used as the basis for further cycles of multiplication in that they can usually be cultured again (subcultured) to increase their number.

Stage III: Preparation for growth in the natural environment

Shoots or plantlets derived from Stage II are small, and not yet capable of self-supporting growth in soil or compost. At Stage III, steps are taken to grow individual or clusters of plantlets, capable of carrying out photosynthesis, and survival without an artificial supply of carbohydrate. Some plantlets need to be specially treated at this stage so that they do not become stunted or dormant when taken out of the cultural environment. As originally proposed by Murashige, Stage III includes the *in vitro* rooting of shoots prior to their transfer to soil.

Rooting shoots is a very important part of any *in vitro* propagation scheme. A few species form adventitious roots on shoots during the course of Stage III culture, but usually it is necessary to adopt a separate rooting procedure using special media, or methods, to induce roots to form. Sometimes shoots may need to be specially elongated before rooting is attempted. To reduce the costs of micropropagation, many laboratories now remove unrooted shoots from the *in vitro* environment and root them outside the culture vessel (Fig 2.2). Therefore, in cultures where micropropagation relies on adventitious or axillary shoots, Stage III is often conveniently divided, as Debergh and Maene (1981) suggested, into:

- Stage IIIa, the elongation of buds or shoots formed during Stage II, to provide shoots of a suitable size for Stage IIIb;
- Stage IIIb, the rooting of Stage IIIa shoots *in vitro* or *extra vitrum*.

Procedures used to induce rooting are discussed in later chapters.

Stage IV: Transfer to the natural environment

Although not given a special numerical stage by Murashige, the methods whereby plantlets are transferred from the *in vitro* to the *ex vitro* external environment are extremely important. If not carried out carefully, transfer can result in significant loss of propagated material. There are two main reasons:

—Shoots developed in culture have often been produced in high humidity and a low light ‘intensity’. This results in there being less leaf epicuticular wax or wax with an altered chemical composition, than on plants raised in growth chambers or greenhouses. In some plants, the stomata of leaves produced *in vitro* may also be atypical and incapable of complete closure under conditions of low relative humidity. Tissue cultured plants therefore lose water rapidly when moved to external conditions (Sutter and Langhans, 1979, 1980).

—When supplied with sucrose (or some other carbohydrate) and kept in low light conditions, micropropagated plantlets are not fully dependent on their own photosynthesis (they are mixotrophic - Chapter 12). A stimulus which is not provided in the closed *in vitro* environment seems to be needed for them to change to being fully capable of producing their own requirements of carbon and reduced nitrogen (i.e. before they become capable of feeding themselves - autotrophic) (Marin and Gella, 1987). The change only occurs after the plants have spent a period of several days *ex vitro*.

In practice, plantlets are removed from their Stage III containers, and if they have been grown on agar medium, the gel is carefully washed from the roots. The application of an anti-transpirant film to the leaves has been recommended at this stage, but in practice, seems to be seldom used. Plantlets are then transplanted into an adequate rooting medium (such as a peat:sand compost) and kept for several days in high humidity and reduced light intensity. A fog of water vapour is very effective for maintaining humidity. Alternatively, intermittent water misting may be applied automatically, or the plants placed...
inside a clear plastic enclosure and misted by hand. With some plants, an in vitro Stage III can be omitted; shoots from Stage II are rooted directly in
high humidity, and, at the same time, gradually hardened to the exterior environment.

The rooting of shoots using these methods is discussed fully in Volume 2.

3. MICROPROPAGATION METHODS

3.1. THE PROPAGATION OF PLANTS FROM AXILLARY BUDS OR SHOOTS

The production of plants from axillary buds or shoots has proved to be the most generally applicable and reliable method of true-to-type in vitro propagation. Two methods are commonly used:
- Shoot culture
- Single, or multiple, node culture.

Both depend on stimulating precocious axillary shoot growth by overcoming the dominance of shoot apical meristems.

3.1.1. Shoot (or shoot tip) culture

The term shoot culture is now preferred for cultures started from explants bearing an intact shoot meristem, whose purpose is shoot multiplication by the repeated formation of axillary branches. In this technique, newly formed shoots or shoot bases serve as explants for repeated proliferation; severed shoots (or shoot clumps) are finally rooted to form plantlets which can be grown in vivo. This is the most widely used method of micropropagation.

Explant size. Shoot cultures are conventionally started from the apices of lateral or main shoots, up to 20 mm in length, dissected from actively-growing shoots or dormant buds. Larger explants are also sometimes used with advantage: they may consist of a larger part of the shoot apex or be stem segments bearing one or more lateral buds; sometimes shoots from other in vitro cultures are employed. When apical or lateral buds were used almost exclusively as explants, the name ‘shoot tip culture’ came to be widely used for cultures of this kind. As the use of larger explants has become more common, the term shoot culture has become more appropriate.

Large explants have advantages over smaller ones for initiating shoot cultures in that they:
better survive the transfer to *in vitro* conditions
more rapidly commence growth
contain more axillary buds

However, the greater the size of the explant, the more difficult it may be to decontaminate from micro-organisms; in practice the size used will be the largest that can be gained in aseptic conditions. Shoot cultures are also frequently started directly from the shoots obtained from meristem tip cultures. Virus eradication then proceeds the shoot multiplication phase. Occasionally fragmented or macerated shoot tips are used (see elsewhere in this Chapter). Meristem tip or meristem cultures are used for virus and bacteria elimination. Meristem cultures are initiated from much smaller explants and a single plantlet is usually produced from each. This terminology is very often abused.

Regulating shoot proliferation

The growth and proliferation of axillary shoots in shoot cultures is usually promoted by incorporating growth regulators (usually cytokinins) into the growth medium. Most often such a treatment effectively removes the dominance of apical meristems so that axillary shoots are produced, often in large numbers. These shoot cultures are used as miniature cuttings for plant multiplication.

Removing the apex. In some plants, pinching out the main shoot axis is used as an alternative, or an adjunct, to the use of growth regulators for decreasing apical dominance. Pinching was found to be effective for some kinds of rose (Bressan *et al.*, 1982) and for some apple cultivars (Yae *et al.*, 1987). Pinching or ‘tipping’ is usually done when plant material is removed for subculturing, for example removing the apical bud at the first subculture increased the branching of *Pistacia* shoot cultures (Barghchi, 1986). An effective kind of shoot tipping occurs when shoots are cropped as microcuttings. Standardi (1982) and Shen and Mullins (1984) obtained effective shoot proliferation of kiwi and pear varieties by transferring the basal shoot clump that is left at this stage, to fresh medium for further proliferation. (Note however that this practice can increase the likelihood of obtaining deviant plants - see below). In just a few plants neither cytokinins nor pinching effectively remove apical dominance. Geneve *et al.* (1990) reported that seedling shoots of *Gymnocladus dioicus* produced 1–5 shoots, but only one grew to any appreciable length. If this shoot was removed, another took over.

Placing explants horizontally. In pear, pinching out the tips of shoots resulted in the growth of larger axillary shoots than in the controls, but the number of shoots was less. The most effective physical check to apical dominance was achieved by pinching the tips, and/or placing shoot explants horizontally on the medium (Lane, 1979; MacKay and Kitto, 1988). The treatment can be effective with many other woody plants: horizontal placement of shoot sections, consisting of 2–3 nodes, resulted in more axillary shoots being produced in cultures of *Acer rubrum, Amelanchier spicata, Betula nigra, Forsythia intermedia* and *Malus domestica*, than when explants were upright (McClelland and Smith, 1990). Favourable results have also been reported with lilac (Hildebrandt and Harney, 1983) and some apple cultivars (Yae *et al.*, 1987).

The origin of shoots

Unfortunately not all the shoots arising in shoot cultures may originate from axillary buds. Frequently, adventitious shoots also arise, either directly from cultured shoot material, or indirectly from callus at the base of the subcultured shoot mass. For example, Nasir and Miles (1981) observed that in subcultures of an apple rootstock, some new shoots arose from callus at the base of the shoot clump; both adventitious and axillary shoots were produced in *Hosta* cultures (Papachatzi *et al.*, 1981); and shoot proliferation from some kinds of potato shoot tips was exclusively from organogenic callus (Roca *et al.*, 1978).

The precise origin of shoots can sometimes only be determined from a careful anatomical examination. Hussey (1983) has termed cultures providing both adventitious and axillary shoots, ‘mixed cultures’. Adventitious shoots, particularly those arising indirectly from callus, are not desirable. For reasons described in Volume 2, shoots of axillary origin will normally be genetically identical to the parent plant, whereas there is a probability that those regenerated from callus may differ in one or more characters. Genetically deviant plants may not occur with high frequency from newly initiated callus, but could begin to appear in significant number if shoot masses incorporating basal callus are simply chopped up to provide explants for subculture. The use of a strict protocol, using only axillary shoots, may present problems with some plants where the rate of shoot multiplication is comparatively slow. This has led to attempts by some workers to use a more relaxed regime and accept a proportion of
adventitious shoots (e.g. with Kalanchee blossfeldiana - Schwaiger and Horn, 1988). The usual consequence is a degree of variation amongst ramets which may, or may not, be acceptable. The formation of callus and the subsequent development of adventitious shoots can often be controlled by modifying the growth regulators in the medium.

Fragmentation of a meristem tip, or its culture in a certain way, can lead to the formation of multiple adventitious shoots which can be used for plant propagation. These modifications of conventional shoot culture are described on in Chapter 10.

History

Although shoot culture has proved to be a widely applicable method of micropropagation, the appreciation of its potential value developed only slowly, and utilisation largely depended on improvements in tissue culture technology. Robbins (1922) seems to have been the first person to have successfully cultured excised shoot tips on a medium containing sugar. Tip explants of between 1.75 and 3.75 mm were taken from pea, corn and cotton, and placed in a liquid medium. For some reason the cultures were maintained in the dark where they only produced shoots with small chlorotic leaves and numerous roots. Although it is tempting to suppose that the potential of shoot culture for plant propagation might have been appreciated at a much earlier date had the cultures been transferred to the light, the rapid rate of shoot multiplication achieved in modern use of this technique depends on later developments in plant science.

Only very slow progress in shoot culture was made during the next 20 years. As part of his pioneering work on plant tissue culture, White (1933) experimented with small meristem tips (0.1 mm or less) of chickweed (Stellaria media), but they were only maintained in hanging drops of nutrient solution. Leaf or flower primordia were observed to develop over a six-week period. Shoot culture of a kind was also carried out by La Rue (1936). His explants largely consisted of the basal and upper halves of seed embryos. Nevertheless, the apical plumular meristems of several plants were grown to produce entire plants. Whole plants were also obtained from axillary buds of the aquatic plant Radicula aquatica.

Significant shoot growth from vegetative shoot tip explants was first achieved by Loo, and reported in 1945 and 1946 a, b. Asparagus shoot tips 5-10 mm in length were supported on glass wool over a liquid medium and later grown on a solidified substrate. Loo (1945, 1946a, 1946b) made several significant observations showing that:

- growth depended on sucrose concentration, higher levels being necessary in the dark than in the light;
- explants, instead of being supported, could be grown satisfactorily on 0.5% agar;
- in vitro shoot growth could apparently be continued indefinitely (35 transfers were made over 22 months);
- shoot tip culture afforded a way to propagate plant material (clones were established from several excised shoot apices).

This work failed to progress further because no roots were formed on the Asparagus shoots in culture. Honours for establishing the principles of modern shoot culture must therefore be shared between Loo and Ball. Ball (1946) was the first person to produce rooted shoots from cultured shoot apices. His explants consisted of an apical meristem and 2–3 leaf primordia. There was no shoot multiplication but plantlets of nasturtium (Tropaeolum majus) and white lupine (Lupinus alba) were transferred to soil and grown successfully.

During several subsequent years, shoot apex (or meristem tip) culture was of interest only to plant pathologists who recognised its value for producing virus-tested plants. It was during studies of this kind that Morel made the significant discovery of protocorm formation from Cymbidium orchid shoot tips. Although they may be started from the same explants, cultures giving rise to protocorms are not typical shoot cultures (see later in this chapter).

The two major developments which made shoot culture feasible were the development of improved media for plant tissue culture (Murashige and Skoog, 1962) and the discovery of the cytokinins as a class of plant growth regulators (Miller, 1961b; Skoog et al., 1965), with an ability to release lateral buds from dormancy (Wickson and Thimmann, 1958; Sachs and Thimmann, 1964). These developments were not immediately applied to shoot culture, and some years elapsed before it was appreciated that multiple shoots could be induced to form by appropriate growth regulator treatments.

Hackett and Anderson (1967) got either single shoots from carnation shoot apices, or else a proliferative tissue from which shoots were later regenerated. Walkey and Woolfitt (1968) reported a similar kind of direct or indirect shoot proliferation from Nicotiana rustica shoot tips. Vine and Jones (1969) were able to transfer large shoot tips of hop (Humulus) to culture, but shoots only rooted, and
showed a high propensity for callus formation. Reports of plant multiplication using conventional shoot culture methods began to appear in the next decade.

Haramaki (1971) described the rapid multiplication of *Gloxinia* by shoot culture and by 1972 several reports of successful micropropagation by this method had appeared (Adams, 1972; Haramaki and Murashige, 1972). Since then the number of papers on shoot culture published annually has increased dramatically and the method has been utilised increasingly for commercial plant propagation. Factors which have influenced the choice of shoot culture for practical micropropagation have been:

- the way in which the method can be applied to a wide range of different plant species, using the same principles and basic methods;
- the possibility of obtaining simultaneous virus control;
- a general uniformity and ‘trueness to type’ of the regenerated plants;
- the relatively high rates of propagation which is possible in many species.

Methods

Primary explants In most herbaceous plants, shoot tip explants may be derived from either apical or lateral buds of an intact plant, and consist of a meristematic stem apex with a subtended rudimentary stem bearing several leaf initials (Fig 2.3). In the axils of the more developed leaf primordia there will be axillary bud meristems. In some species (e.g. *Eucalyptus*) it is an advantage to commence shoot cultures with a piece of the stem of the mother plant bearing one or more buds (stem nodes). Shoot growth from the bud, and treatment of the culture, is thereafter the same as in conventional shoot tip culture. The use of nodal explants should not be confused with node culture in which a method of shoot multiplication is used that is different to that in shoot culture (see later).

![Fig. 2.3 Shoot tip culture.](image)

Separation of axillary shoots for rooting (or subculture) is easier in species which naturally produce long shoots.

Shoot tips from trees, or other woody perennials, can be difficult to decontaminate. Because of this, Standardi and Catalano (1985) preferred to initiate shoot cultures of *Actinidia chinensis* from meristem
tips which could be sterilised more easily. Shoot tips
of woody plants are more liable than those of
herbaceous species to release undesirable phenolic
substances when first placed onto a growth medium.
Buds taken from mature parts of the shrub or tree can
also be reluctant to grow in vitro and seasonal factors
may reinforce natural dormancy in buds from any
source, so that cultures can only be readily initiated at
certain times of the year (see Chapter 11). Shoot tip
or lateral bud explants are usually most readily
induced into growth if taken from juvenile shoots
(see Chapter 11) such as those of seedlings or young
plants. The juvenile shoots which sometimes emerge
from the base of mature plants or which arise form
heavily pruned or coppiced bushes and trees, are
alternative sources. However, developing techniques
have made it possible to propagate some woody
ornamentals, forest trees and fruit trees, using explants
derived from mature shoots (see Chapter 11). De Fossard et al. (1977) could initiate cultures of
Eucalyptus ficifolia with shoot tips from 36 year-old
trees, but forest-gathered material was very difficult
to decontaminate unless covered and protected for
some period before excision (stage 0).

Secondary explants. Stage II subcultures are
initiated from axillary shoots separated from primary
shoot clusters. The place of the secondary explant
within the primary shoot (cluster) can have a
remarkable influence on the subsequent performance
of the subcultures. A higher rate of shoot proliferation
is often obtained from nodal explants or by
subdivision of the basal shoot mass. Shoot tips were
the best secondary explant for Rosa ‘Fraser McClay’,
but with cherry (‘F12/1’) nodal explants gave more
than twice as many shoots, and basal masses, three
times as many as shoot tips (Hutchinson, 1985). In
Sitka spruce, cultures that had been apices in the
previous subculture were able to proliferate buds at
higher rates than those that had been axillary buds
(John and Murray, 1981). The origin of an explant
can also have a tremendous influence on the
subsequent behaviour of the plant when established
under field conditions. This was illustrated by Marks
and Meyers (1994) for Daphne odorata.

To minimise the risk of genetic change in ramets,
explants for subculture and shoots to be transferred to
Stage III, should, as far as possible, be chosen from
new shoots of axillary origin. It may be advisable to
adjust the growth regulator content of the medium so
that adventitious shoots are not formed, even though
the rate of overall shoot multiplication is thereby
reduced. In some circumstances callus arising at the
base of an explant may be semi-organised and
therefore capable of producing genetically-stable
plants (Vol. 2).

Stage II cultures are typically without roots, and
shoots need to be detached and treated as miniature
cuttings which, when rooted, will provide the new
plants that are required. An alternative is to allow
shoot clusters to elongate and to root singulated
shoots under ex vitro conditions (Fig 2.2).

Media and growth regulators. Advice on the selection
of appropriate media for shoot cultures is given in
Volume 2. A notable feature of shoot cultures of most
plant species is the need for high cytokinin levels at
Stage II to promote the growth of multiple axillary
shoots. A description of the compounds which can be
employed and effective rates of treatment are given in
Chapters 3–7.

Cytokinin growth regulators are usually extremely
effective in removing the apical dominance of shoots.
Their use can be combined with pinching the apex of
shoots, or placing explants in a horizontal position
(Chapter 6). A cytokinin treatment can not only
promote the formation of multiple shoots (axillary
and/or adventitious), but also (if the compound used
is unsuitable, or the concentration used is too high),
cause the shoots formed to be too short for rooting
and transfer.

Because or their nature, or the absence of an
adequate method of culture, plants of some kinds fail
to produce multiple shoots at Stage II and retain their
apical dominance. In shoot cultures of Gymnocladus
dioicus, for example, despite the formation of several
axillary shoots in the presence of BA cytokinin, one
shoot nearly always became dominant over the others
(Geneve et al., 1990). Most plants of this kind are
best propagated by node culture (see below).

Elongation

The length of the axillary shoots produced in
shoot cultures varies considerably from one kind of
plant to another. Species which have an elongated
shoot system in vivo will produce axillary shoots
which can be easily separated as microcuttings and
then individually rooted. Apically dominant shoots
which have not branched can be treated in the same
way.

At the other extreme are plants with a natural
rosette habit of growth, which tend to produce shoot
clusters in culture (Fig 2.3). When these are
micropropagated, it is difficult to separate individual
shoots for use as secondary explants. It may then only
be practical to divide the shoot mass into pieces and
re-culture the fragments. Such shoot clusters can be
induced to form roots when plants with a bushy habit are required (e.g., many species sold in pots for their attractive foliage). Otherwise it is necessary to specially elongate shoots before they are rooted (Stage IIIa). Shoot clusters are treated in such a way that axillary shoot formation is reduced, and shoot growth promoted. Individual shoots are then more readily handled and can be rooted as microcuttings. Methods for elongating shoots are discussed in Volume 2.

Rooting and transfer The cytokinin growth regulators added to shoot culture media at Stage II to promote axillary shoot growth, usually inhibit root formation. Single shoots or shoot clusters must therefore be moved to a different medium for rooting *in vitro* before being transferred as plantlets to the external environment. An alternative strategy for some plants is to root the plant material *ex vitro*. The methods employed are described in Volume 2. Treatments need to be varied according to the type of growth; the nature of the shoot proliferation produced during Stage II culture; and the plant habit required by the customer.

Current applications Conventional shoot culture continues to be the most important method of micropropagation, although node culture is gaining in importance. It is very widely used by commercial tissue culture laboratories for the propagation of many herbaceous ornamentals and woody plants (see Volume 2 for further details). The large numbers of manipulations required do, however, make the cost of each plantlet produced by this method comparatively expensive. Some success has been achieved in automating some stages of the process, in applying techniques for large-scale multiplication and in the use of robotics for plant separation and planting (Vol. 2).

3.1.2. Shoot proliferation from meristem tips

Barlass and Skene (1978; 1980a,b; 1982a,b) have shown that new shoots can be formed adventitiously when shoot tips of grapevine or *Citrus* are cut into several pieces before culture. Tideman and Hawker (1982) also had success using fragmented apices with *Asclepias rotundifolia* but not with *Euphorbia peplus*. Usually leaf-like structures first develop from the individual fragments; these enlarge and shoots form from basal swellings. Axillary shoots often arise from the initial adventitious shoots.

Shoot cultures transferred to agitated liquid culture may form a proliferating mass of shoots. Although high rates of multiplication are possible, leafy shoots usually become hyperhydric (see Volume 2). However, in some species at least, shoots can be reduced in size to little more than proliferating shoot initials (by adding plant growth retardants, Ziv *et al.*, 1994) which are then suitable for large-scale multiplication (Volume 2). A somewhat similar kind of culture consisting of superficial shoot meristems on a basal callus can sometimes be initiated from shoot tip explants or from the base of shoot cultures (see later in this chapter).

3.1.3. Single and multiple node culture (*in vitro* layering)

Single node culture is another *in vitro* technique which can be used for propagating some species of plants from axillary buds. As with shoot culture, the primary explant for single node culture is a shoot apex, a lateral bud or a piece of shoot bearing one or more buds (i.e. having one or more nodes). When shoot apices are used, it can be advantageous to initiate cultures with large explants (up to 20 mm), unless virus-tested cultures are required, and small meristem-tips will be employed. Unbranched shoots are grown at Stage I until they are 5–10 cm in length and have several discrete and separated nodes. An environment that promotes etiolated shoot growth may be an advantage. Then at Stage II, instead of inducing axillary shoot growth with growth regulators (as in shoot culture), one of two manipulative methods is used to overcome apical dominance and promote lateral bud break (Fig 2.2):

- intact individual shoots may be placed on a fresh medium in an horizontal position. This method has been used by Wang (1977) to propagate potatoes, and has been termed ‘*in vitro* layering’;
- each shoot may be cut into single-, or several-node pieces which are sub-cultured. Leaves are usually trimmed so that each second stage explant consists of a piece of stem bearing one or more lateral buds.

Each approach can be reiterated to propagate during stage II.

Unfortunately, *in vitro* layering seldom results in several axillary shoots of equal length, as shown in Fig 2.4; apical dominance usually causes the leading shoot, or shoots, to grow more rapidly than the rest. El Hasan and Debergh (1987) found that, even in potato, node culture was preferable. Node culture is therefore the simplest method of *in vitro* propagation, as it requires only that shoot growth should occur. Methods of rooting are the same as those employed for the microcuttings derived from shoot culture, except that prior elongation of shoots is unnecessary.
Note that “node culture” is distinct from shoot cultures started from the nodes of seedlings or mature plants.

Media and growth regulators.

Media for single node culture are intrinsically the same as those suitable for shoot culture. As in shoot culture, optimum growth rate may depend on the selection of a medium particularly suited to the species being propagated, but adequate results can usually be produced from well-known formulations. It is often unnecessary to add growth regulators to the medium; for example, the shoots of some plants (e.g. *Chrysanthemum morifolium*) elongate satisfactorily without any being provided. If they are required, regulants at both Stages I and II will usually comprise an auxin and a cytokinin at rates sufficient to support active shoot growth, but not tissue proliferation or lateral bud growth. Sometimes gibberellic acid is advantageously added to the medium to make shoots longer and thus facilitate single node separation.

Current applications

Node culture is of value for propagating species that produce elongated shoots in culture (e.g. potato and *Alstroemeria*), especially if stimulation of lateral bud break is difficult to bring about with available cytokinins. Nowadays the technique becomes more and more popular in commercial micropropagation. The main reason is that it gives more guarantee for clonal stability. Indeed, although the rate of multiplication is generally less than that which can be brought about through shoot culture, there is less likelihood of associated callus development and the formation of adventitious shoots, so that Stage II subculture carries very little risk of induced genetic irregularity. For this reason, node culture has been increasingly recommended by research workers as the micropropagation method least likely to induces somaclonal variation. Some of the plants for which node culture has been described are listed in Table 2.2.

3.1.4. Multiple shoots from seeds (MSS)

During the early 1980's it was discovered that it was possible to initiate multiple shoot cultures directly from seeds. Seeds are sterilised and then placed onto a basal medium containing a cytokinin. As germination occurs, clusters of axillary and/or adventitious shoots (‘multiple shoots’) grow out, and may be split up and serially subcultured on the same medium. High rates of shoot multiplication are possible. For instance, Hisajima (1982a) estimated that 10 million shoots of almond could be derived theoretically from one seed in a year.

Fig. 2.4 Single and multiple node culture

Stage one cultures can be initiated also from meristem or shoot tips.
It is likely that multiple shoots can be initiated from the seeds of many species, particularly dicotyledons. The technique is effective in both herbaceous and woody species: soybean (Cheng et al., 1980; Hisajima, 1981; Hisajima and Church, 1981): sugar beet (Powling and Hussey, 1981): almond (Hisajima, 1981; 1982a,b,c): walnut (Rodriguez, 1982): pumpkin and melon (Hisajima, 1981): cucumber and pumpkin (Hisajima, 1981, 1982c): pea, peanut, mung bean, radish, Zea mays and rice (Hisajima, 1982c). This technique does only make sense when elite seed is used or to gain preliminary information on the behaviour of a plant species under in vitro conditions.

Table 2.2 Examples of the use of node culture in micropropagation

<table>
<thead>
<tr>
<th>Monocotyledons</th>
<th>Solanum spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alstroemeria</td>
<td>Hussey et al. (1980)</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>Pieper and Smith (1988)</td>
</tr>
<tr>
<td>Asparagus officinalis</td>
<td>Yang and Clore (1973, 1974a)</td>
</tr>
<tr>
<td>Dioscorea spp.</td>
<td>Ammirato (1976, 1982), Chaturvedi and sinha (1979b)</td>
</tr>
<tr>
<td>Zea mays</td>
<td>King and Shimamoto (1984)</td>
</tr>
<tr>
<td>Orchid monocots</td>
<td></td>
</tr>
<tr>
<td>Dendrobium spp.</td>
<td>Ball and Arditti (1976)</td>
</tr>
<tr>
<td>Phalaenopsis spp.</td>
<td>Tanaka and Sakanishi (1978)</td>
</tr>
<tr>
<td>Thunia alba</td>
<td>Singh and Prakash (1984)</td>
</tr>
<tr>
<td>Vanilla planifolia</td>
<td>Kononowicz and Janick (1984a)</td>
</tr>
<tr>
<td>Herbaceous dicotyledons</td>
<td></td>
</tr>
<tr>
<td>Angelonia salicariaefolia</td>
<td>Datta and Datta (1984)</td>
</tr>
<tr>
<td>Cucumis sativus</td>
<td>Handley and Chambliss (1979)</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Shah and Dalal (1980, 1982)</td>
</tr>
<tr>
<td>Rorippa nasturtium</td>
<td>Wainwright and Marsh (1986)</td>
</tr>
<tr>
<td>Woody dicotyledons</td>
<td></td>
</tr>
<tr>
<td>Carpinus betulus</td>
<td>Chalupa (1981a)</td>
</tr>
<tr>
<td>Castanea sativa</td>
<td>Vieitez and Vieitez (1980b) Yang et al. (1986)</td>
</tr>
<tr>
<td>Castanea mollissima</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus grandis</td>
<td>Cresswell and Nitsch (1975)</td>
</tr>
<tr>
<td>Forsythia ovata</td>
<td>Einset and Alexander (1985)</td>
</tr>
<tr>
<td>Fraxinus pennsylvanica</td>
<td>Einset and Alexander (1985)</td>
</tr>
<tr>
<td>Jugans regia</td>
<td>Dandekar et al. (1988)</td>
</tr>
<tr>
<td>Hevea brasiliensis</td>
<td>Chen Z. (1984)</td>
</tr>
<tr>
<td>Leucaena obtusifolium</td>
<td>Einset and Alexander (1985)</td>
</tr>
<tr>
<td>Lonicera periclymenum</td>
<td>Boonnour et al. (1988)</td>
</tr>
<tr>
<td>Olea europea</td>
<td>Rugini and Fontenazza (1981)</td>
</tr>
<tr>
<td>Paulownia tomentosa</td>
<td>Burger et al. (1985)</td>
</tr>
<tr>
<td>Pocionus trifoliata</td>
<td>Barlass and Skene (1982b)</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Wainwright and England (1987)</td>
</tr>
<tr>
<td>Prunus armeniaca</td>
<td>Snir (1984)</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>Chalupa (1984a,b)</td>
</tr>
<tr>
<td>Malus pumila</td>
<td>Chalupa (1981a, 1983)</td>
</tr>
<tr>
<td>Syringa spp.</td>
<td>Einset and Alexander (1985)</td>
</tr>
<tr>
<td>Syringa x chinensis</td>
<td>Welander N.T. (1987)</td>
</tr>
<tr>
<td>3.1.5. Shoots from floral meristems</td>
<td></td>
</tr>
<tr>
<td>Meristems that would normally produce flowers or floral parts can sometimes be induced to give vegetative shoots in vitro. Success depends on the use of young inflorescences where the determination of individual flower meristems is not canalized. Meristems in older inflorescences are likely to give rise to floral structures. Culture of immature inflorescence segments has, for example, resulted in shoot formation in:</td>
<td></td>
</tr>
<tr>
<td>• Bamboo - Gielis & Debergh (1998)</td>
<td></td>
</tr>
<tr>
<td>• Broccoli - Anderson and Carstens (1977)</td>
<td></td>
</tr>
<tr>
<td>• Cauliflower - Pow (1969), Margara (1969a,b,c; 1977a), Crisp and Walkey (1974), Grout and Crisp (1977), Trimboli et al. (1977)</td>
<td></td>
</tr>
<tr>
<td>• Coconut - Eeuwens and Blake (1977)</td>
<td></td>
</tr>
<tr>
<td>• Dendranthema - Shu O Wang and Su Shien Ma (1978)</td>
<td></td>
</tr>
<tr>
<td>• Date palm - Drira and Benbadis (1985)</td>
<td></td>
</tr>
<tr>
<td>• Gerbera - Topooyanont and Dillen (1988)</td>
<td></td>
</tr>
<tr>
<td>• Limonium - Topooyanant et al. (1999)</td>
<td></td>
</tr>
<tr>
<td>• Onion - Dunstan and Short (1977b; 1979a)</td>
<td></td>
</tr>
<tr>
<td>• Sugar beet - Coumans-Gilles et al. (1981)</td>
<td></td>
</tr>
</tbody>
</table>

The exact origin of the shoots produced has not always been determined. In cauliflower and coconut they were thought to originate from actual flower meristems, but in sugar beet, from floral axillary buds. Some shoots formed from onion flower heads arose from various parts of the flower buds, but they were accompanied by other shoots which arose adventitiously over the entire receptacle surface. Shoots formed from young flower buds may therefore
not always result from the reversion of floral meristems. In fact the direct formation of adventitious shoots is more widely reported.

3.2. PROPAGATION BY DIRECT ORGANOGENESIS

3.2.1. Direct adventitious shoot initiation

In certain species, adventitious shoots which arise directly from the tissues of the explant (and not within previously-formed callus) can provide a reliable method for micropropagation. However, the induction of direct shoot regeneration depends on the nature of the plant organ from which the explant was derived, and is highly dependent on plant genotype. In responsive plants, adventitious shoots can be formed in vitro on pieces of tissue derived from various organs (e.g. leaves, stems, flower petals or roots); in others species, they occur on only a limited range of tissues such as bulb scales, seed embryos or seedling tissues. Direct morphogenesis is observed rarely, or is unknown, in many plant genera.

Direct shoot formation is sometimes accompanied by proliferation of unorganised cells, and a regenerative tissue that could be classed as callus, may ultimately appear. Its formation can usually be reduced by adjustment of the growth regulators in the medium. Because there is a risk of regenerating plants with a different genetic identity (see Vol. 2), use of the callus for further propagation is not recommended unless it has a highly organised nature (see later). In some instances, the growth regulators used to initiate shoot buds directly on explants may not be conducive to continued bud growth. A closely packed mass of shoot primordia may then be mistaken for organised callus.

In those species where adult tissues have a high regenerative capacity, the main advantages of micropropagation by direct adventitious shoot regeneration are that:

- Initiation of Stage I cultures and Stage II shoot multiplication, are more easily achieved than by shoot culture. It is, for example, simpler to transfer aseptically several pieces of Saintpaulia leaf petiole to culture medium, than to isolate an equivalent number of shoot meristems.
- Rates of propagation can be high, particularly if numerous small shoots arise rapidly from each explant.

Stage I

Stage I consists of the establishment in vitro of suitable pieces of tissue, free from obvious contamination. As adventitious shoots are usually initiated on the tissue without transfer, Stages I and II are not generally discrete.

Stage II

Initially Stage II of this micropropagation method is recognised by the formation, growth and proliferation of adventitious shoots from the primary explant. Subsequently Stage II subcultures might, theoretically, be established from individual shoots by the techniques familiar in shoot culture. In practice, in plants such as Saintpaulia, both further adventitious and axillary shoots may develop in later stages of propagation. The result is a highly proliferative shoot mass and a very rapid rate of propagation. Subcultures are made by transferring shoot clumps (avoiding basal callus) to fresh media. In most commercial laboratories the micropropagation of Anthurium species is initiated by adventitious shoot formation on leaf explants, followed by only axillary shoot development during the succeeding subcultures (Debergh et al., 1990). Adventitious shoots sometimes arise directly from the leaves of plants during shoot culture. This often happens when leaves bend down to touch the semi-solid medium. Adventitious shoot formation of certain plants will take place in large vessels of aerated liquid medium, allowing the scale of propagation to be much increased (see the discussion on liquid media in Chapter 12).

Stage III

This is similar to the Stage III of most propagation systems. Individual shoots or shoot clumps are transferred to a nutrient medium with added growth regulators and ingredients that do not encourage further shoot proliferation and which promote rooting; alternatively shoots may be removed from culture and rooted ex vitro.

Some current applications

Several ornamental plants are at present propagated in vitro by direct shoot regeneration. Chief among these are plants of the family Gesneriaceae, (including Achimenes, Saintpaulia, Sinningia and Streptocarpus), where shoot buds can be freely regenerated directly on leaf explants without the formation of any intervening callus phase. Many other ornamentals and crop plants either are (or could be) propagated efficiently by this means, for example, begonias, Epiphyllum, cacti, Gerbera, Hosta and Lilium. Further examples are quoted in the tables of Volume 2. Remember that this technique is more prone to yield off-types than shoot and node cultures,
and that the technology is not applicable for the propagation of chimeras.

Regeneration from root pieces

in vitro shoot regeneration from root pieces is mainly reported from plants that possess thick fleshy roots such as those of the genera *Cichorium*, *Armoracia*, *Convolvulus*, and *Taraxacum*. It is, however, a method of propagation that is potentially applicable to a wide range of species (Browse, 1980; Hodge, 1986). Shoots have, for instance, been induced to form directly on segments and apices of the roots of *Citrus* and *Poncirus* seedlings (Sauton et al., 1982). Shoot regeneration from root pieces does not offer a continuous method of micropropagation unless there is a ready supply of aseptic root material (e.g. from isolated root cultures). Roots grown in soil _in vivo_ are usually heavily contaminated and can be difficult to sterilize to provide an adequate number of uncontaminated cultures. They can however be used as an initial source of shoots which can be multiplied afterwards by shoot culture [e.g. *Robinia* (Chalupa, 1992)].

Tissue maceration or fragmentation

The capacity of young fern tissue to regenerate adventitious shoots can be very high. Fern prothallus tissue (the gametophyte generation produced from germinating spores) has a high capacity for regeneration; a new prothallus can usually be grown from small isolated pieces of tissue (Whittier and Steeves, 1962), or even from single cells produced by maceration (Miller J.H., 1968; De Fossard, 1976; Knauss, 1976). Plants can also be regenerated from homogenised sporophyte tissue of some fern genera, and homogenisation has been incorporated into tissue culture, or partial tissue culture techniques for the propagation of plants of this class (see Volume 2).

Because a high proportion of the direct cost of micropropagation is attributable to the manual separation and transfer of explants and cultured material between media, the ability to regenerate plants from macerated or fragmented tissue would be extremely advantageous. Unfortunately there seem to be only a limited number of publications describing the formation of shoots directly from machine-macerated tissue of higher plants. One of them is the patent of Lindemann (1984), the claims of which may have been somewhat optimistic. Also Levin et al. (1997) reported on the regeneration of different plant species using a homogenisation technology. However, shoot regeneration from fragmented shoot tips, or micropropagation of some plants by culturing shoot material or tissue fragments in fermentors (Vol. 2), are somewhat comparable.

3.2.2. Organised calluses

In most callus cultures, shoots are produced from meristems which arise irregularly and may therefore be genetically altered. By contrast, so-called ‘organised’ or ‘semi-organised’ calluses are occasionally isolated in which there is a superficial layer of proliferating shoot meristems, overlaying an inner core of vacuolated cells acting as a mechanical and nutritional support. Calluses of this kind were termed organoid colonies by Hunault (1979): the names _meristemoids_ and _nodules_ have also been proposed. A meristemoid is defined as a cluster of isodiametric cells within a meristem or cultured tissue, with the potential for developmental (totipotential) growth. Meristemoids may give rise to plant organs (shoots, roots) or entire plants in culture (Donnelly and Vidaver, 1988). Nodules also comprise meristematic cells, but they are distinct from meristemoids because they are independent spherical, dense cell clusters which form cohesive units, with analogy to both mineral nodules in geology and root nodules of legumes (McCown et al., 1988). Nodule culture has been extensively used for the propagation of *Cichorium intybus* (Pieron et al., 1993).

The presence, in meristemoids, of an outer layer of shoot meristems seems to inhibit the unbridled proliferation of the unorganised central tissue (Hussey, 1983). Geier (1988) has suggested that the control mechanisms which ensure the genetic stability of shoot meristems are still fully, or partly, active. Maintenance of a semi-organised tissue system depends on a suitable method of subculture and upon the use of growth regulator levels which do not promote excessive unorganised cell growth. Repeated selective transfer of unorganised portions of an organised _Anthurium scherzerianum_ callus eventually resulted in the loss of caulogenesis (Geier, 1986). Conversely, by consistently removing the unorganised tissue when subculturing took place, shoot formation from the callus was increased.

Cultures consisting of superficial shoot meristems above a basal callus, seem to occur with high frequency amongst those initiated from meristem tip, or shoot tip, explants. Hackett and Anderson (1967) induced the formation of tissue of this type from carnation shoot tips by mutilating them with a razor blade before culture. Similar cultures were also obtained from seedling plumular tip explants of two (out of five tested) varieties of *Pisum sativum* placed
on an agar medium (Hussey and Gunn, 1983; 1984). The calli were highly regenerative for 2–3 years by regular subculture to agar or shaken liquid medium. Maintenance was best achieved with an inoculum prepared by removing larger shoots and chopping the remainder of the callus and small shoots into a slurry. A callus, formed at the base of Solanum curtilobum meristem tips on filter paper bridges, gave rise to multiple adventitious shoots from its surface when transferred to shake culture in a liquid medium (Grout et al., 1977).

Callus with superficial proliferative meristems has also been induced by culture of shoot or meristem tips on a rotated liquid medium, in:

- Nicotiana rustica (Walkey and Woolfitt, 1968);
- Chrysanthemum morifolium (Earle and Langhans 1974c);
- Stevia rebaudiana (Miyagawa et al., 1986).

In Stevia rebaudiana (above), a slow rotation speed (2 rpm) was essential for initiation of an organised callus. A small callus formed upon the explant and in 2–3 weeks came to possess primary superficial shoot primordia which were globular and light green. Dark green aggregates of shoot primordia (termed ‘secondary shoot primordia’ by Miyagawa et al., 1986) were developed within 6 weeks. If divided, the aggregations of shoot initials in both Nicotiana and Stevia could be increased by subculture or, if treated to a different cultural regime, could be made to develop into shoots with roots. Shoots were produced from Chrysanthemum callus upon subculture to an agar medium. A spherical green dome-like structure was produced from meristem tips dissected from germinated Eleusine coracana (Gramineae) caryopses. When cut into four and subcultured, a green nodular structure was formed which grew to 5–10 mm in diameter. It was similar in appearance to a shoot dome, but much larger (a natural shoot dome is only 70–80 µm wide). The nodular structures were termed ‘supradomes’ by Wazizuka and Yamaguchi (1987) because, unlike normal callus, superficial cells were arranged in an anticlinal plane and those beneath had a periclinal arrangement. Numerous multiple buds could be induced to form when the organised tissue was subcultured to a less complex medium.

Although proliferative meristematic tissue formed from shoot tips always appears to be accompanied by a basal callus, the superficial meristematic cells may well be derived directly from the cells of the apical shoot meristem of the explant, for they preserve the same commitment to immediate shoot formation. The presence of the apical meristem in the explant seems to be essential and culture of tissue immediately beneath it does not produce a callus with the same characteristics (Hussey and Gunn, 1984). Similar semi-organised callus can appear at the base of conventional shoot cultures. In the green granular callus mass which formed at the base of Rhododendron shoot tips, each granule represented a potential shoot (Kyte and Briggs, 1979). Organised caulogenic callus is thus closely comparable to embryogenic callus formed from pre-embryogenically determined cells.

Organised callus can be produced from explants other than shoot tips; in Anthurium, it has been derived from young leaf tissue (above, Geier, 1986) and from spadix pieces (Geier, 1987). Organised callus has two characteristics which distinguish it from normal unorganised callus: the plants produced from it show very little genetic variation, and it can be subcultured for a very long period without losing its regenerative capacity. The callus of Nicotiana (above) was able to produce plantlets over a ten-year period, while that of Chrysanthemum gave rise to plants continuously during four years.

The use of cultures with superficial proliferative meristems has not yet been widely used for micropropagation. There are three possible reasons:

- the genetic variation which is almost invariably induced by shoot regeneration from normal callus, has cautioned against the use of any sort of callus culture for this purpose;
- organised callus may not always be readily distinguished from its unorganised counterpart;
- methods of initiating organised callus in a predictable fashion have not yet been fully elucidated.

There are examples of the initiation of organised callus from a sufficiently wide range of plant species (particularly from meristem tip explants) to suggest that it could be a method of general applicability. Multiplication may well be amenable to large-scale culture in fermentors (Vol. 2).

3.2.3 Direct embryogenesis

Somatic embryos are often initiated directly upon explanted tissues. Of the occurrences mentioned in Chapter 1, one of the most common is during the in vitro culture of explants associated with, or immediately derived from, the female gametophyte. The tendency for these tissues to give rise to adventitious somatic embryos is especially high in plants where sporophytic polyembryony occurs.
naturally, for example, some varieties of *Citrus* and other closely related genera. Ovules, nucellar embryos, nucellus tissues and other somatic embryos are particularly liable to display direct embryogenesis. In *Carica* somatic embryos originated from the inner integument of ovules (Litz and Conover, 1981a,b) and in carrot tissue of the mericarp seed coat can give rise to somatic embryos directly (Smith and Krikorian, 1988).

The nucellus tissue of many plants has the capacity for direct embryogenesis *in vitro* (Hacciüs and Hausner, 1976; Eichholtz et al., 1979; Rangaswamy, 1982; Litz, 1987). As explained in Chapter 1, explants may also give rise to a proliferative tissue capable of embryogenesis. The high embryogenic competence of the nucellus is usually retained during subsequent cell generations *in vitro*, should the tissue be induced to form ‘callus’ (or cell suspensions). It is not clear whether all cells of the nucellus are embryogenically committed. In *Citrus*, somatic embryos are formed from the nucellus even in cultivars that are normally monoembryonic (i.e. the seeds contain just one embryo derived from the zygote), whether the ovules have been fertilised or not. It has been suggested that only those cells destined to become zygotic proembryos can become somatic proembryos or give rise to embryogenic callus (Sabharwal, 1963); somatic embryos have been shown to arise particularly from the micropylar end of *Citrus* nucellus.

Adventitious (adventive) embryos are commonly formed *in vitro* directly upon the zygotic embryos of monocotyledons, dicotyledons and gymnosperms, upon parts of young seedlings (especially hypocotyls and cotyledons) and upon somatic embryos at various stages of development (especially if their growth has been arrested). The stage of growth at which zygotic embryos may undergo adventive embryogenesis is species-dependent: in many plants it is only immature zygotic embryos which have this capacity. Unfortunately, as the phenotypic potential of seedlings is rarely known, using them as a source of clonal material is of limited value.

Embryogenic determination can be retained through a phase of protoplast culture. Protoplasts isolated from embryogenic suspensions, may give rise to somatic embryos directly, without any intervening callus phase (Miura and Tabata, 1986; Sim et al., 1988). Treating protoplasts derived from leaf tissue of *Medicago sativa* with an electric field, induced them to produce somatic embryos directly upon culture (Dijak et al., 1986).

Adventitious embryos arising on seedlings are sometimes produced from single epidermal cells (Konar et al., 1972a; Thomas et al., 1976 - see Chapter 1). Zee and Wu (1979) described the formation of proembryoids within petiole tissue of Chinese celery seedlings, and Zee et al. (1979) showed that they arose from cortical cells adjacent to the vascular bundles which first became meristematic. Hypocotyl explants from seedlings of the leguminous tree *Albizia lebbek* showed signs of cracking after two weeks of culture and frequently young embryoids emerged (Gharyal and Maheshwari, 1981). Stamp and Henshaw (1982) found that primary and secondary embryogenesis occurred in morphogenetically active ridges produced on the surface of cotyledon pieces taken from mature cassava seeds.

Somatic embryos have been observed on the roots and shoots of *Hosta* cultures (Zilis and Zwagerman, 1980) and on the needles and cultured shoots of various gymnosperm trees (Bonga, 1976; McCown and Amos, 1982).

Protocorm formation in orchids

The seeds of orchids (like those of some other saprophytic or semi-parasitic plants) contain a small embryo of only about 0.1 mm diameter, without any associated endosperm storage tissue. Upon germination, the embryo enlarges to form a small, corm-like structure, called a protocorm, which possesses a quiescent shoot and root meristem at opposite poles. In nature, a protocorm becomes green and accumulates carbohydrate reserves through photosynthesis. Only when it has grown and has sufficient stored organic matter does it give rise to a shoot and a root. Normal seedling growth then continues utilising the stored protocorm food reserves.

Bodies which, in their structure and growth into plantlets, appear to be identical with seedling protocorms (except that on synthetic media they may not be green), are formed during *in vitro* culture of different types of orchid organs and tissues. These somatic protocorms can appear to be dissimilar to seedling protocorms, and many workers on orchid propagation, have used terms such as ‘protocorm-like bodies’ (PLBs) to describe them.

When a shoot tip of an orchid is transferred to culture on a suitable medium, it ceases to grow and to develop as a mature shoot apex; instead it behaves as though it were the apex of an embryo, i.e. it gives rise
to a protocorm (Vol. 2). Protocorm-like bodies also arise directly on some other orchid explants and proliferate from other PLBs in a fashion which is exactly comparable to the direct formation of somatic embryos.

Champagnat and Morel (1972) and Norstog (1979) considered the appearance of protocorms to be a manifestation of embryogenesis because they represent a specialised stage in embryo development and are normally derived directly from zygotic embryos. We think that this is the correct interpretation: in a previous edition of this book, protocorms were described under ‘storage organs’.

Other protocorm-like structures. In vitro culture of small immature proembryos from developing barley seeds (Norstog, 1961, 1965a, 1970) or from the fern Todea barbara (De Maggio and Wetmore, 1961) has been noted to result in the formation of protocorm-like tissue masses from which root and shoots are regenerated after a period of irregular growth. Mapes (1973) recorded the appearance of such protocorm-like structures on shoot tips of pineapple, and Abo El-Nil and Zettler (1976) describe their direct formation on shoot tip explants of the yam Colocasia esculenta, or indirectly in subsequent callus cultures.

Embryogenesis from microspores or anther culture

Somatic embryos can be initiated directly from microspores. Usually it is necessary to culture the microspores within anthers, but occasionally it has been possible to induce embryogenesis from isolated microspores. Anther and microspore culture are described in Chapter 1, but because the plants produced by anther culture are likely to be dissimilar to their parents, we shall not consider the method in any detail in this book, and reports of anther culture have been largely omitted from the tables in Volume 2. Good references to this topic are available in the series of books published by Jain et al. (1996 and 1997).

Anther culture can result in callus formation; the callus may then give rise to plants through indirect embryogenesis or adventitious shoot formation.

Embryo proliferation

Accessory embryos on zygotic embryos. Occasionally new somatic embryos are formed directly on zygotic embryos that have been transferred to in vitro culture. Such adventitious embryos have been reported, for example, in: Cuscuta reflexa (Maheshwari and Baldev, 1961); barley (Norstog, 1970); Ilex aquifolium (Hu and Sussex, 1972; Hu, 1977; Hu et al., 1978); Thuja orientalis (Konar and Oberoi, 1965); Trifolium repens (Majeswaran and Williams, 1985); Zamia integrifolia (Norstog, 1965b; Norstog and Rhamstine, 1967); Theobroma cacao (Pence et al., 1980a,b); Linum usitatissimum (Pretova and Williams, 1986); Vitis vinifera (Stamp and Meredith, 1988).

When direct embryogenesis occurs on pre-formed embryonic tissue, the newly formed embryos are sometimes termed direct secondary embryos or accessory embryos.

Accessory embryos on somatic embryos. The in vitro induction of somatic embryogenesis starts a highly repetitive process, lacking some of the controls which must exist in nature during the formation of zygotic embryos. This results in the frequent development of small additional embryos on somatic embryos which have arisen directly on explants, or indirectly in callus and suspension cultures. Accessory embryos can occur along the whole axis of the original embryo, or grow preferentially from certain sites (e.g. the hypocotyl region or the scutellum of monocot embryoids). In walnut, accessory embryos appear to arise from single cells of the epidermis of somatic embryos (McGranahan et al., 1988).

Sometimes the term polyembryony is used to describe the formation of accessory, or secondary, embryos (Radojevic, 1988) (c.f. the term polyembryogenesis in Chapter 1). The process has also been called repetitive embryogenesis (Tulecke and McGranahan, 1985) or recurrent somatic embryogenesis (Lupotto, 1986). Such additional embryos are liable to be developed during all kinds of in vitro embryogenesis. They have been noted for example, on the somatic embryos formed in:

- Anther cultures: Atropa belladonna (Rashid and Street, 1973); Brassica napus (Thomas et al., 1976); Carica papaya (Tsay and Su, 1985); Citrus aurantiifolia (Chaturvedi and Sharma, 1985); Datura innoxia (Geier and Kohlenbach, 1973); Vitis hybrids (Rajasekaran and Mullins, 1979);
- Suspension cultures: Daucus carota (Ammirato and Steward, 1971; McWilliam et al., 1974); Ranunculus sceleratus (Konar and Nataraja, 1965b; Konar et al., 1972a);
- Callus cultures: Aesculus hippocastanum (Radojevic, 1988); alfalfa (when individual embryoids were transferred to a fresh medium) (Saunders and Bingham, 1972); carrot (Petru, 1970); Citrus (Button and Kochba, 1977); parsley (Vasil and
Hildebrandt, 1966b); *Pennisetum purpureum* (Wang and Vasil, 1982); *Ranunculus sceleratus* (Konar and Nataraja, 1965a,b), *Theobroma cacao* (Li et al., 1998).

Protocorms arising directly on explanted shoot tips or leaf pieces of orchids, frequently produce other adventive ‘daughter’ protocorms in culture, in a fashion that is similar to the adventive formation of somatic embryos. Somatic embryos formed in callus of oil palm have been reported to give rise to protocorm-like bodies, which regenerated shoots repeatedly as subculture was continued (Paranjothy and Rohani, 1982).

Practical uses in propagation

From a quantitative point of view, indirect embryogenesis does provide an efficient method of micropropagation; the same is not true of direct embryogenesis when it is unaccompanied by the proliferation of embryogenic tissue. Although plants can be regenerated from embryos directly initiated *in vitro*, and may be present in sufficient numbers for limited plant production in breeding programmes, the numbers of primary embryos per explant will usually be inadequate for large scale cloning. To increase the number of somatic embryos formed directly on immature zygotic embryos of sunflower, Freyssinet and Freyssinet (1988) cut larger zygotic embryos into four equal pieces.

Additional embryos are generally unwanted: they are frequently joined one to another as twins or larger groups so that abnormal seedlings with multiple shoots develop from them. The presence of accessory embryos can also impede the growth of the primary somatic embryo. Growth then becomes asynchronous and normal seedlings may not be obtained unless the adventive embryos are removed.

However it has been suggested that accessory embryos might be used for micropropagating some species. Perhaps this is a method of micropropagation which will be developed more in the future? Examples of where it has been successful are:

- *Helianthus annuus* (Plissier et al., 1990);
- *Juglans regia*. (McGranahan et al., 1988b);

As mentioned earlier embryogenesis has a great potential for mass propagation, however, all adventitious techniques do still have the associated problem of the lack of clonal stability. Therefore the commercial application of this technology remains limited except, perhaps, where embryos arise directly from parental tissue.

The propagation of orchids

Morel (1960) noticed that when protocorms of *Cymbidium* were divided new protocorms were formed from the pieces, whereas if they were not divided, original and regenerated protocorms developed into new plantlets. Morel (1960, 1964) suggested that meristem or shoot tip explants could be used to establish cultures for the clonal propagation of orchids, providing thereby the basis of the method which is now used for many orchid genera. Rates of propagation are improved through the use of slightly more complex media than used by Morel, and by including growth regulators. However, many commercial micropropagation laboratories do not favour the use of protocorms for micropropagation because of the lack of clonal fidelity.

Some orchids not only form protocorms on apical meristems, but also directly on explants such as leaves (Churchill et al., 1971; 1973; Tanaka et al., 1975), or flower stalks (Flamée and Boesman, 1977; Arditti et al., 1977), or they may be formed from callus or callus via suspension cultures (see the section on orchids in Volume 2).

3.3. PRODUCTION BY INDIRECT ORGANOGENESIS

Propagation by all methods of indirect organogenesis carries a risk that the regenerated plants will differ genetically from each other and from the stock plant. Propagation by indirect organogenesis is described here for the sake of completeness; because of its potential as a propagation method, if the occurrence of genetic variation can be controlled; and because it is necessary for the regeneration and propagation of plants, which have been genetically transformed.

3.3.1. Indirect adventitious shoots from callus

Because they are not formed on tissues of the original mother plant, shoots (or other organs) are said to be regenerated indirectly when they are formed on previously unorganised callus, or in cell cultures. Separate root and shoot initials are characteristically formed in callus cultures and are only observed occasionally in suspensions where they are typically produced in large cell aggregates. Somatic embryogenesis occurs in both callus and suspension cultures. Adjustment of the growth regulators in the culture medium can bring about shoot or root formation in callus from a very large number of species. Inception of roots and shoots is most frequent in tissues that have been recently

From a quantitative point of view, indirect

isolated, and morphogenic capacity generally declines with time as the tissues are subcultured. Nevertheless, some callus cultures maintain their regenerative ability over long periods.

As explained in Chapter 10, callus cultures vary in their morphogenic potential or competence. Because of this, the callus which originates from some plants, or from some kinds of explant, may not be responsive to techniques and media which frequently result in morphogenesis. The tissue may be non-morphogenic, or may only produce roots, from which plants cannot be regenerated. In some cases callus lines with different appearances (texture, colour, etc) and/or morphogenic capacities can be isolated from the same explant (Fig 2.5). These differences may reflect the epigenetic potential of the cells, or be caused by the appearance of genetic variability amongst the cells of the culture (Volume 2) and support Street's (1979) suggestion that primary explants may be composed of cells or tissues capable of morphogenesis (competent cells) and others that are incapable (non-competent cells). Another possibility is that the operator is not able to create the appropriate conditions to express the full potential of the plant material he is working with.

Morphogenic and non-morphogenic callus lines, selected from primary callus, can retain their characteristics over many years (Reuther, 1990). Special treatments, such as, a change of medium, an altered cultural environment, or an adjustment of the growth regulators added to the medium, may induce shoots or roots to form in some apparently non-morphogenic calluses; but generally, treatments to reverse a non-regenerative condition are unsuccessful.

In practice, the speed and efficiency with which plantlets can be regenerated from callus depends upon:

- the interval between culture initiation and the onset of morphogenesis;
- the choice of the appropriate type of callus;
- the frequency and rate of shoot bud initiation;
- whether shoot regeneration can be readily re-induced when the callus is subcultured;
- the number of subcultures that are possible without loss of morphogenesis;
- whether newly-initiated buds can be grown into shoots capable of being isolated and subsequently rooted.

Normal callus cultures produce shoots relatively slowly, but from some plants, and certain explants, under conditions that are not yet fully understood, callus can be initiated which has an especially high ability to regenerate shoots or somatic embryos.

Stage I.

In most herbaceous broad leafed plants, it is possible to initiate morphogenically competent callus cultures from explants derived from many different tissues. Leaf, stem or root segments, pieces of storage tissue (e.g. tubers), seed embryos, shoot tips and seedling tissues have been used at various times. In monocotyledons there is a narrower range of suitable organs; embryos, very young leaf tissue, stem nodes and immature inflorescences being the most common sources. Initiation of callus cultures of many tree species, including gymnosperms, is frequently limited to explants derived from tissues near the vascular bundles or the cambium of stem or root sections. Explants containing actively dividing cells may be necessary if callus possessing a high level of morphogenic competence is to be isolated.

Callus growth is usually initiated by placing the chosen explant on a semi-solid medium into which auxin has been incorporated at a relatively high level, with or without a cytokinin. Details of the compounds used are given in Chapter 5. One or more transfers on the same medium may be necessary before the callus is separated from the parental tissue for subculture. Because more than one kind of callus may arise from a single explant, successful propagation can depend on being able to recognise and subculture only the type (or types) which will eventually be able to give rise to shoots or somatic embryos. In the absence of previous experience, samples of each type of callus may have to be carried forward for testing on inductive media. Translucent, watery callus is seldom morphogenic, whereas nodular callus frequently is.

Organised adventitious shoots are usually induced to form in callus or suspension cultures by reducing the auxin level in the medium and/or increasing the concentration of cytokinin. To grow callus-derived shoots into plantlets capable of survival in the soil, they must be rooted as micro-cuttings. Root production by callus is of little consequence for micropropagation purposes; even if roots are formed concurrently with adventitious shoots, the vascular connections between roots and shoots, through the callus tissue, are almost invariably insufficient for the development of a functional plantlet.

Stage II.

Once a morphogenic callus has been isolated, propagation is carried out either by callus subdivision, or by the preparation of cell suspensions.
The success of each technique depends on the subcultured tissues or cells continuing to regenerate shoots.

Callus subdivision. Callus is cut into smaller pieces which increase in size when subcultured in a liquid or an agar-solidified medium. The callus can either be subdivided further, or shoot regeneration allowed to occur. This may take place on the same medium, or the callus may need to be transferred to another shoot-inducing medium. The organogenic capacity of callus is easily lost on repeated subculture. Use of high growth regulator levels can encourage the proliferation of non-regenerative callus which will displace tissues having the competence to form new shoots (e.g. in *Pelargonium*; Holdgate, 1977).

![Fig. 2.5 Callus with different morphogenic potential is often isolated from a single explant.](image)

The preparation of cell suspensions. Compared to the relatively rapid rates of propagation that are possible with shoot culture of some kinds of plants, propagation from morphogenically competent callus can be slow initially. Krikorian and Kann (1979) quoted a minimum of 135 days from the excision of daylily explants to the potting of plantlets. The rate at which propagation can proceed after that depends on the rate at which callus can be grown and subdivided. Providing a shoot-forming capacity is retained, a much faster rate of multiplication can be achieved by initiating a suspension culture from competent callus. After being increased by culture, the cells or cell aggregates can then be plated to produce new regenerative callus colonies. This is not an easy operation, as growth regulators favouring the formation of a dispersed cell suspension can cause the cells to lose their morphogenic capacity (see Chapter 10). There is also the problem that, by prolonging the period before shoot regeneration, genetic variability within the cell line will be increased.

Genetic stability

In some crop plants, the genetic differences between plants derived from callus and suspension cultures (discussed in Volume 2) are considerable, and are sufficient to have attracted the interest of plant breeders as a new source of selectable variability. However, plants obtained from callus lines with a high degree of morphogenic competence, appear to be much more uniform genetically. Care must be taken though to see that primary explants are
not taken from plant tissue likely to be endopolyploid. Subsequent exposure to high levels of growth substances such as 2,4-D should also be avoided as far as possible. Genetic stability of plants from highly competent callus cultures may be assisted by the continual presence of superficial meristems. As mentioned previously in Section 3.2.2, these probably repress shoot formation from cells within the callus mass (Hussey, 1983).

Morphogenic cereal cultures
The shoot forming capacity of some callus cultures has been attributed to the proliferation of meristematic centres derived from the tissues of the explant. King et al. (1978) have suggested that the small number of shoots produced by certain cereal tissue cultures arises in this way (e.g. in wheat, rice, oat and maize). Cure and Mott (1978) noticed that aberrant root-like structures existed within cereal cultures from which shoots arose. Such primordia, whether of root or shoot origin, are thought to proliferate adventitiously in vitro, surrounded by less organised tissues. Regenerative capacity is usually lost rapidly when the shoot primordia are diluted during subculture. Cereal callus of this kind does not have the same kind of inherent morphogenic capacity found in other types of callus cultures. Despite these observations, experience shows that morphogenesis can occur from previously unorganised cereal callus.

Current applications
In the past, several ornamental plants [e.g. *Freesia* (Hussey and Hargreaves, 1974) and *Pelargonium* (Holdgate, 1977)] have been micropropagated from adventitious shoots produced indirectly from callus. It had been hoped to extend the technique to other species possessing a strong natural tendency towards diploidy (e.g. some forest trees) where plantlets produced in vitro might have a normal karyotype (Mott, 1981), but it is now realised that the genetic changes which are almost universally induced in the genotype of cells during callus and cell culture make cloning by this technique inadvisable except where new genotypes are required for selection or further plant breeding. Another possibility is that mutated somatic cells, already present in the mother plant, are given the opportunity to develop into a plantlet.

3.3.2 Indirectly-initiated somatic embryos
Indirect formation of somatic embryos (or adventitious somatic embryogenesis) from callus or suspension cultures is observed more frequently than direct embryogenesis. Frequently callus which is wholly or partly embryogenic can be induced during the initial culture of explants derived from young meristematic tissues (see below), but induction is less common in cultures which have been kept and transferred for some period without organogenesis.

There are important requirements for the successful induction of embryogenic callus and suspension cultures:
- The plant genotype must be capable of embryogenesis on the chosen system of induction (medium plus added growth regulators). In some genera most genotypes are competent, but in others there may be a wide variation in competence even between different varieties or cultivars within a species.
- In most practical situations, cultures should be grown in the presence of an auxin for the induction (and initiation) of embryogenesis (Stage I).
- The level of sugar (e.g. sucrose or glucose) in the medium may need to be within critical concentrations, and no embryos may be formed at all if the sugar concentration is too high (Lippman and Lippmann, 1984).
- After the beginning of embryogenesis, it is usually (but not invariably) necessary for Stage I tissues or cells to be subcultured to a medium containing a reduced auxin concentration, or containing no auxin at all (Stage II) (Chapter 9).
- There may be an optimum length of time during which the Stage I routine should be maintained. An extended period before subculture can result in the failure to obtain embryogenesis at Stage II (e.g. Dos Santos et al. 1980). Maintenance of the cultures on high auxin usually causes embryo development to be arrested or a loss of embryogenic capability.
- A supply of reduced nitrogen is required. This may be supplied in the form of NH$_4^+$ ion and/or as an amino acid such as glutamine or alanine (see Chapter 3).

Embryogenesis in primary callus cultures
Callus capable of producing somatic embryos (embryogenic callus) is most reliably obtained from an explant during the initial phase of culture, and is frequently produced in conjunction with non-morphogenic tissue. Embryogenic callus can usually be distinguished by its nodular appearance, and is frequently produced preferentially from one part of an explant (e.g. the scutellum of a monocotyledon embryo), probably because only the cells of that part of the explant were embryogenically pre-determined. These may be the same tissues, which in another
cultural environment are capable of producing embryos directly (Sharp et al., 1980). According to this hypothesis, although competent and non-competent cells may produce callus, only that which grows from competent cells will give rise to somatic embryos.

The expression of competence depends on the use of a suitable medium for the culture, containing requisite growth regulators at the correct concentration. The formation of somatic embryos in Lolium multiflorum, for example, was medium dependent (Dale et al., 1981). On the most suitable medium, immature inflorescence explants produced three types of callus, only one of which spontaneously formed embryo-like structures. Unless such different callus types are separated, cells of different regenerative capabilities may become mixed. Morphogenically competent cells could then be lost by competition in the combined callus tissue that results.

Stage I. Selection of an appropriate explant is most important. Embryogenic callus has been commonly gained from seed embryos, nucelli or other highly meristematic tissues such as parts of seedlings, the youngest parts of newly initiated leaves and inflorescence primordia. Within an inflorescence, staminoids [Theobroma cacao (Li et al., 1998)] and filaments [Aesculus hippocastanum (Radojevic, 1980)] have been reported to be adequate sources of explants. The initiation of embryogenic callus from root tissue is rare but has been reported in some monocotyledons e.g. rice (Inoue and Maeda, 1982; Toshinari and Futsuhara, 1985); oil palm (Paranjothy and Rohani, 1982), Italian ryegrass (Jackson and Dale, 1988) and Allium carinatum (Havel and Novak, 1988). Callus is usually commenced on a semi-solid medium incorporating a relatively high level of an auxin; compounds commonly used for this purpose are described in Chapters 11 and 12. Only a few tissues with a high natural embryogenic capacity do not require the addition of endogenous auxin for the development of embryogenic callus. Occasionally, primary callus arising from an explant may show no morphogenic capacity, but can be induced to give rise to new embryogenic tissue during later (secondary) subcultures by transfer to an inductive medium. Ahee et al. (1981) have used this method to propagate oil palms. On the medium used, calluses arising on the veins of young leaf fragments had no morphogenic capability. However, when primary calluses were subcultured onto appropriate media (unspecified), some of them gave rise to tissue that was different in structure and form, and grew at a much faster rate. These ‘fast-growing calluses’ could be induced to produce structures resembling embryoids, and afterwards plantlets, upon further subculture to other media.

One highly embryogenic tissue that has been extensively studied is that of the nucellus of the polyembryonic ‘Shamouti’ orange (Spiegel-Roy and Kochba, 1980). Here it seems that cells at just one end of the embryo sac (the micropylar end) are embryogenically predetermined and retain this capacity in subsequent cell generations. On subculture, proliferation of the nucellus cells proceeds without the addition of growth regulators to the medium, and results in the formation of an habituated callus. A tissue is said to have become habituated when it will grow without a growth regulator, or some other organic substance which is normally necessary, being added to the medium (see Chapter 7). Addition of auxins to the growth medium is inhibitory to the growth of auxin-habituated ‘Shamouti’ orange tissue, which has been thought to be composed (at least initially) of numerous pro-embryos and not of undifferentiated cells (Button et al., 1974). Embryogenic callus has also been obtained from the nucellus tissue of other plants, mainly tropical fruit species (Litz and Jaiswal, 1991).

Stage II. As a general rule, somatic embryos formed on a medium containing a relatively high concentration of an auxin, will only develop further if the callus culture is transferred to a second medium from which auxin has been omitted, another ‘less active’ auxin has been substituted, or the level of the original auxin much reduced. This treatment is occasionally ineffective (Handley and Sink, 1985) and sometimes adding a cytokinin helps to ensure embryo growth. A further essential requirement is the need for a supply of reduced nitrogen in the form of an ammonium salt or amino acid. No change of nitrogen source is required if MS medium was used for Stage I, but if, for example, White's medium were used for Stage I, it would need to be supplemented with reduced nitrogen, or the culture transferred to MS.

Callus subculture. Once obtained, embryogenic callus can continue to give rise to somatic embryos during many subcultures over long periods. The continued production of somatic embryos in these circumstances depends either on the continued proliferation of pro-embryogenic nodules, and/or the de novo formation of embryogenic tissue from young somatic embryos during each subculture. Inocula for
subcultures must be carefully selected. In wheat, callus with continued embryogenesis was only re-initiated from inocula taken close to somatic embryos; tissue from the same culture which did not contain embryos was not embryogenic in the next passage (Chu et al., 1987).

Sometimes the number of embryos produced per unit weight of callus rises during a few passages and then slowly falls, the capacity to form somatic embryos eventually being irreversibly lost. Callus derived from the nucellus of ‘Shamouti’ oranges increased in its capacity to form somatic embryos when subcultured at 10-15 week intervals, while transfer at 4-5 week intervals, reduced embryogenesis (Kochba and Button, 1974).

Somatic embryos can be formed relatively freely in callus tissue, but where they are to be used for large scale propagation, their numbers can often be increased more rapidly and conveniently by initiating an embryogenic suspension culture from the primary callus (see below).

Embryogenesis in suspension cultures

Cultures from embryogenic callus (Stage I). Suspension cultures can sometimes be initiated from embryogenic callus tissue, and the cells still retain the capacity to regenerate somatic embryos freely. Obtaining such cultures is not always a simple matter, for the auxin levels that are often used to promote cell dispersion may result in the loss of morphogenic capability. Embryogenic cell suspensions are most commonly initiated from embryogenic callus that is placed in liquid medium on a shaker. Vasil and Vasil (1981a,b) and Lu and Vasil (1981a,b) have reported producing cultures of this type from pearl millet and guinea grass respectively. Suspensions were initiated and subcultured in MS medium containing 1-2.5 mg/l 2,4-D and 2.5-5% coconut milk, and came to be composed of a mixture of embryogenic cells (small, highly cytoplasmic and often containing starch) and non-embryogenic cells (large and vacuolated). Embryoids were induced to develop into somatic seedlings when plated onto an agar medium without growth regulators, or with lower levels of auxin than used at the previous stage.

Cultures from non-embryogenic sources. Embryogenesis can be induced in cell suspensions of some plants when the cultures are produced from non-morphogenic callus and have been maintained without morphogenesis for one or more transfers. Induction occurs most readily in recently isolated suspensions and usually becomes much less probable with increasing culture age. Loss of regenerative ability is often associated with the appearance of some cells with abnormal chromosome numbers, but it can also be due to culture on an inappropriate medium.

Embryogenesis in suspension cultures seems to require media at Stage I and Stage II with similar compositions to those necessary for somatic embryo formation in callus cultures. Somatic embryos can be formed in suspension cultures in very large numbers. Reinert et al. (1971) demonstrated that the continued capacity of carrot cell suspensions to form embryos depended on an adequate supply of nitrogen. Embryogenesis ceased on a medium containing little nitrogen, but it was re-induced for several transfers after the culture was returned to a high-nitrogen medium.

In a few kinds of plants it is possible to induce embryogenesis in previously unorganised suspension cultures. Success is so far recorded only in members of the families Apiaceae (Umbelliferae), Cruciferae and Scrophulariaceae. This is not therefore a method of propagation which can be readily utilised. There is a greater chance of obtaining an embryogenic suspension culture from embryogenic callus.

Abnormal embryos and plantlets

Unfortunately embryogenesis in both callus and suspension cultures is seldom synchronous so that embryoids at different stages of development are usually present in a Stage II culture from the onset. This presents a major drawback for plant propagation which could otherwise be very rapid, especially from suspensions. A proportion of the seedlings developing from somatic embryos can also be atypical: abnormalities include the possession of multiple or malformed cotyledons, more than one shoot or root axis, and the presence of secondary adventive embryos. Embryos with three cotyledons have been observed to give rise to well-formed plantlets (Smith and Krikorian, 1990). Abnormal somatic embryos do however produce secondary embryos, which are usually of normal morphology.

Pretova and Williams (1986) suggested that embryo proliferation, or ‘cleavage’ (see earlier in chapter), and the formation of accessory cotyledons and root poles, to be homologous with the production of discrete complete embryoids. They suggested that production of accessory cotyledons and somatic embryos on the hypocotyl, and additional root poles near the base of existing embryos, may represent either a gradient along these organs in the early stages of determination, or, be caused by a factor affecting cell to cell co-ordination.
Differential filtering and sedimentation to separate embryos at different stages of development (Giuliano et al., 1983) can improve the uniformity of embryo populations in suspension cultures. More recently image analysis has been used to select embryos in specific developmental stages (Kurata, 1995). In addition cultures can be maintained on media containing high levels of sucrose (Ammirato and Steward, 1971), and/or low levels of abscisic acid (Ammirato, 1973; 1974). Both approaches, as well as the addition of imazalil to the culture medium (Werbruck et al., 2000), limit the number of abnormalities and give a higher degree of synchronisation. High levels of sucrose and abscisic acid induce reversible dormancy in somatic embryos and thus might be used to temporarily suspend growth should this be advantageous in a planned micropropagation programme.

Dormancy is however not always reversible. Indeed somatic embryos can remain dormant, and conversion to plantlets can be problematic. Different types of approaches can be used to overcome this problem, i.e. desiccation, supplementing the medium with osmotic agents [e.g. polyethylene glycol (PEG), mannitol] (Capuana and Debergh, 1997).

Genetic stability

Plants regenerated through somatic embryogenesis are usually morphologically and cytologically normal, but sometimes a proportion of aberrant plants is obtained. Genetically abnormal plants are more likely to occur where embryogenesis is initiated in callus or suspension cultures after a period of unorganised growth or when embryogenic cultures are maintained for several months (Orton, 1985).

A proportion of albino plants lacking chlorophyll is characteristically produced in anther culture of cereals and grasses (Sunderland and Dunwell, 1977) and during embryogenesis from other monocot explants. Dale et al. (1980) found that plants produced from embryogenic callus cultures of Italian ryegrass were more likely to be devoid of chlorophyll the longer the cultures were maintained. After one year, some cultures produced only albinos. Embry-like structures (although still present on the surface of the callus) tended to be distorted.

Current applications

Few plant species are at present propagated on a large scale via embryogenesis in vitro. This method of morphogenesis does however offer advantages which suggest that it will be used increasingly for plant cloning in the future:

- In some monocotyledons (e.g. cereals, date palm and oil palm) it provides a method of micropropagation where shoot culture has not been successful (but note however that in some attempts to clone oil palms through embryogenesis, the resulting plants have been very variable);
- Providing embryogenic cell suspensions can be established, plantlets can theoretically be produced in large numbers and at much lower cost because plantlets do not have to be handled and subcultured individually;
- Somatic embryos probably provide the only way for tissue culture methods of plant propagation to be economically deployed on extensively planted field crops and forest trees.

Techniques for the conversion (germination) and field planting of somatic embryos are discussed in Volume 2.

4. STORAGE ORGAN FORMATION

Many ornamental and crop species are normally propagated, stored and planted in the form of vegetative storage organs. It is therefore not surprising that, where such organs are produced in vitro, they often provide a convenient means of micropropagation and/or genotype storage. Characteristic, though small, storage structures can be induced to form in cultures of several plant species, for example:

<table>
<thead>
<tr>
<th>Bulbils</th>
<th>Amaryllis, hyacinth, lily, onion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cormlets</td>
<td>Narcissus</td>
</tr>
<tr>
<td>Miniature tubers</td>
<td>Gladiolus</td>
</tr>
</tbody>
</table>

Protocorm formation as a method of propagation has been considered under Direct Embryogenesis.

Methods of obtaining storage organs vary according to the kind of tissue being cultured. Some storage organs formed in vitro can be planted ex vitro directly into the soil.

4.1. THE PRODUCTION OF BULBILS AND CORMLETS

Species that naturally produce bulbs can be induced to form small bulbs (bulbils or bulblets) in culture. Bulbils can be produced from axillary buds, but frequently they are formed from adventitious buds developed on pieces of leaf, on inflorescence
stalks, or on ovaries, and particularly on detached pieces of bulb scale.

Both axillary and adventitious shoots and bulbils are formed on bulb scale pieces in vitro. Strong dominance of the main shoot apex often prevents the formation of axillary buds at the bases of bulb scales in vivo, but buds capable of giving rise to bulblets (or to shoots upon which bulbs will be formed later) are freely produced when bulb scales or bulb sections are cultured. In some species it is important to include part of the basal plate in the explant. Depending on the kind of bulb being cultured, explants for continued Stage II propagation may consist of scales taken from bulblets, swollen shoot bases, or bulblets which have been trimmed and split. Propagules for transfer from Stage III to the external environment can be plantlets, plantlets with a bulblet at the base, or dormant bulblets.

Instead of producing storage organs composed of swollen leaf bases (bulbs), some monocotyledons store food reserves in swollen stem bases (corms). Small corms (cormlets) of *Gladiolus* may be formed directly on explanted tissue or on callus in culture (Ziv *et al.*, 1970; Ziv and Halevy, 1972), or they are produced on rooted plantlets grown in culture jars until the leaves senesce. Cormlets formed in vitro can be planted in soil or used to start new in vitro cultures (Hussey, 1978a,b).

The production of plantlets from genera producing bulbs and corms is discussed more fully in Volume 2.

Miniature tubers

Under appropriate environmental conditions, plants that naturally produce tubers can be induced to produce miniature versions of these storage organs, in a medium containing high cytokinin levels. Tubers normally formed on underground stolons are produced in vitro in axillary positions along in vitro shoots (Fig 2.6). Two crops where miniature tubers have been utilised for propagation are potato and yams. Methods for inducing the in vitro tuberization of potatoes were first described by Lin *et al.* (1978, in Wang and Hu, 1980) and Hussey and Stacey (1981a,b), and since by several other workers. Potato tubers form best in darkness, but those of *Dioscorea* mainly appear at the base of stem node cuttings in the light (Ng, 1988).

Miniature tubers have the great advantage that they can be readily removed from culture flasks in a dormant condition and stored ex vitro without precautions against sepsis. When planted in soil they behave as normal tubers and produce plants from axillary shoots. If they are produced in vitro from virus-tested shoots, miniature tubers provide an ideal method of propagating and distributing virus-tested stock to growers.

![Fig. 2.6](image)

5. MICROGRAFTING

The transfer of small shoot apices onto rootstocks (termed micrografting), can be carried out in vivo or in vitro. Navarro (1988) lists four uses which have been found for the technique:

- A method for separating virus and virus-like organisms in mixed infections;
- For studying graft incompatibility between scions and rootstocks, and the histological and physiological aspects of grafting;
• A minimum risk method for importing plant material through quarantine.

Micrografting is thus indirectly useful in micropropagation: the necessary techniques are usually too time consuming and the proportion of successful takes is generally too low, for it to be of direct application.

The rootstocks used for micrografting are commonly newly-germinated seedlings, but it is also possible to use rooted cuttings or micropropagated shoots. Before micrografting can be carried out, it is necessary to prepare suitable rootstock material. When seedling rootstocks are used, and all stages of grafting are conducted *in vitro*, seeds are surface sterilised and germinated aseptically in vessels containing nutrient salts (e.g. those of MS medium). The seedlings may be supported on agar medium or on a porous substrate, such as sterile vermiculite, which allows the growth of a branched root system. Micrografting is then effected by cutting off the tops of the seedling rootstocks and placing small shoot apices onto the exposed surface. When grafts are successful, rootstock and scion grow together to produce a plant. It is usually necessary to examine freshly grafted seedlings on a regular basis and remove any adventitious shoot arising on or below the graft union.

Shoot tips to be grafted onto seedling rootstocks (i.e. the scions) are carefully excised from preferred plant material. In *Citrus* there has been most success when scions have been placed directly in one of two positions:

- into inverted T-shaped incisions immediately below the cut surface of a decapitated rootstock, or,
- onto the cambium layer or vascular ring of the cut surface (Fig 2.7).

Shoot or meristem tips intended for grafting can be taken from apical or axillary buds of actively growing shoots in the greenhouse or field, or may be removed from shoots growing *in vitro*. Once transferred, the survival of micrografted apices is partly dependent on their size. Very small apices must be used for virus elimination, making the technique difficult and unreliable. Tips 0.1-0.2 mm in length have been grafted for virus elimination from vines; with peach, slightly larger apices (0.5-1 mm) have been employed. The excision and transfer of very small shoot apices requires precise micro-manipulation under a binocular microscope. If large shoot apices are to be grafted, their bases are often cut into a wedge which is then inserted into a vertical cut on the rootstock (Fig 2.8).

Several techniques have been found to increase the proportion of successful graft unions:

- Tissue blackening, which commonly results in the death of very small scions, can be reduced by soaking explants in an anti-oxidant solution, and/or placing a drop of solution onto the severed rootstock immediately before inserting the scion. A solution of 2 g/l sodium diethyldithiocarbamate (DIECA) has been used for this purpose. Navarro (1988) advocates rapid manipulations to prevent phenolic oxidation and says that it is more effective than anti-oxidants.

- Apices to be grafted may be placed either directly onto a decapitated rootstock, or cultured for a short period before being transferred. There is often a better ‘take’ and more rapid growth if they are pre-cultured for a short while supported on paper above an MS mineral salt medium containing growth regulators. Jonard *et al.* (1983) found that adding a cytokinin to the medium (e.g. 0.1 mg/l zeatin if the apex is cultured for 48 h; 0.01 mg/l zeatin if the culture is continued for 48-240 h) was particularly effective in encouraging the rapid formation of leafy shoots once the graft has been made. An alternative is to place scion shoot tips into a growth regulator solution for a short period before grafting; 5-10 minute immersion in either 10 mg/l 2, 4-D or 1 mg/l BA, doubled the number of successful micrografts of *Citrus* (Edriss and Burger, 1984). Starrantino and Caruso (1988) got a greater percentage of viable grafts when they dipped both shoot tips and the cut apex of young rootstocks in 0.5 mg/l BA for 20 min before the two were united. Yet another method is to place cytokinin (e.g. 2 mg/l BA or, for peach, 10 mg/l zeatin) in a drop of water or agar gel between the scion and the rootstock.

- A greater proportion of graft unions may result from growing isolated meristem tips to a larger size before they are implanted. Isolated scion tips of peach have been cultured *in vitro* by the initial stages of meristem tip culture for a period of about two weeks until they have grown from 0.5-1 mm to ca. 10 mm.

- Desiccation is a major cause of the failure of graft unions. To prevent drying, Pliego-Alfaro and Murashige (1987) applied a layer of moist nutrient agar gel to connect the graft area with the medium. The gel had to be progressively removed from the top downwards during weeks 1-3 after grafting, or poor unions resulted.
Fig. 2.7 Preferred positions for placing a shoot tip scion in the micrografting of *Citrus* [after Navarro et al., 1975].

Fig. 2.8 Two alternative methods of micrografting with large scions [after Pliego-Alfaro and Murashige, 1987; Navarro, 1988].

When, as has been most common, micrografting has been carried out *in vitro*, considerable care needs to be taken over transferring grafted plants to the external environment. However, several authors have found that sterility is not necessary and that shoot apices can be united onto rootstocks grown *in vivo*. The proportion of completed grafts may be less than under aseptic conditions, but problems with eventual transfer are eliminated. A variety of scion material has been utilised for *in vivo* grafting, including
directly-excised 0.1-0.2 mm tips of *Citrus limon*, and meristem-cultured scion tips of peach. Once again, graft unions may be improved if cut surfaces are anointed with a DIECA (1g/l) plus cytokinin (10 g/l) solution (Jonard et al., 1983). Plants are probably best kept in a growth room for a period after grafting, and desiccation of the graft union prevented by enclosing each plant in a plastic bag or by placing an elastic strip around the graft.

Grafting mature shoots of woody perennials onto juvenile rootstocks is known to induce juvenile characteristics in the resulting shoots, particularly if it is repeated successively (Chapter 11). Half of the plants resulting from micrografting adult lateral buds of avocado onto seedling rootstock were found to have some juvenile symptoms (Pliego-Alfaro and Murashige, 1987). But in *Citrus*, micrografting does not seem to induce juvenile characteristics, providing shoot tips are taken from an adult source: plants are thornless and come into flower rapidly (Navarro, 1988).

From having been developed as a method of producing virus-tested *Citrus*, micrografting is now widely used for the improvement of plants of this and related genera. It has also been practised on a wide range of other plants, primarily for virus-elimination (see reviews by Jonard et al., 1983; Burger, 1985 and Navarro, 1988).

General reviews on micropropagation have been written by: Cassells (2005), Harney (1982), Holdgate (1977), Hussein (1978a, 1985), Jain et al. (2006), Lane (1982), Murashige (1974), and Rout and Jain (2004).

REFERENCES

BALL E.A. 1946 Development in sterile culture of stem tips and subjacent regions of *Tropaeolum majus* L. and of *Lupinus albus* L. Am. J. Bot. 33, 301-318.

Micropropagation: Uses and Methods

HANDLEY L.W. & CHAMBLISS O.L. 1979 *In vitro* propagation of *Cucumis sativus* L. HorticScience 14, 22-23.

HISAJIMA S. 1982a Multiple shoot formation from almond seeds and an excised single shoot. Agric. Biol. Chem. 46, 1091-1093.

HISAJIMA S. 1982e Microplant propagation through multiple shoot formation from seeds and embryos. pp. 141-142 in Fujiwara (ed.) 1982 (q.v.).

HOLDGATE D.P. 1977 Propagation of ornamental plants by tissue culture. pp. 18-43 in Reinert and Bajaj (eds.) 1977 (q.v.).

HU C.-Y. 1977 Advances in *Ilex* embryo culture. Proc. 54th Meeting of the Holly Soc. of America 5-6 (HA 48 10780).

HU C.-Y., OCHS J.D. & MANCINI F.M. 1978 Further observations on *Ilex* embryoid production. Z. Pflanzenphysiol. 89, 41-49.

NORSTOG K. 1965a Development of cultured barley embryos. I. Growth of 0.1-0.4 mm embryos. Am. J. Bot. 52, 538-546.

WHITE P.R. 1933 Results of preliminary experiments on the culturing of isolated stem tips of Stellaria media. Protoplasma 19, 97-116.

Chapter 3
The Components of Plant Tissue Culture Media I:
Macro- and Micro-Nutrients

1. INORGANIC MEDIUM COMPONENTS

Plant tissues and organs are grown in vitro on artificial media, which supply the nutrients necessary for growth. The success of plant tissue culture as a means of plant propagation is greatly influenced by the nature of the culture medium used. For healthy and vigorous growth, intact plants need to take up from the soil:

- relatively large amounts of some inorganic elements (the so-called major plant nutrients): ions of nitrogen (N), potassium (K), calcium (Ca), phosphorus (P), magnesium (Mg) and sulphur (S); and,
- small quantities of other elements (minor plant nutrients or trace elements): iron (Fe), nickel (Ni), chlorine (Cl), manganese (Mn), zinc (Zn), boron (B), copper (Cu), and molybdenum (Mo).

According to Epstein (1971), an element can be considered to be essential for plant growth if:
1. a plant fails to complete its life cycle without it;
2. its action is specific and cannot be replaced completely by any other element;
3. its effect on the organism is direct, not indirect on the environment;
4. it is a constituent of a molecule that is known to be essential.

The elements listed above are - together with carbon (C), oxygen (O) and hydrogen (H) - the 17 essential elements. Certain others, such as cobalt (Co), aluminium (Al), sodium (Na) and iodine (I), are essential or beneficial for some species but their widespread essentiality has still to be established.

The most commonly used medium is the formulation of Murashige and Skoog (1962). This medium was developed for optimal growth of tobacco callus and the development involved a large number of dose-response curves for the various essential minerals. Table 3.1 shows the composition of MS compared to the elementary composition of normal, well-growing plants. From this table, the relatively low levels of Ca, P and Mg in MS are evident. The most striking differences are the high levels of Cl and Mo and the low level of Cu. Each plant species has its own characteristic elementary composition which can be used to adapt the medium formulation. These media result often in a much improved growth (Rugini, 1984; El Badaoui et al., 1996; Pullman et al., 2003; Bouman and Tiekstra, 2005; Nas and Read, 2004; Gonçalves et al., 2005). A major problem in changing the mineral composition of a medium is precipitation, which may often occur only after autoclaving because of the endothermic nature of the process.

Plant tissue culture media provide not only these inorganic nutrients, but usually a carbohydrate (sucrose is most common) to replace the carbon which the plant normally fixes from the atmosphere by photosynthesis. To improve growth, many media also include trace amounts of certain organic compounds, notably vitamins, and plant growth regulators.

In early media, ‘undefined’ components such as fruit juices, yeast extracts and protein hydrolysates, were frequently used in place of defined vitamins or amino acids, or even as further supplements. As it is important that a medium should be the same each time it is prepared, materials, which can vary in their composition are best avoided if at all possible, although improved results are sometimes obtained by their addition. Coconut milk, for instance, is still frequently used, and banana homogenate has been a popular addition to media for orchid culture.

Plant tissue culture media are therefore made up from solutions of the following components:

- macronutrients (always employed);
- micronutrients (nearly always employed but occasionally just one element, iron, has been used);
- sugar (nearly always added, but omitted for some specialised purposes);
- plant growth substances (nearly always added)
- vitamins (generally incorporated, although the actual number of compounds added, varies greatly);
- a solidifying agent (used when a semi-solid medium is required. Agar or a gellan gum are the most common choices).
- amino acids and other nitrogen supplements (usually omitted, but sometimes used with advantage);
The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients

- undefined supplements such as coconut milk etc. (which, when used, contribute some of the five components above and also plant growth substances or regulants);
- buffers (have seldom been used, but the addition of organic acids or buffers could be beneficial in some circumstances).

Finally, it should be noted that minerals may also have a signalling role altering developmental patterns. This is most obvious in root architecture (Lopez-Bucio et al., 2003) which is logical as roots have a principal function in ion uptake and the root system should be such that uptake is optimal. So growth and branching of roots should be affected by mineral concentrations in the soil. Ramage and Williams (2002) also argue that minerals appear to have an important role in the regulation of plant morphogenesis as opposed to just growth. Some reviews of whole plant mineral nutrition will be found in Grusak (2001), Leifert et al., (1995), Mengel and Kirkby (1982), Hewitt and Smith (1975) and Epstein (1971).

Table 3.1
A comparison between the average concentrations of elements in plant shoots (dry weight basis) considered sufficient for adequate growth [from Epstein (1972), content of Ni is according to Brown et al. (1987)] and in MS. The elements that show striking differences between MS and ‘plants’ are indicated. For Na, no data were found, but in glycophytes grown in 1 mM Na, the endogenous level is 10 – 1000 mmol kg⁻¹ (Subbarao et al., 2003)

<table>
<thead>
<tr>
<th>Element</th>
<th>In tissue mmol kg⁻¹</th>
<th>In MS mmol l⁻¹</th>
<th>In tissue mol%</th>
<th>In MS mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
<td>60</td>
<td>64.4</td>
<td>64.0</td>
</tr>
<tr>
<td>K</td>
<td>250</td>
<td>20</td>
<td>16.1</td>
<td>21.3</td>
</tr>
<tr>
<td>Ca</td>
<td>125</td>
<td>3</td>
<td>8.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Mg</td>
<td>80</td>
<td>1.5</td>
<td>5.1</td>
<td>1.6</td>
</tr>
<tr>
<td>P</td>
<td>60</td>
<td>1.25</td>
<td>3.9</td>
<td>1.3</td>
</tr>
<tr>
<td>S</td>
<td>30</td>
<td>1.5</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Cl</td>
<td>3</td>
<td>6</td>
<td>0.19</td>
<td>6.4</td>
</tr>
<tr>
<td>Fe</td>
<td>2</td>
<td>0.1</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Mn</td>
<td>1</td>
<td>0.1</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0.1</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Zn</td>
<td>0.3</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Cu</td>
<td>0.1</td>
<td>0.0001</td>
<td>0.0060</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mo</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0011</td>
</tr>
<tr>
<td>Ni</td>
<td>0.001</td>
<td>0</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>Na</td>
<td>0.1</td>
<td></td>
<td>0.0000</td>
<td>0.1067</td>
</tr>
</tbody>
</table>

1.1. UPTAKE OF INORGANIC NUTRIENTS

Plants absorb the inorganic nutrients they require from soils almost entirely as ions. An ion is an atom, or a group of atoms, which has gained either a positive charge (a cation) or a negative charge (an anion). Inorganic nutrients are added to plant culture media as salts. In weak aqueous solutions, such as plant media, salts dissociate into cations and anions. Thus calcium, magnesium and potassium are absorbed by plant cells (normally those of the root) as the respective cations Ca²⁺, Mg²⁺ and K⁺; nitrogen is mainly absorbed in the form nitrate (the anion, NO₃⁻) although uptake of ammonium (the cation, NH₄⁺) may also occur, phosphorus as the phosphate ions HPO₄²⁻ and H₂PO₄⁻; and sulphur as the sulphate ion SO₄²⁻. In tissue culture, uptake is generally proportional to the medium concentration up to a concentration of twice MS (Williams, 1993). For specific elements this may be different. For example, Leifert et al., (1995) found only a small increase in Zn uptake with increasing medium concentration indicating that the concentration of Zn in the cultured tissues was adequate, not requiring further uptake. Selective uptake also suggests active uptake.
In the whole plant, nutrients are either taken up passively, or through active mechanisms involving the expenditure of energy. Active uptake is generally less dependent on ionic concentration than passive uptake. Both systems are however influenced by the concentration of other elements, pH, temperature, and the biochemical or physiological status of the plant tissues. These factors can in turn be controlled by the solution presented to the roots, or they may dictate the ionic balance of an ideal solution. For example, Mg\(^{2+}\) competes with other cations for uptake. Under conditions of high K\(^{+}\) or Ca\(^{2+}\) concentrations, Mg deficiency can result, and vice versa. Active uptake of phosphate falls off if the pH of the solution should become slightly alkaline when the (H\(_2\)PO\(_4\))^\(-\) ion becomes changed to (HPO\(_4\))^\(-2\). There is some evidence that ammonium is utilised more readily than nitrate at low temperatures and that uptake may be enhanced by high carbohydrate levels within plant cells. Calcium is not absorbed efficiently and concentrations within plant tissues tend to be proportional to those in the soil. Plants are comparatively insensitive to sulphate ions, but high concentrations of dissolved phosphate can depress growth, probably through competitively reducing the uptake of the minor elements Zn, Fe and Cu. Although the biochemistry and physiology of nutrient uptake in tissue cultures may be similar, it is unlikely to be identical.

In vivo, plants take up mineral ions with their roots. No studies have been made on how uptake of nutrients occurs in shoot cultures. For IAA, it has been shown that most uptake is via the cut surface and that only a small fraction is taken up via the

<p>| Table 3.2 | Content (mmol/kg) of elements in various agar brands. [agar 1-7: Scholten and Pierik (1998); agar 8 and gelrite: Scherer et al. (1988)]. Na = not analysed, nd = not detected. It should be noted that some elements present in agar are not present in MS. This is particularly relevant for Ni which is an essential element |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Agar 1</th>
<th>Agar 2</th>
<th>Agar 3</th>
<th>Agar 4</th>
<th>Agar 5</th>
<th>Agar 6</th>
<th>Agar 7</th>
<th>Agar 8</th>
<th>gelrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>53</td>
<td>1</td>
<td>178</td>
<td>100</td>
<td>74</td>
<td>54</td>
<td>2</td>
<td>na</td>
</tr>
<tr>
<td>K</td>
<td>2</td>
<td>16</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>51</td>
<td>718</td>
</tr>
<tr>
<td>Ca</td>
<td>68</td>
<td>41</td>
<td>34</td>
<td>137</td>
<td>66</td>
<td>1</td>
<td>5</td>
<td>2.8</td>
</tr>
<tr>
<td>Mg</td>
<td>28</td>
<td>24</td>
<td>31</td>
<td>29</td>
<td>48</td>
<td>3</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>Na</td>
<td>202</td>
<td>56</td>
<td>552</td>
<td>330</td>
<td>427</td>
<td>634</td>
<td>114</td>
<td>52</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>40</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>S</td>
<td>184</td>
<td>78</td>
<td>232</td>
<td>296</td>
<td>204</td>
<td>262</td>
<td>66</td>
<td>184</td>
</tr>
<tr>
<td>Cl</td>
<td>47</td>
<td>33</td>
<td>220</td>
<td>113</td>
<td>197</td>
<td>95</td>
<td>12</td>
<td>na</td>
</tr>
<tr>
<td>Cu</td>
<td>0.015</td>
<td>0.034</td>
<td>0.018</td>
<td>0.024</td>
<td>0.004</td>
<td>0.016</td>
<td>nd</td>
<td>0.005</td>
</tr>
<tr>
<td>Mn</td>
<td>0.073</td>
<td>1.093</td>
<td>0.036</td>
<td>0.173</td>
<td>0.036</td>
<td>0.027</td>
<td>0.055</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>0.510</td>
<td>5.376</td>
<td>0.564</td>
<td>2.987</td>
<td>0.859</td>
<td>0.599</td>
<td>0.528</td>
<td>0.6</td>
</tr>
<tr>
<td>Al</td>
<td>0.352</td>
<td>12.444</td>
<td>1.333</td>
<td>4.944</td>
<td>0.352</td>
<td>0.963</td>
<td>0.685</td>
<td>0.3</td>
</tr>
<tr>
<td>Cr</td>
<td>0.040</td>
<td>0.098</td>
<td>0.029</td>
<td>0.026</td>
<td>0.054</td>
<td>0.025</td>
<td>0.009</td>
<td>0.002</td>
</tr>
<tr>
<td>Cd</td>
<td>0.013</td>
<td>0.069</td>
<td>0.008</td>
<td>0.025</td>
<td>0.015</td>
<td>nd</td>
<td>nd</td>
<td>0.0002</td>
</tr>
<tr>
<td>Zn</td>
<td>0.092</td>
<td>0.107</td>
<td>0.054</td>
<td>0.933</td>
<td>0.046</td>
<td>0.038</td>
<td>0.015</td>
<td>0.02</td>
</tr>
<tr>
<td>Sn</td>
<td>1.896</td>
<td>1.542</td>
<td>nd</td>
<td>3.572</td>
<td>1.862</td>
<td>nd</td>
<td>nd</td>
<td>0.003</td>
</tr>
<tr>
<td>Ni</td>
<td>0.037</td>
<td>0.045</td>
<td>nd</td>
<td>0.037</td>
<td>0.025</td>
<td>nd</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>B</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>Co</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

<p>| Table 3.3 | Increase of the content of Na, S and Cu relative to MS caused by adding agar (0.6%) or gelrite (0.2%) to the medium. Increases are shown as percentages. The proportional increase in other elements is maximally 20% |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Agar 1</th>
<th>Agar 2</th>
<th>Agar 3</th>
<th>Agar 4</th>
<th>Agar 5</th>
<th>Agar 6</th>
<th>Agar 7</th>
<th>Agar 8</th>
<th>gelrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>1212</td>
<td>336</td>
<td>3312</td>
<td>1980</td>
<td>2562</td>
<td>3804</td>
<td>684</td>
<td>313</td>
</tr>
<tr>
<td>S</td>
<td>69</td>
<td>29</td>
<td>87</td>
<td>111</td>
<td>77</td>
<td>98</td>
<td>25</td>
<td>69</td>
</tr>
<tr>
<td>Cu</td>
<td>90</td>
<td>204</td>
<td>108</td>
<td>144</td>
<td>24</td>
<td>96</td>
<td>nd</td>
<td>28</td>
</tr>
</tbody>
</table>
The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients

When explants are first placed onto a nutrient medium, there may be an initial leakage of ions from damaged cells, especially metallic cations (Na\(^+\), Ca\(^{2+}\), K\(^+\), Mg\(^{2+}\)) for the first 1-2 days, so that the concentration in the plant tissues actually decreases (Chaillou and Chaussat, 1986). Cells then commence active absorption and the internal concentration slowly rises. Phosphate and nitrogen (particularly ammonium) are absorbed more rapidly than other ions. In liquid medium, almost all phosphorus and ammonium are taken up in the first two weeks of culture (e.g. by 5 microshoots of *Dahlia* in 50 ml stationary liquid medium; G. de Klerk, unpublished results). After uptake, phosphorus is massively redistributed to tissues that are formed after the initial two weeks. Nitrate in a medium very similar to that of Wood and Braun (1961) B medium, was reduced by *Catharanthus roseus* suspensions from 24 mM to 5 mM in 15 days, while Na\(^+\), K\(^+\), and SO\(_4\)^{2-}, fell to only just over half the original concentrations in the same time (MacCarthy et al., 1980). Carnation shoot cultures were found to use 31-75% Mg\(^{2+}\), and 29-41% Ca\(^{2+}\) in MS medium during a 4 week period (Dencso, 1987).

1.2. UNINTENDED ALTERATIONS

Nutrients, and especially micronutrients, may also be added via impurities, and especially via agar. Such impurities may well be beneficial. This is particularly true of Ni, which has recently been shown to be an essential element (Gerendás et al., 1999) but was not known to be when most medium formulations were established. This element is usually not included in the inorganic constituents but can be provided by impurities. Tables 3.2 and 3.3 show impurities of various agar brands and their relative contribution to MS. Agar provides a large addition of sodium but levels of sulphur and copper are also significantly increased. Increases in the other elements in MS, are less than 20 %. Gelrite contains fewer organic impurities but inorganic ones occur at high concentrations (Table 3.2). It should be noted that the data in Table 3.2 are from determinations done more than 15 years ago and that the production process of gelrite has been improved ever since. Gelrite is being used in medicines as an ophthalmic vehicle. Furthermore, minerals are absorbed to a significant percentage by agar (Scholten and Pierik, 1998 Leiffert et al., 1995) and by activated charcoal (Van Winkle et al., 2003) but whether this has a significant effect has not been examined.

2. MACRONUTRIENTS

2.1. NITROGEN

- **2.1.1. Forms of nitrogen**

Nitrogen is essential to plant life. It is a constituent of both proteins and nucleic acids and also occurs in chlorophyll. Most animals cannot assimilate inorganic nitrogen or synthesize many of the amino acids unless assisted by bacteria (e.g. in the rumen of cattle). Nitrogen is available in the atmosphere as N\(_2\) but only legumes have the capacity to utilize this nitrogen using *Rhizobium* bacteria in the root nodules. In most plants, nitrate (NO\(_3^-\)) is the sole source of nitrogen. After uptake, NO\(_3^-\) is reduced to NH\(_4^+\) prior to incorporation into organic molecules. (The removal of oxygen from a chemical compound and its replacement by hydrogen, is termed reduction.) The relevance of nitrogen is illustrated by the vast amounts of nitrogen reserves in seeds (as storage proteins).

Both growth and morphogenesis in tissue cultures are markedly influenced by the availability of nitrogen and the form in which it is presented. Compared to the nitrate ion, NO\(_3^-\) (which is a highly...
oxidized form of nitrogen), the ammonium ion, \(\text{NH}_4^+ \), is the most highly ‘reduced’ form. Plants utilise reduced nitrogen for their metabolism and internally, nitrogen exists almost entirely in the reduced form. As a source of reduced nitrogen, plant cultures are especially able to use primary amines:

- R-NH\(_2\) and amides: R-CO-NH-R- (where R and R- are functional groups)

The primary amines which are most commonly employed in culture media are ammonia (\(\text{NH}_4^+ \)) and, occasionally, amino acids.

Amides are less commonly added to culture media: those which can be used by plants are particularly

- \(\text{NH}_2\text{-CO-NH}_2 \) (urea)
- and ureides, which include allantoin and allantoic acid (Kirby, 1982) (Fig. 3.1). Allantoin or allantoic acid are sometimes more efficient nitrogen sources than urea (Lea \textit{et al.}, 1979).

![Fig. 3.1 The structures of allantoin and allantoic acid.](image)

Most media contain more nitrate than ammonium ions, but as plant tissue culture media are usually not deliberately buffered, the adopted concentrations of ammonium and nitrate ions have probably been more due to practical pH control, than to the requirement of the plant tissues for one form of nitrogen or another (see chapter 4). Uptake of nitrate only takes place effectively in an acid pH, but is accompanied by extrusion of anions from the plant, leading to the medium gradually becoming less acid. By contrast, uptake of ammonium results in the cells excreting protons (H\(^+\)) into the medium, making it more acid. The exchange of ions preserves the charge balance of the tissues and may also assist in the disposal of an excess of protons or hydroxyl (OH\(^-\)) ions generated during metabolism (Raven, 1986). Uptake of nitrogen by cell suspension cultures of \textit{Nicotiana tabacum} is an active (energy-dependent) process (Heimer and Filner, 1971) and is dependent on a supply of oxygen (Buwalda and Greenway, 1989).

Plant culture media are usually started at pH 5.4-5.8. However, in one containing both nitrate and ammonium ions, a rapid uptake of ammonium into plant tissue causes the pH to fall to ca. 4.2-4.6. As this happens, further ammonium uptake is inhibited, but uptake of nitrate ion is stimulated, causing the pH to rise again. In unbuffered media, efficient nitrogen uptake can therefore depend on the presence of both ions. Unless otherwise stated, comments in this section on the roles of nitrate and ammonium refer to observations on unbuffered media.

There is generally a close correlation in tissue cultures between uptake of nitrogen, cell growth and the conversion of nitrogen to organic materials. A readily available supply of nitrogen seems to be important to maintain cultured cells in an undifferentiated state. The depletion of nitrogen in batch cultures, triggers an increase in the metabolism of some nitrogen-free compounds based on phenylpropanes (such as lignin), which are associated with the differentiation of secondarily-thickened cells (Hahlbrock, 1974). However, the growth in culture of differentiated cotton fibres composed largely of cellulose, is nitrate-dependent; the presence of some reduced nitrogen in the culture medium decreased the proportion of cultured embryos which produced fibres, and particularly in the absence of boron, promoted the cells of the embryos to revert to callus formation (Birnbaum \textit{et al.}, 1974).

2.1.2. Nitrate ions (\(\text{NO}_3^- \))

Nitrate ions are an important source of nitrogen for most plant cultures, and nearly all published media provide the majority of their available nitrogen in this form. However, once within the cell, nitrate has to be reduced to ammonium before being utilised biosynthetically. Why not simply supply nitrogen as \(\text{NH}_4^+ \) and avoid the use of \(\text{NO}_3^- \) altogether? The reason lies in the latent toxicity of the ammonium ion in high concentration, and in the need to control the pH of the medium.

Conversion of nitrate to ammonium is brought about firstly by one, or possibly two, nitrate reductase enzymes, which reduce \(\text{NO}_3^- \) to nitrite (\(\text{NO}_2^- \)). One nitrate reductase enzyme is thought to be located in the cytoplasm, while the second may be bound to membranes (Nato \textit{et al.}, 1990). The \(\text{NO}_2^- \) produced by the action of nitrate reductase is reduced to \(\text{NH}_4^+ \) by a nitrite reductase enzyme located in plastids (Fig. 3.2). Reduction of nitrate to ammonia requires the
cell to expend energy. The ammonium ions produced are incorporated into amino acids and other nitrogen-containing compounds. Nitrate and nitrite reductase enzymes are substrate induced, and their activity is regulated directly by the level of nitrate-nitrite ions within cultured cells (Chroboczek-Kelker and Filner, 1971; Hahlbrock, 1974), but also apparently by the products of the assimilation of reduced nitrogen (see below).

Unlike the ammonium ion, nitrate is not toxic and, in many plants, much is transported to the shoots for assimilation. On the other hand, the nitrite ion can become toxic should it accumulate within plant tissues or in the medium, for example when growth conditions are not favourable to high nitrite reductase activity and when nitrate is the only nitrogen source (Jordan and Fletcher, 1979; Grimes and Hodges, 1990). In *Pinus pinaster*, nitrate reductase is induced by the presence of KNO₃, and plants regenerated in *vitro* exhibit an ability to reduce nitrate similar to that of seedlings (Faye *et al.*, 1986).

For most types of culture, the nitrate ion needs to be presented together with a reduced form of nitrogen (usually the NH₄⁺ ion), and tissues may fail to grow on a medium with NO₃⁻ as the only nitrogen source (Hunault, 1985).

2.1.3. Reduced nitrogen

In the natural environment and under most cropping conditions, plant roots usually encounter little reduced nitrogen, because bacteria rapidly oxidize available sources (Hiatt, 1978). An exception is forest soils in mountainous regions of the northern hemisphere, where nitrites are not usually available (Durzan, 1976). If NH₄⁺, and other reduced nitrogen compounds are available, (and this is particularly the case in the aseptic *in vitro* environment), they can be taken up and effectively utilized by plants. In fact the uptake of reduced nitrogen gives a plant an
Chapter 3

ergonomic advantage because the conversion of nitrate to ammonium ions (an energy-requiring process) is not necessary. The free ammonium ion can cause toxicity, which, at least in whole plants, can lead to an increase in ethylene evolution (Barker and Corey, 1987; Corey and Barker, 1987). Shoots grown on an unbuffered medium containing a high proportion of ammonium ions may become stunted or hyperhydric. These effects can sometimes be reversed by transfer to a medium containing a high proportion of NO₃ or to one where NO₃ is the only N source (Mott et al., 1985). Hyperhydricity is the in vitro formation of abnormal organs, which are brittle and have a water-soaked appearance.

Growth of plant cultures may also be impaired in media containing high concentrations of NH₄⁺ even when high concentrations of NO₃ are present at the same time. Growth inhibition may not only be due to depressed pH (Mott et al., 1985), but may reflect a toxicity induced by the accumulation of excess ammonium ions. In normal circumstances the toxic effect of ammonium is avoided by conversion of the ion into amino acids. There are two routes by which this takes place (Fig. 3.2), the most important of which, under normal circumstances, is that by which L-glutamic acid is produced from glutamine through the action of glutamine synthetase (GS) and glutamate synthetase (GOGAT) enzymes. Compounds, which block the action of GS can be used as herbicides (De Greef et al., 1989). The reaction of α-ketoglutaric acid with NH₄⁺ is usually less important, but seems to have increased significance when there is an excess of ammonium ions (Furuhashi and Takahashi, 1982). Detoxification and ammonium assimilation may then be limited by the availability of α-ketoglutaric acid, but this may be increased in vitro by adding to the medium one or more acids which are Krebs’ (tricarboxylic acid) cycle intermediates. Their addition can stimulate growth of some cultures on media containing high levels of NH₄⁺ (Gamborg, 1970).

In comparison with media having only nitrate as the nitrogen source, the presence of the ammonium ion in media usually leads to rapid amino acid and protein synthesis, and this takes place at the expense of the synthesis of carbohydrate compounds. This diversion of cellular metabolism can be disadvantageous in some shoot cultures, and can contribute towards the formation of hyperhydric shoots. Hyperhydricity no longer occurs when NH₄⁺ is eliminated from the medium or greatly reduced. It is possible that adding an organic acid to the medium might also alleviate the symptoms on some plants.

A supply of reduced nitrogen in addition to nitrate, appears to be beneficial for at least two processes involved with cell division:

- the formation of a cell wall. Without a complete cell wall, protoplasts require a factor capable of inducing wall formation. Freshly-isolated protoplasts may contain sufficient of this substance to promote wall formation for just a few divisions. The wall-forming factor is only effective when NH₄⁺ is present in the medium (Meyer and Abel, 1975a,b): glutamine does not substitute for NH₄⁺;
- the activity of growth regulators. (see below)

There are several reports in the literature that, with constant amounts of NO₃⁻, ammonium sulphate has not provided such a good source of NH₄⁺ as ammonium nitrate or ammonium chloride (De Jong et al., 1974; Steward and Hsu, 1977; Singh, 1978; Kamada and Harada, 1979). Possibly the reason is that a medium containing ammonium sulphate has a greater tendency to become acid (Harris, 1956), than one containing less sulphate ions. This would result if the presence of sulphate ions accelerated the uptake of NH₄⁺, or slowed the uptake of NO₃⁻. Ammonium sulphate has been used as the only source of the ammonium ion in some media used for the culture of legumes, including B5 (Gamborg et al., 1968).

2.1.4. Ammonium as the sole nitrogen source

pH adjustment. If plant tissues are presented with a medium containing only NH₄⁺ nitrogen, the pH falls steadily as the ion is taken up (for example, a decrease of 0.9 pH units in 15 days in Asparagus callus – Hunault (1985) or 0.7 pH units with potato shoots – Avila et al., 1998). Growth and morphogenesis is possible in suspension cultures containing only NH₄⁺ ions, providing the pH of the medium is frequently adjusted by the addition of a base (Martin et al., 1977), or the medium is buffered (see below). In wild carrot, the induction of embryogenesis required the medium to be adjusted to pH 5.4 at 8 hourly intervals (Dougall and Verma, 1978). Without adjustment, the pH of media containing only NH₄⁺ falls rapidly to a point where cells cannot grow (Dougall, 1981).

Buffering. Ammonium can also serve as the only nitrogen source when the medium is buffered (see the section on pH, below). Tobacco cells could be grown on a medium containing NH₄⁺ nitrogen if the organic acid ion, succinate, was added to the medium. Gamborg and Shyluk (1970) found that cultured cells
could be grown without frequent pH adjustment on a medium containing only NH₄⁺ nitrogen, when a carboxylic acid was present. The organic acids appeared to minimize the acidification of the medium through NH₄⁺ uptake. Similarly, Asparagus internode callus grew just as well on NH₄⁺ as the only nitrogen source as on a medium containing both NH₄⁺ and NO₃⁻, but only when organic acids (such as citrate, or malate) or MES buffer were added to the medium. When media were buffered with MES, the best callus growth occurred when the pH was 5.5 (Hunault, 1985).

The additional effect of organic acids. Although Krebs’ cycle organic acids can act as buffers, they may also act as substrates for amino acid synthesis from NH₄⁺. To be assimilated into amino acids via the GDH enzyme, the ammonium ion must react with α-ketoglutaric acid, which is produced by the Krebs’ cycle (Fig 3.2). Its availability may govern the rate at which ammonium can be metabolised by this route. The rate of assimilation might be expected to be improved by supplying the plant with α-ketoglutarate directly, or by supplying acids which are intermediates in the Krebs’ cycle (citrate, iso-citrate, succinate, fumarate or malate), for then the natural production of α-ketoglutarate should increase (Gamborg, 1970).

This hypothesis was confirmed by Behrend and Mateles (1976) who concluded that succinate, or other Krebs’ cycle acids, acted mainly as a nutrient, replacing α-ketoglutarate as it was withdrawn from the cycle during NH₄⁺ metabolism and amino acid synthesis. Depletion of α-ketoglutarate causes the cycle to cease unless it, or another intermediate, is replaced. The optimum molar ratio of NH₄⁺ to succinate, was 1.5 (e.g. 10 mM NH₄⁺: 15 mM succinate). Chaleff (1983) thought that the growth of rice callus on Chaleff (loc. cit.) R3 (NH₄⁺) medium, containing 34 mM of only ammonium nitrogen, [Chaleff (1983) R3 NH₄ medium] was enabled by the presence of 20 mM succinate or α-ketoglutarate, partly by the buffering capacity of the acids, and partly by their metabolism within the plant, where they may serve as substrate for amino acid synthesis. Similar conclusions have been reached by other workers (e.g. Fukunaga et al., 1978; Dougall and Weyrauch (1980); Hunault (1985); Molnar (1988b), who have found that compounds such as ammonium malate and ammonium citrate are effective nitrogen sources.

Orange juice promotes the growth of Citrus callus. Einset (1978) thought that this was not due to the effect of citric acid, but Erner and Reuveni (1981) showed that citric acid, particularly at concentrations above the 5.2 mM found in the juice used by Einset, does indeed promote the growth of Citrus callus; it had a more pronounced effect than other Krebs’ cycle acids, perhaps due to the distinctive biochemistry of the genus.

Organic acids not only enhance ammonium assimilation when NH₄⁺ provides the only source of nitrogen, but may sometimes also do so when nitrate ions are in attendance. The weight of rice anther callus was increased on Chaleff (1983) R3 medium, if 20 mM succinate [Chaleff (1983) R3 Succ. medium] or α-ketoglutarate was added (Chaleff, 1983). Similarly the rate of growth of Brassica nigra suspensions on MS medium, was improved either by adding amino acids, or 15 mM succinate. An equivalent improvement (apparently due entirely to buffering) only occurred through adding 300 mM MES buffer (Molnar, 1988b). However, the presence of organic acids may be detrimental to morphogenesis. In Chaleff’s experiment, the presence of succinate in R3 medium markedly decreased the frequency of anther callus formation.

Photosynthesis. Although plants grown on nutrient solutions containing only NH₄⁺ nitrogen have been found to possess normally high levels of PEP enzyme (Arnozis et al., 1988) (the enzyme facilitating CO₂ fixation in photosynthesis), media containing high levels of NH₄⁺ tend to inhibit chlorophyll synthesis (Yoshida and Kohno, 1982) and photosynthesis.

2.1.5. Urea

Plants are able to absorb urea, but like the ammonium ion, it is not a substance that is normally available in soils in the natural environment. It is however produced as a by-product of nitrogen metabolism; small quantities are found in many higher plants, which are able to utilise urea as a source of nitrogen, providing it is first converted to ammonium ions by the enzyme urease. In legumes and potato, urease requires the microelement nickel for activity (see below). In conifers, the epidermal cells of cotyledons and cotyledons are capable of urease induction and ammonium ion formation (Durzan, 1987).

Urea can be used as the sole nitrogen source for cultures, but growth is less rapid than when ammonium and nitrate ions are supplied (Kirkby et al., 1987); urease enzyme increases after cultures have been maintained for several passages on a urea-based medium (King, 1977; Skokut and Filner,
1980). Although the metabolism of urea, like that of other reduced nitrogen compounds, causes the production of excess hydrogen ions, less are predicted to be secreted into the medium than during the utilisation of \(\text{NH}_4^+ \) (Raven, 1986), so that urea is less suitable than ammonium to balance the pH of media containing \(\text{NO}_3^- \). Nitrate ions are utilized in preference to urea when both nitrogen sources are available (King, 1977). Urea is able to serve as a reduced nitrogen source during embryogenesis (Durzan, 1987), but has been used in relatively few culture media, and of these, none has been widely adopted (George et al., 1987).

2.1.6. Media with nitrate and ammonium ions

Most intact plants, tissues and organs take up nitrogen more effectively, and grow more rapidly, on nutrient solutions containing both nitrate and ammonium ions, than they do on solutions containing just one of these sources. Although in most media, reduced nitrogen is present in lower concentration than nitrate, some morphogenic events depend on its presence, and it can be used in plant cultures in a regulatory role. Adventitious organs may also develop abnormally if \(\text{NH}_4^+ \) is missing (Drew, 1987).

Possible explanations, which have been put forward for the regulatory effect of \(\text{NH}_4^+ \) are:

- that the reduction and assimilation of \(\text{NO}_3^- \) is assisted by the presence of \(\text{NH}_4^+ \) or the products of its assimilation (Bayley et al., 1972a,b; Mohanty and Fletcher, 1978; 1980). When grown on a medium containing a small amount of \(\text{NH}_4^+ \) nitrogen in addition to nitrate, suspension cultured cells of ‘Paul’s Scarlet’ rose accumulated twice as much protein as when grown on a medium containing only nitrate, even though ammonium finally accounted for only 10% of the total protein nitrogen (Mohanty and Fletcher, 1980). Dougall (1977) considered this to be an oversimplified interpretation, moreover nitrate reductase activity is effectively increased by the presence of \(\text{NO}_3^- \) (Müller and Mendel, 1982) and in some plants, a high concentration of \(\text{NH}_4^+ \) inhibits nitrate reductase activity (see below).
- that ammonium ions effectively buffer plant nutrient media in the presence of nitrate and so enhance nitrate uptake (see the section on pH).

Cultures of some plants are capable of growing with only \(\text{NO}_3^- \) nitrogen (e.g. cell cultures of *Reseda luteoli*, soybean, wheat, flax and horse radish – Gamborg (1970); callus of *Medicago sativa* - Walker and Sato (1981), although yields are generally better when the medium is supplemented with \(\text{NH}_4^+ \).

Craven et al., (1972) with carrot, and Mohanty and Fletcher (1978) with *Rosa* ‘Paul’s Scarlet’, found that the presence of \(\text{NH}_4^+ \) was particularly important during the first few days of a suspension culture. After that cells increase in cell number and dry weight more rapidly on \(\text{NO}_3^- \) nitrogen alone.

The response of plant cultures to nitrate and ammonium ions depends to a large extent on the enzymes shown in Fig 3.2, and the manner in which their activities are increased or inhibited in different tissues by the presence of the ions. These factors vary according to the degree of differentiation of the tissue (Suzuki and Nato, 1982), its physiological age, and its genotype. For example, the high level of \(\text{NH}_4^+ \) in MS medium inhibited the activity of glutamate synthetase enzyme in soybean suspension cultures (Gamborg and Shyluk, 1970), while in *N. tabacum*, a peak of glutamate dehydrogenase (GDH) appeared to exist at 10 mM \(\text{NH}_4^+ \) (Lazar and Collins, 1981). The activity of GDH and NADH-dependent GOGAT developed rapidly in cultured tobacco cells, while nitrate reductase and ferridoxin-dependent GOGAT activity increased more slowly during growth. By contrast, in sunflower cultures, the specific activity of GDH and ferridoxin-dependent GOGAT only reached a maximum at the end of growth, and the presence of 15 mM \(\text{NH}_4^+ \) inhibited the activity of nitrate reductase, indicating that the cells were entirely dependent on the reduced nitrogen in the medium (Lenee and Chupeau, 1989).

In consequence of such variation, the relative concentrations of ammonium and nitrate in media may need to be altered for different cultures.

2.1.7. The correct balance of ions

When trying to find media formulations suitable for different plant species and different kinds of cultures, two important factors to be considered are:

- the total concentration of nitrogen in the medium;
- the ratio of nitrate to ammonium ions.

There is a high proportion of \(\text{NH}_4^+ \) nitrogen in MS medium [ratio of \(\text{NO}_3^- \) to \(\text{NH}_4^+ \), 66:34] and the quantity of total nitrogen is much higher than that in the majority of other media. For some cultures, the total amount of nitrogen is too high and the balance between the two forms in the medium is not optimal.

It is noticeable that in several media used for legume culture, there is a greater proportion of \(\text{NO}_3^- \) to \(\text{NH}_4^+ \) ions than in MS medium. Evans et al., (1976) found that soybean leaf callus grew more rapidly and formed more adventitious roots when the ammonium nitrate in MS medium was replaced with
500 mg/l ammonium sulphate. A reduction in the ammonium level of their medium for the callus culture of red clover, was also found to be necessary by Phillips and Collins (1979, 1980) to obtain optimum growth rates of suspension cultured cells. A similar adjustment can be beneficial in other genera. Eriksson (1965) was able to enhance the growth rate of cell cultures of *Haplopappus gracilis* when he reduced the ammonium nitrate concentration to 75% of that in MS medium, and doubled the potassium dihydrogen phosphate level.

Table 3.4 lists examples of where changes to the nitrogen content of MS medium resulted in improved *in vitro* growth or morphogenesis. It will be seen that the balance between NO$_3^-$ and NH$_4^+$ in these different experiments has varied widely. This implies that the ratio between the two ions either needs to be specifically adjusted for each plant species, or that the total nitrogen content of the medium is the most important determinant of growth or morphogenesis. Only occasionally is an even higher concentration of nitrate than that in MS medium beneficial. Trolinder and Goodin (1988) found that the best growth of globular somatic embryos of *Gossypium* was on MS medium with an extra 1.9 g/l KNO$_3$.

There are reports that adjustments to the nitrogen content and ratio of NO$_3^-$ to NH$_4^+$, can be advantageous in media containing low concentrations of salts (Table 3.5). Biedermann (1987) found that even quite small adjustments could be made advantageously to the NO$_3^-$ content of a low salt medium [that of Biedermann (1987)] for the shoot culture of different *Magnolia* species and hybrids, but too great a proportion of NO$_3^-$ was toxic.

2.1.8. The nitrate-ammonium ratio for various purposes

Root growth. Root growth is often depressed by NH$_4^+$ and promoted by NO$_3^-$. Media for isolated root culture contain no NH$_4^+$, or very little. Although roots are able to take up nitrate ions from solutions, which become progressively more alkaline as assimilation proceeds, the same may not be true of cells, tissues and organs *in vitro*.

Shoot cultures. Media containing only nitrate nitrogen are used for the shoot culture of some plants, for example strawberry (Bohus, 1974), which can be cultured with 10.9 mM NO$_3^-$ alone; supplementing the medium with 6 mM NH$_4^+$ causes phytotoxicity (Damiano, 1980). However, shoot cultures of strawberry grown without NH$_4^+$ can become chlorotic: adding a small amount of NH$_4$NO$_3$ (or another source of reduced nitrogen) to the medium at the last proliferation stage, or to the rooting medium, may then give more fully developed plants with green leaves (Zimmerman, 1981; Piagnani and Echever, 1988). On some occasions it is necessary to eliminate or reduce NH$_4^+$ from the medium for shoot cultures to prevent hyperhydricity.

2.1.9. Nitrogen supply and morphogenesis

Morphogenesis is influenced by the total amount of nitrogen provided in the medium and, for most purposes, a supply of both reduced nitrogen and nitrate seems to be necessary. The requirement for both forms of nitrogen in a particular plant species can only be determined by a carefully controlled experiment: simply leaving out one component of a normal medium gives an incomplete picture. For example, cotyledons of lettuce failed to initiate buds when NH$_4$NO$_3$ was omitted from Miller (1961) salts and instead formed masses of callus (Doerschug and Miller, 1967): was this result due to the elimination of NH$_4^+$, or to reducing the total nitrogen content of the medium to one third of its original value?

Importance of the nitrate/ammonium balance.

The importance of the relative proportions of NO$_3^-$ and NH$_4^+$ has been demonstrated during indirect morphogenesis and the growth of regenerated plants. Grimes and Hodges (1990) found that although the initial cellular events which led to plant regeneration from embryo callus of indica rice, were supported in media in which total nitrogen ranged from 25 to 45 mM and the NO$_3^-$ to NH$_4^+$ ratio varied from 50:50 to 85:15 (Table 3.5), differentiation and growth were affected by very small alterations to the NO$_3^-$ to NH$_4^+$ ratio. Changing it from 80:20 (N6) medium, to 75:20, brought about a 3-fold increase in plant height and root growth, whereas lowering it below 75:25, resulted in short shoots with thick roots. Atypical growth, resulting from an unsuitable balance of nitrate and ammonium, has also been noted in other plants. It gave rise to abnormally thick leaves in *Adiantum capillus-veneris* (Pais and Casal, 1987); the absence of ammonium in the medium caused newly initiated roots of *Carica papaya* to be abnormally thickened, and to have few lateral branches (Drew, 1987). Shoot cultures may survive low temperature storage more effectively when maintained on a medium containing less NH$_4$NO$_3$ than in MS medium (Moriguchi and Yamaki, 1989).

By comparing different strengths of Heller (1953; 1955) and MS media, and varying the NH$_4$NO$_3$ and NaNO$_3$ levels in both, David (1972) was led to the conclusion that the principal ingredient in MS favouring differentiation in Maritime pine explants is
NH$_4$NO$_3$. However, in embryonic explants of _Pinus strobus_, adventitious shoot formation was better on Schenk and Hildebrandt (1972) medium than on MS (which induced more callus formation). The difference in the ammonium level of the two media was mainly responsible (Flinn and Webb, 1986).

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Type of culture</th>
<th>Results</th>
<th>NO$_3^-$ (mM)</th>
<th>NH$_4^+$ (mM)</th>
<th>Ratio of NO$_3^-$ to NH$_4^+$</th>
<th>Total N (mM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotiana tabacum</td>
<td>Callus</td>
<td>Optimum callus growth</td>
<td>39.4</td>
<td>20.61</td>
<td>1.91</td>
<td>60.01</td>
<td>Murashige and Skoog (1962)</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Callus</td>
<td>Equal callus growth and shoot formation</td>
<td>40.0</td>
<td>20.0</td>
<td>2.00</td>
<td>60.0</td>
<td>Behki and Lesley (1980)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.0</td>
<td>12.0</td>
<td>4.00</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.0</td>
<td>8.0</td>
<td>6.50</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Shoot regeneration from leaf disks</td>
<td>Optimal number of shoots</td>
<td>40</td>
<td>20</td>
<td>2.3</td>
<td>60</td>
<td>Ramage and Williams (2002)</td>
</tr>
<tr>
<td>Dioscorea spp.</td>
<td>Callus</td>
<td>Callus growth and adventitious plantlets</td>
<td>6.25</td>
<td>6.25</td>
<td>1.00</td>
<td>15.0</td>
<td>Asokan et al., (1983)</td>
</tr>
<tr>
<td>Diospyros kaki</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>19.7</td>
<td>20.61</td>
<td>0.96</td>
<td>40.31</td>
<td>Sugiura et al., (1986)</td>
</tr>
<tr>
<td>Rubus ideaus</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>19.7</td>
<td>10.30</td>
<td>1.91</td>
<td>30.0</td>
<td>Welander (1987)</td>
</tr>
<tr>
<td>Prunus avium</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>29.09</td>
<td>10.3</td>
<td>2.82</td>
<td>39.40</td>
<td>Righetti et al., (1988)</td>
</tr>
<tr>
<td>Castanea sativa and Castanea hybrids</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>18.00</td>
<td>3.00</td>
<td>6.00</td>
<td>21.0</td>
<td>Piagnani and Eccher (1988)</td>
</tr>
<tr>
<td>Peltophorum pterocarpum</td>
<td>Anther</td>
<td>Callus formation and shoot regeneration</td>
<td>34.7</td>
<td>9.99</td>
<td>3.47</td>
<td>44.6</td>
<td>Lakshmana Rao and De (1987)</td>
</tr>
<tr>
<td>Euphorbia esula</td>
<td>Suspension</td>
<td>Plant regeneration</td>
<td>18.00</td>
<td>8.00</td>
<td>2.25</td>
<td>27</td>
<td>Davis et al., (1988)</td>
</tr>
<tr>
<td>Haplopappus gracilis</td>
<td>Suspension</td>
<td>Improved growth rate</td>
<td>33.78</td>
<td>14.99</td>
<td>2.25</td>
<td>8.77</td>
<td>Eriksson (1965)</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Protoplast</td>
<td>Cell division</td>
<td>18.79</td>
<td>1.01</td>
<td>18.53</td>
<td>19.80</td>
<td>Yamada et al., (1986)</td>
</tr>
<tr>
<td>Allium sativum</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>35.0</td>
<td>8.0</td>
<td>4.4</td>
<td>43.0</td>
<td>Luciani et al., (2001)</td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>Shoot</td>
<td>Shoot proliferation</td>
<td>41.3</td>
<td>17.7</td>
<td>2.3</td>
<td>59.0</td>
<td>Avila et al., (1998)</td>
</tr>
</tbody>
</table>
Table 3.5 Examples of beneficial and harmful adjustments to the total nitrogen and the NO$_3^-$ and NH$_4^+$ in low salt media

<table>
<thead>
<tr>
<th>Basic Medium in which N modified</th>
<th>Plant species or variety</th>
<th>Type of culture and results</th>
<th>NO$_3^-$ (mM)</th>
<th>NH$_4^+$ (mM)</th>
<th>Ratio of NO$_3^-$ to NH$_4^+$</th>
<th>Total N (mM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnolia stellata</td>
<td>Shoot culture: maximum proliferation</td>
<td>10.99</td>
<td>6.25</td>
<td>1.76</td>
<td>17.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnolia ‘Yellow Bird’ and ‘#149’</td>
<td>Shoot culture: maximum proliferation</td>
<td>7.43</td>
<td>6.25</td>
<td>1.19</td>
<td>13.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnolia (all vars.)</td>
<td>Shoot culture: death of all cultures</td>
<td>25.04</td>
<td>6.25</td>
<td>4.01</td>
<td>31.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chu et al., (1975) N6</td>
<td></td>
<td></td>
<td>28.00</td>
<td>7.00</td>
<td>80:20(4.00)</td>
<td>35.00</td>
<td>Grimes and Hodges (1990)</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Callus induction from immature embryos</td>
<td>28.00</td>
<td>7.00</td>
<td>4.00</td>
<td>35.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant regeneraition after callus induction with 2,4-D</td>
<td>12.5-38.25</td>
<td>22.5-3.75</td>
<td>1.0 - 5.66</td>
<td>25.00-45.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum number of plants per zygotic embryo</td>
<td>18.75</td>
<td>6.25</td>
<td>3.00</td>
<td>25.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor regeneration</td>
<td>100<17.5</td>
<td>0</td>
<td>∞</td>
<td><1.0</td>
<td>35.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum plantlet growth</td>
<td>26.25</td>
<td>8.75</td>
<td>8.75</td>
<td>35.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Morphogenesis influenced by total available nitrogen. Others have found that the total nitrogen content of culture media influences morphogenesis more than the relative ammonium concentration. Results of Margara and Leydecker (1978) indicated that adventitious shoot formation from rapeseed callus was optimal in media containing 30-45mM total nitrogen. The percentage of explants forming shoots was reduced on media containing smaller or greater amounts (e.g. on MS medium). Increasing the ratio of NH$_4^+$ to total N in media, from 0.20 to 0.33 was also detrimental. Similarly, Gertsson (1988) found that a small number of adventitious shoots was obtained on petiole segments of *Senecio hybridus* when the total nitrogen in MS medium was increased to 75 mM, but that an increased number of shoots was produced when the total nitrogen was reduced to 30 mM (while keeping the same ratio of NO$_3^-$ to NH$_4^+$). Shoot production was more than doubled if, at the same time as the total N was reduced, the potassium ion concentration was fixed at 15 mM, instead of 20 mM.

The total amount of nitrogen in a medium was shown by Roest and Bokelmann (1975) to affect the number of adventitious shoots formed directly on *Chrysanthemum* pedicels. The combined amount of KNO$_3$ + NH$_4$NO$_3$ in MS medium (60 mM), was adjusted as is shown in Fig. 3.3 while the ratio of NO$_3^-$ to NH$_4^+$ (66:34) was unchanged. From 30-120 mM total nitrogen was optimal. However there was clearly a strong effect of genotype, because the cultivar ‘Bravo’ was much more sensitive to increased nitrogen than ‘Super Yellow’.
Nitrogen x sugar interaction. The enhancement of morphogenesis caused by high nitrogen levels may not be apparent unless there is an adequate sucrose concentration in the medium (Margara and Rancillac, 1966; Gamborg et al., 1974). In *Dendrobium*, the uptake of NO$_3^-$ is slower than that of NH$_4^+$. Uptake is dependent on the nature and concentration of the sugar in the medium, being slower in the presence of fructose than when sucrose or glucose are supplied (Hew et al., 1988). The rate of growth of Rosa ‘Paul’s Scarlet’ suspensions was influenced by the ratio of NO$_3^-$ to sucrose in the medium. A high ratio favoured the accumulation of reduced nitrogen, but not the most rapid rate of cell growth (Fletcher, 1980).

![Fig. 3.3](image) The number of adventitious shoots formed directly on Chrysanthemum explants with increasing total nitrogen concentration in an otherwise normal MS medium [from data of Roest and Bokelmann, 1975]

Embryogenesis and embryo growth. It is accepted that the presence of some reduced nitrogen is necessary for somatic embryogenesis in cell and callus cultures (Halperin and Wetherell, 1965; Reinert et al., 1967); but although reduced nitrogen compounds are beneficial to somatic embryo induction, apparently they are not essential until the stage of embryo development (Kamada and Harada, 1979). A relatively high level of both nitrate and ammonium ions then seems to be required. Some workers have also noted enhanced embryogenesis and/or improved embryo growth when media have been supplemented with amino acids in addition to NO$_3^-$ and NH$_4^+$. Street (1979) thought that an optimum level of NH$_4^+$ for embryogenesis was about 10 mM (from NH$_4$Cl) in the presence of 12-40 mM NO$_3^-$ (from KNO$_3$); that is:

\[\text{[NO}_3^-\text{ to NH}_4^+\text{ ratio, from 55:45 to 80:20; Total N 22-50 mM]}\]

Walker and Sato (1981) obtained no embryogenesis in alfalfa callus in the absence of either ammonium or nitrate ions. Miller’s medium [Miller (1961; 1963)] (12.5 mM NH$_4^+$) supported a high rate of embryogenesis:

\[\text{[NO}_3^-\text{ to NH}_4^+\text{ ratio, 68:32; Total N 39.1 mM]}\], but only a small number of embryos were produced on Schenk and Hildebrandt (1972) medium (SH):

\[\text{[NO}_3^-\text{ to NH}_4^+\text{ ratio, 90:10, Total N 27.32 mM]}\], unless it was supplemented with NH$_4^+$ from either ammonium carbamate, ammonium chloride or ammonium sulphate. An optimal level of ammonium in SH medium was 12.5 mM:
The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients

[NO₃⁻ to NH₄⁺ ratio, then 66:34, total N, 37.22 mM], although embryogenesis was still at a high level with 100 mM ammonium ion:

[NO₃⁻ to NH₄⁺ ratio, then 20:80; total N, 124.72 mM].

By contrast, Coffea arabica leaf callus (Sondahl and Sharp, 1977), which was formed on a medium containing MS salts, was induced to become embryogenic by first being cultured on a medium with MS salts (and high auxin):

[NO₃⁻ to NH₄⁺ ratio, 66:34; total N, 30.0 mM], and then moved to another medium containing MS salts with an extra 2850 mg/l KNO₃:

[NO₃⁻ to NH₄⁺ ratio, 82:18; total N, 58.2 mM] (and low auxin)

Zygotic embryos. The presence of some reduced nitrogen in the growth medium is also required for the continued growth of zygotic embryos in culture. Nitrate alone is insufficient (Mauney et al., 1967; Norstog, 1967, 1973). An optimum concentration of NH₄⁺ for the development of barley embryos in culture was 6.4 mM (Umbeck and Norstog, 1979). A similar provision seems to be necessary in most plants for the in vitro growth of somatic embryos.

Flower bud formation and growth. Nitrate was essential for the formation of adventitious buds on leaf segments of Begonia francois. The greatest proportion of flower buds was obtained with 5 mM NO₃⁻ and 1.5 mM NH₄⁺. Above this level, NH₄⁺ promoted vegetative sprouts (Berghoef and Bruinsma, 1979b). The best in vitro growth of Begonia francois flower buds detached from young inflorescences, occurred on a medium with 10-15 mM total nitrogen (NO₃⁻ to NH₄⁺ ratio, 50:50 to 67:33) (Berghoef and Bruinsma, 1979a). Detached flower buds of Cleome iberidella were found to grow best in vitro with 25 mM total nitrogen (NO₃⁻ to NH₄⁺ ratio, 80:20) (De Jong and Bruinsma, 1974; De Jong et al., 1974), but the complete omission of NH₄NO₃ from MS medium, where the salts had been diluted to their original concentration, promoted the development (but not the initiation) of adventitious floral buds of Torenia fournieri (Tanimoto and Harada, 1979, 1981, 1982).

Effect on the action of growth regulators. The ratio of NO₃⁻ to NH₄⁺ present in the culture medium has been found to affect the activity of plant growth substances and plant growth regulators. The mechanisms by which this occurs are not fully elucidated. It has been noted, for example, that cells will divide with less added cytokinin when the proportion of reduced nitrogen is reasonably high. To induce tobacco protoplasts to divide, it was necessary to add 0.5-2 mg/l BAP to a medium containing only NO₃⁻ nitrogen. The presence of glutamine or NH₄⁺ in the medium together with NO₃⁻, reduced the cytokinin requirement, and division proceeded without any added cytokinin when urea, NH₄⁺, or glutamine were the sole N-sources of the medium (Meyer and Abel, 1975b). Sargent and King (1974) found that soybean cells were dependent on cytokinin when cultured in a medium containing NO₃ nitrogen, but independent of cytokinin when NH₄⁺ was present as well.

The relative proportion of nitrate and ammonium ions also affects the response of cells to auxin growth regulators in terms of both cell division and morphogenesis. It is possible that this is through the control of intracellular pH (see below). Carrot cultures that produce somatic embryos when transferred from a high- to a low-auxin medium, can also be induced into embryogenesis in a high-auxin medium, if it contains adequate reduced nitrogen. Only root initials are formed in high-auxin media which do not contain reduced nitrogen (Halperin, 1967). The number of plants regenerated from rice callus grown on Chu et al., (1975) medium containing 0.5 mg/l 2,4-D, depended on the ratio of NO₃ to NH₄⁺. It was high in the unaltered medium (ratio 4:1), but considerably less if, with the same total N, the ratio of the two ions was changed to 1:1 (Grimes and Hodges, 1990).

Cells of Antirrhinum majus regenerated from isolated protoplasts were stimulated to divide with a reduced quantity of auxin in a medium containing 39.77 mM total nitrogen

[NO₃⁻ to NH₄⁺ ratio, 39:77 (2.98)]

by adding further ammonium ion to give a total nitrogen content of 54.72 mM

[NO₃⁻ to NH₄⁺ ratio, 54:46 (1.19)].

or, alternatively, 400 mg/l of casein hydrolysate (Poirier-Hamon et al., 1974).

In experiments of Koetje et al., (1989) and Grimes and Hodges (1990) (Table 3.5), when the NO₃⁻ to NH₄⁺ ratio in N6 medium was 80:20, there was a strong dose response curve to the auxin 2,4-D with 0.5 mg/l being the best concentration to induce embryogenesis in Oryza sativa callus; if the medium was modified, so that the NO₃⁻ to NH₄⁺ ratio was 66:34 or 50:50, 2,4-D was less effective, and there was little difference in the number of plants regenerated between 0.5 and 3 mg/l 2,4-D. The ratio of NO₃⁻ to NH₄⁺ therefore seemed either to to alter the sensitivity of cells to the auxin, or to affect its uptake or rate of metabolism.
Walker and Sato (1981) also found that the proportion of ammonium ion in the medium can influence the way in which growth regulants control morphogenesis. Having been placed for 3 days on a medium which would normally induce root formation [Schenk and Hildebrandt (1972) medium containing 5 mM 2,4-D and 50 mM kinetin], suspension cultured cells were subsequently plated on a modification of the same medium (which contains 24.8 mM NO₃⁻ without regulants, in which the concentration of NH₄⁺ had been adjusted to various levels. Table 3.6 shows that the morphogenesis experienced, depended on the concentration of ammonia in the regeneration medium. Media containing high levels of ammonium ion would have tended to become acid, especially as the extra ammonium was added as ammonium sulphate. Possibly this affected the uptake or action of the regulants?

2.1.10. Addition of amino acids

Amino acids can be added to plant media to satisfy the requirement of cultures for reduced nitrogen, but as they are expensive to purchase, they will only be used in media for mass propagation where this results in improved results. For most tissue culture purposes, the addition of amino acids may be unnecessary, providing media contain adequate amounts, and correct proportions, of nitrate and ammonium ions. For example, Murashige and Skoog (1962) found that when cultures were grown on media such as Heller (1953; 1955), Nitsch and Nitsch (1956) N1, and Hildebrandt et al., (1946) Tobacco, containing sub-optimal amounts of inorganic chemicals, a casein hydrolysate (consisting mainly of a mixture of amino acids, see later) substantially increased the yield of tobacco callus, whereas it gave only marginal increases in yield when added to their revised MS medium. Arginine (0.287 mM) increased the growth of sugar cane callus and suspension cultures grown on Nickell and Maretzski (1969) medium (Nickell and Maretzski, 1969) but was without effect on cultures of this plant grown on a medium based on Scowcroft and Adamson (1976) CS5 macronutrients (Larkin, 1982).

It is noticeable from the literature that organic supplements (particularly amino acids) have been especially beneficial for growth or morphogenesis when cells or tissues were cultured on media such as White (1943a), which do not contain ammonium ions. White (1937) and Bonner and Addicott (1937), for example, used known amino acids to replace the variable mixture provided by yeast extract. For the culture of Picea glauca callus, Reinert and White (1956) supplemented Risser and White (1964) medium with 17 supplementary amino acids, and similar, or greater numbers, were used by Torrey and Reinert (1961) and Filner (1965) in White (1943) medium for the culture of carrot, Convolvulus arvensis, Haplopappus gracilis and tobacco tissues.

Dependence on the nitrate to ammonium ratio.

Grimes and Hodges (1990) found that when both NO₃⁻ and NH₄⁺ are present in the medium, the response to organic nitrogen depends on the ratio of these two ions. Twice as many plants were regenerated from embryogenic rice callus when 1g/l CH was added to Chu et al., (1975) N6 medium, providing the proportion of NO₃⁻ to NH₄⁺ was also changed to 1 (50:50). There was little response to CH with the same amount of total N in the medium, if the NO₃⁻/NH₄⁺ ratio was 4 (i.e. 80%:20%, as in the original medium), or more.

2.1.11. Amino acids as the sole N source

As most of the inorganic nitrogen supplied in culture media is converted by plant tissues to amino acids, which are then assimilated into proteins, it should be possible to culture plants on media in which amino acids are the only nitrogen source. This has been demonstrated: for example, Nicotiana tabacum callus can be cultured on MS salts lacking NO₃⁻ and NH₄⁺ (but with an extra 20.6 mM K⁺), if 0.1 mM glycine, 1mM arginine, 2 mM aspartic acid and 6 mM glutamine are added (Muller and Grafe, 1978); wild carrot suspensions can be grown on a medium

<table>
<thead>
<tr>
<th>Type of organ produced</th>
<th>NH₄⁺ (mM)</th>
<th>NO₃⁻ (mM)</th>
<th>Ratio of NO₃⁻ to NH₄⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roots</td>
<td><2.5</td>
<td>27.2</td>
<td>100:0 to 91:9</td>
</tr>
<tr>
<td>Roots and somatic embryos</td>
<td>12.5-37.5</td>
<td>37.3-62.3</td>
<td>66:34 to 40:60</td>
</tr>
<tr>
<td>Somatic embryos</td>
<td>50-100</td>
<td>74.7-124.7</td>
<td>33:67 to 20:80</td>
</tr>
</tbody>
</table>
containing glutamine or casein hydrolysate as the sole nitrogen source (Anderson, 1976). Amino acids provide plant cells with an immediately available source of nitrogen, and uptake can be much more rapid than that of inorganic nitrogen in the same medium (Thom et al., 1981). Only the L- form of amino acids is biologically active.

Amino acids can also provide reduced nitrogen in culture media in place of \(\text{NH}_4^+ \) and as a supplement to \(\text{NO}_3^- \). However they are usually employed as minor additions to media containing both \(\text{NH}_4^+ \) and \(\text{NO}_3^- \). Uptake of amino acids into cultured tissues causes a decrease in the pH of the medium, similar to that which occurs when \(\text{NH}_4^+ \) ions are absorbed.

Sugar-based amines such as glucosamine and galactosamine can also serve as a source of reduced nitrogen in morphogenesis (Margara, 1969a; Margara and Leydecker, 1978).

2.1.12. Biologically-active amino acids

Amino acids are classified according to their stereoisomers and according to the relative positions of the amino group and the acidic radical. Only the L- isomers of the \(\alpha \)-amino acids are important for plant tissue culture media. They have the general structure:

\[
\text{NH}_2 \quad \mid \quad \text{R-CH- \ COOH}
\]

\(\beta \)-Amino acids are present in plants but tend to result from secondary metabolism. They have the general structure:

\[
\text{NH}_2 \quad \mid \quad \text{R-CHCH}_2\text{- \ COOH}
\]

(where \(R = \) functional groups)

Unfortunately the particular amino acid, or mixture of amino acids, which promotes growth or morphogenesis in one species, may not do so in another. For instance, L-\(\alpha \)-alanine, glutamine, asparagine, aspartic acid, glutamic acid, arginine and proline could serve as a source of reduced nitrogen in a medium containing 20 mM \(\text{NO}_3^- \), and were effective in promoting embryogenesis in *Daucus carota* callus and suspensions, but lysine, valine, histidine, leucine and methionine were ineffective (Kamada and Harada, 1982).

Competitive inhibition. Some amino acids are growth inhibitory at fairly low concentrations and this is particularly observed when mixtures of two or more amino acids are added to media. Inhibition is thought to be due to the competitive interaction of one compound with another. In oat embryo cultures, phenylalanine and L-tyrosine antagonise each other, as do L-leucine and DL-valine; DL-isoleucine and DL-valine, and L-arginine and L-lysine (Harris, 1956). Lysine and threonine often exert a cooperative inhibition when present together, but do not inhibit growth when added to a medium singly (Cattoir-Reynaerts et al., 1981).

Glycine. Glycine is an ingredient of many media. It has usually been added in small amounts, and has been included by some workers amongst the vitamin ingredients. Despite frequent use, it is difficult to find hard evidence that glycine is really essential for so many tissue cultures, but possibly it helps to protect cell membranes from osmotic and temperature stress (Orczyk and Malepszy, 1985).

White (1939) showed that isolated tomato roots grew better when his medium was supplemented with glycine rather than yeast extract and that glycine could replace the mixture of nine amino acids that had been used earlier. It was employed as an organic component by Skoog (1944) and continued to be used in his laboratory until the experiments of Murashige and Skoog (1962). They adopted the kinds and amounts of organic growth factors specified by White (1943a) and so retained 2 mg/l glycine in their medium without further testing.

Linsmaier and Skoog (1965), furthering the study of medium components to organic ingredients, omitted glycine from MS medium and discovered that low concentrations of it had no visible effect on the growth of tobacco callus, while at 20 mg/l it depressed growth. No doubt the success of MS medium has caused the 2 mg/l glycine of Skoog (1944) to be copied in many subsequent experiments. Many workers overlook the later Linsmaier and Skoog paper.

Casein and other protein hydrolysates. Proteins, which have been hydrolysed by acid, or enzymes, and so broken down into smaller molecules, are less costly than identified amino acids. The degree of degradation varies: some protein hydrolysates consist of mixtures of amino acids together with other nitrogenous compounds such as peptide fragments, vitamins, and elements which might (if they can form inorganic ions, or are associated with organic compounds that can be taken
up by plant tissues) be able to serve as macro- or micro-elements. Peptones are prepared from one or several proteins in a similar fashion but generally consist of low molecular weight proteins. Although protein hydrolysates are a convenient source of substances which may promote plant growth, they are by nature relatively undefined supplements. The proportion of individual amino acids in different hydrolysates depends on the nature of the source protein and the method by which the product has been prepared.

The hydrolysate most often used in culture media is that of the milk protein, casein, although lactalbumin hydrolysate has been employed (La Motte and Lersten, 1971). Peptones and tryptone have been used less frequently, but there are reports of their having been added to media with advantage (e.g. Muralidhar and Mehta, 1982; Pierik et al., 1988). Casein hydrolysates can be a source of calcium, phosphate, several microelements, vitamins and, most importantly, a mixture of up to 18 amino acids. Several casein hydrolysates (CH) are available commercially but their value for plant tissue culture can vary considerably. Acid hydrolysis can denature some amino acids and so products prepared by enzymatic hydrolysis are to be preferred. The best can be excellent sources of reduced nitrogen, as they can contain a relatively large amount of glutamine.

Casein hydrolysate produces an improvement in the growth of Cardamine pratensis and Silene alba suspensions, only if the medium is deficient in phosphorus. Glutamine has the same effect; it is the most common amino acid in CH, and its synthesis requires ATP. For these reasons, Bister-Miel et al. (1985) concluded that CH overcomes the shortage of glutamine when there is insufficient phosphorus for adequate biosynthesis.

However several investigators have concluded that casein hydrolysate itself is more effective for plant culture than the addition of the major amino acids which it provides. This has led to speculation that CH might contain some unknown growth-promoting factor (Inoue and Maeda, 1982). In prepared mixtures of amino acids resembling those in CH, competitive inhibition between some of the constituents is often observed. For instance, the induction of embryogenesis in carrot cell suspensions on a medium containing glutamine as the only nitrogen source, was partly inhibited by the further addition of L-amino acids similar in composition to those in CH. This suppression was mainly caused by the L-tyrosine in the mixture (Anderson, 1976).

There may be a limit to the amount of CH, which can be safely added to a medium. Anstis and Northcote (1973) reported that the brand of CH known as 'N-Z-amine', can produce toxic substances if concentrated solutions are heated, or if solutions are frozen and thawed several times. Possibly these are reasons why mixtures of amino acids occasionally provide more valuable supplements than CH. Nicotiana tabacum callus grew better on a nitrogen-free MS medium when a mixture of the amino acids L-glutamine (6 mM), L-aspartic acid (2 mM), L-arginine (1 mM) and glycine (0.1 mM) was added, rather than 2 g/l casein hydrolysate (which would have provided about 2 mM glutamine, 0.6 mM aspartic acid, 0.2 mM arginine and 0.3 mM glycine) (Muller and Grafe, 1978).

2.1.13. Beneficial effects of amino acid additions

Improved growth. The growth rate of cell suspensions is frequently increased by the addition of casein hydrolysate or one or more amino acids (particularly glutamine) to media containing both nitrate and ammonium ions. Some workers have included a mixture of several amino acids in their medium without commenting on how they improved growth. In other cases the benefit resulting from a specific compound has been clearly shown. The lag phase of growth in suspensions of Pseudotsuga menziesii cultured on Cheng (1977; 1978) medium was eliminated by the addition of 50 mM glutamine, and the final dry weight of cells was 4 times that produced on the unamended medium (Kirby, 1982). Similarly the rate of growth of Actinidia chinensis suspensions was improved by the addition of 5mM glutamine (Suezawa et al., 1988) and those of Prunus amygdalus cv. ‘Ferragnes’ could not be maintained unless 0.2% casamino acids was added to the medium (Rugini and Verma, 1982). Molnar (1988b) found that the growth of Brassica nigra cell suspensions was improved by adding 1-4 g/l CH or a mixture of 4 mM alanine, 4 mM glutamine and 1 mM glutamic acid. In this case the medium contained MS salts (but less iron) and B5 vitamins.

Amino acid supplements have also been used to boost the rate of growth of callus cultures. For instance, Short and Torrey (1972) added 5 amino acids and urea to a medium containing MS salts for the culture of pea root callus, and Sandstedt and Skoog (1960) found that aspartic and glutamic acids promoted the growth of tobacco callus as much as a mixture of several amino acids (such as found in yeast extract). Glutamic acid seemed to be primarily responsible for the growth promotion of sweet clover.
Amino acids are often added to media for protoplast culture. It was essential to add 2 mM glutamine and 2 mM asparagine to a medium containing MS salts, to obtain cell division, colony growth and plantlet differentiation from *Trigonella* protoplasts (Sekhawat and Galston, 1983).

Shoot cultures. Many shoot cultures are grown on MS medium containing glycine, although in most cases the amino acid is probably not an essential ingredient. Usually it is unnecessary to add amino acids to media supporting shoot cultures, but methionine may represent a special case. Druart (1988) found that adding 50-100 mg/l L-methionine to the medium seemed to stimulate cytokinin activity and caused cultures of *Prunus glandulosa* var. *sinensis* to have high propagation rates through several subcultures. This promotive effect of L-methionine was thought to be due to it acting as a precursor of ethylene (see Chapter 7). Glutamine inhibited the growth of apical domes excised from *Coleus blumei* shoots (Smith, 1981) and 50-100 mg/l glutamic acid inhibited shoot growth, the formation of axillary buds and shoot proliferation in cultures of woody plants (Druart, loc. cit.).

L-Citrulline is an important intermediate in nitrogen metabolism in the genus *Alnus*. The addition of 1.66 mM (4.99 mM NH₂⁺) to WPM medium improved the growth of *A. cordata* and *A. subcordata* shoot cultures (Cremiere et al., 1987).

Contaminants grow more rapidly on media containing amino acids. Casein hydrolysate is therefore sometimes added to the media for Stage I shoot cultures so that infected explants can be rejected quickly (Schulze, 1988). The health of shoots grown from seedling shoot tips of *Feijoa (Acca) sellowiana* was improved when 500 mg/l CH was added to Boxus (1974) medium (which does not contain ammonium ions) (Bhojwani et al., 1987).

Organogenesis. The presence of amino acids can enhance morphogenesis, either when they provide the only source of reduced nitrogen, or when they are used as a supplement to a medium containing both NO₃⁻ and NH₄⁺. In a medium containing 25 mM nitrate, but no NH₄⁺, direct adventitious shoot formation on cauliflower peduncle explants was induced by the addition of a mixture of the amino acids asparagine, proline, tyrosine and phenylalanine, each at a concentration of only 0.1 mM. (Margar, 1969b). A high rate of adventitious shoot regeneration and embryogenesis, from *Beta vulgaris* petiolo or petiolo callus, was achieved on a medium comprised of several amino acids and a complex vitamin mixture with MS salts (Freytag et al., 1988). The addition of CH to MS medium was found to be essential for shoot formation from callus (Chand and Roy, 1981).

Adding only 1-10 mg/l of either L-leucine or L-isoleucine to Gamborg et al., (1968) B5 medium, decreased callus growth of *Brassica oleracea* var *capitata*, but increased adventitious shoot formation. Basu et al., (1989) thought that this might be due to these amino acids being negative effectors of threonine deaminase (TD) enzyme, the activity of which was diminished in their presence. Threonine, methionine and pyruvic acid, which increased callus growth in this species, enhanced TD activity.

There are several examples of the amino acid L-asparagine being able to stimulate morphogenesis. This may be because it too can be a precursor of ethylene (Durzan, 1982), the biosynthesis of which may be increased by greater substrate availability. Kamada and Harada (1977) found that the addition of 5 mM L-asparagine stimulated both callus and bud formation in stem segments of *Torenia fournieri*, while alanine (and, to a lesser extent, glutamic acid) increased flower bud formation from *Torenia* internode segments when both an auxin and a cytokinin were present. An increase in the number of adventitious buds formed on the cotyledons and hypocotyl of *Chamaecyparis obtusa* seedlings occurred when 1.37 mM glutamine and 1.51 mM asparagine were added together to Campbell and Durzan (1975) medium, but not when they were supplied on their own (Ishii, 1986). L-asparagine was also added to MS medium by Green and Phillips (1975), to obtain plant regeneration from tissue cultures of maize; adding it to Finer and Nagasawa (1988) 10A4ON medium caused there to be more embryogenic clumps in *Glycine max* suspension cultures (Finer and Nagasawa, 1988).

Amino acid additions do not invariably enhance morphogenesis. Supplementing Linsmaier and Skoog (1965) medium with 0.5-5 mM glutamine, caused callus of *Zamia latifolia* to show greatly decreased organogenesis (Webb and Rivera, 1981) and amending Linsmaier and Skoog (1965) medium with 100 mg/l CH, prevented adventitious shoot formation from stem internode callus of apple and cherry rootstocks (James et al., 1984).

Embryogenesis. The presence the ammonium ion is usually sufficient for the induction of...
embryogenesis in callus or suspension cultures containing NO₃⁻, but on media where NH₄⁺ is lacking [e.g. White (1954)], casein hydrolysate, or an amino acid such as alanine, or glutamine, is often promotory (Ranga Swamy, 1958; Ammirato and Steward, 1971; Street, 1979). For embryogenesis in carrot cultures, Wetherell and Dougall (1976) have shown that in a medium containing potassium nitrate, reduced nitrogen in the form of ammonium chloride matched the effectiveness of an equivalent concentration of nitrogen from casein hydrolysate. Casein hydrolysate could be replaced by glutamine, glutamic acid, urea or alanine. Suspensions of wild carrot cells grew and produced somatic embryos on a medium containing either glutamine or CH as the sole nitrogen source (Anderson, 1976).

There have also been many reports of embryogenesis being promoted by the addition of casein hydrolysate, or one or more specific amino acids, when both NO₃⁻ and NH₄⁺ were available in the medium. Some examples are given in Table 3.7. In many cases, embryogenic callus and/or embryo formation did not occur without the presence of the amino acid source, suggesting that without amino acid, the medium was deficient in NH₄⁺ or total nitrogen. Armstrong and Green (1985) found that the frequency of friable callus and somatic embryo formation from immature embryos of Zea mays increased almost linearly with the addition of up to 25 mM proline to Chu et al., (1975) N6 medium [total N, 34.99 mM; NO₃/NH₄ ratio, 3.99].

but there was no benefit from adding proline to MS medium (containing 150 mg/l asparagine hydrate).

[total N, 60.01 mM; NO₃/NH₄ ratio, 1.91]

The growth of somatic embryos can also be affected by the availability of reduced nitrogen. That of Coronilla varia embryos was poor on Gamborg et al., (1968) B5 medium (Total N 26.74 mM; NH₄⁺ 2.02 mM), unless 10 mM asparagine or 20 mM NH₄Cl was added to the medium, or unless the embryos were moved to Saunders and Bingham (1972) BOi2Y medium, which has 37.81 mM total inorganic N, 12.49 mM NH₄⁺ and 2000 mg/l casein hydrolysate (approx. 9.9 mM NH₄⁺ equivalence) (Moyer and Gustine, 1984). However, the germination of Triticum aestivum somatic embryos was completely prevented by adding 800 mg/l CH to MS medium (Ozias Akins and Vasil, 1982; Carman et al., 1988).

Culture of immature cotyledons. Young storage cotyledons isolated from immature zygotic embryos accumulate protein efficiently when cultured with amino acids in a medium without nitrate and ammonium ions. A medium such as that of Millerd et al. (1975), or of Thompson et al., (1977) is normally used, but where the effect of different amino acids on protein assimilation is being studied, the amino acid content of the medium is varied. Glutamine is often found to be the most efficient nitrogen source for this purpose (Thompson et al., 1977; Haga and Sodek, 1987), but protein increase from culture with asparagine and glutamate (glutamic acid) is usually also significant (Lea et al., 1979).

We may conclude therefore, that for many cultural purposes, amino acids are not essential media components; but their addition as identified pure compounds, or more cheaply through casein hydrolysates, can be an easy way of ensuring against medium deficiency, or of providing a source of nitrogen that is immediately available to cultured cells or tissues. An observation by Murashige and Skoog (1962) that the presence of casein hydrolysate allowed vigorous organ development over a broader range of IAA and kinetin levels, may be of significance.

In gram moles per litre, amino acids can be a much more efficient source of reduced nitrogen than ammonium compounds. For instance, the mixture of amino acids provided by 400 mg/l of casein hydrolysate (containing at most as much reduced nitrogen as 3.3 mM NH₄⁺) was as effective as 14.95 mM NH₄Cl in stimulating the division of protoplast-derived cells of Antirrhinum (Poirier-Hamon et al., 1974).

Why should this be, and why can additions of amino acids (sometimes in comparatively small amounts) stimulate growth or morphogenesis when added to media, which already contain large amounts of NH₄⁺? Some hypotheses, which have been advanced are:

- Conservation of ATP - alleviating phosphate deficiency. Durzan (1982) pointed out that when plant tissues take up the ammonium ion, they consume adenosine tri-phosphate (ATP) in converting it to amino acids. If suitable amino acids are available from the medium, some of ATP may be conserved. Bister-Miel et al., (1985) noted that CH promoted growth in cultures where phosphate became growth-limiting. They suggested that amino acids compensated for phosphate deficiency. With the plant well supplied with amino acids, some of the phosphate, which is normally used for ATP production can be diverted to other uses. Several
authors have pointed out that CH itself is also a source of phosphate. For example, Bridson (1978) and some chemical catalogues, show that some casein hydrolysates normally contain about 1.3g P₂O₅ per 100g. The addition of 2 g/l of CH will therefore increase the phosphate content of MS medium by 11% and that of White (1954) medium by 44% (assuming complete phosphate availability).

- **A capacity to act as chelating agents.** Some amino acids can act as chelating agents (see later in section on chelates)
- **Enhanced nitrogen assimilation.** Glutamine and glutamic acid are directly involved in the assimilation of NH₄⁺. A direct supply of these amino acids should therefore enhance the utilization of both nitrate and ammonium nitrogen and its conversion into amino acids.
- **A replacement for toxic ammonium ions.** Certain plant tissues are particularly sensitive to NH₄⁺. Ochatt and Caso (1986) and Ochatt and Power (1988a, b) found that protoplasts of Pyrus spp. would not tolerate the ion, and that to obtain sustained cell division it was necessary to eliminate it from MS medium, and use 50 mg/l casein hydrolysate as a source of reduced nitrogen. CH can however be extremely toxic to freshly isolated protoplasts of some species and varieties of plants (Ranck and Widholm, 1980; Russell and McCown, 1988). Conifer tissues too are unable to cope with high

<table>
<thead>
<tr>
<th>Type of culture</th>
<th>Basal medium used</th>
<th>Amino acid supplements</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesculus hippocastanum</td>
<td>Zygotic embryo callus</td>
<td>MS</td>
<td>CH (250 mg/l) + Proline (250 mg/l)</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Suspension-derived callus</td>
<td>Schenk and Hildebrandt (1972)</td>
<td>CH (1.5 g/l)</td>
</tr>
<tr>
<td>Daucus carota</td>
<td>Hypocotyl callus</td>
<td>Gamborg et al. (1968) B5</td>
<td>Proline (100 mM) + Serine (100 mM)</td>
</tr>
<tr>
<td>Dioscorea rotundata</td>
<td>Zygotic embryo callus</td>
<td>MS</td>
<td>CH (1 g/l)</td>
</tr>
<tr>
<td>Glycine max</td>
<td>Suspension</td>
<td>Kartha et al. (1974a)</td>
<td>L-asparagine (5 mM)</td>
</tr>
<tr>
<td>Gossypium hirsutum</td>
<td>Suspension</td>
<td>Gamborg et al. (1968) B5</td>
<td>Glutamine (10 mM)</td>
</tr>
<tr>
<td>Larix decidua</td>
<td>Gametophyte callus</td>
<td>Litvay et al. (1981) LM</td>
<td>CH (1 g/l) + Glutamine (500 mg/l)</td>
</tr>
<tr>
<td>Nigella sativa</td>
<td>Roots or leaf callus</td>
<td>MS</td>
<td>CH (100 – 500 mg/l)</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>Leaf callus</td>
<td>MS</td>
<td>CH (50 mg/l) (500 mg/l was inhibitory)</td>
</tr>
<tr>
<td>Triticum aestivum</td>
<td>Anther</td>
<td>Chu and Hill (1988) MN6</td>
<td>Serine, proline, aspartic acid and alanine (each at 40 mg/l) + glutamine (400 mg/l)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Anther</td>
<td>½ MS</td>
<td>CH (250 mg/l)</td>
</tr>
</tbody>
</table>
concentrations of NH$_4^+$, but cultures can be supplied with equivalent levels of reduced nitrogen in the form of amino acids without the occurrence of toxicity (Durzan, 1982). In soybean suspension cultures, the high level of ammonium in MS medium has been shown to inhibit isocitrate dehydrogenase (a Krebs’ cycle enzyme) and glutamine synthetase, which contribute to the conversion of NH$_4^+$ to glutamine (Gamborg and Shyluk, 1970).

- **Adjustment of intracellular pH.** As intracellular pH is important for the activation of sea urchin eggs, and amino acids can promote embryogenesis, Nuti Ronchi et al., (1984) speculated that the uptake and assimilation of amino acids might help to regulate cellular pH in plants.

As mentioned before, there is commonly a minimum inoculation density below which growth cannot be initiated *in vitro*. This minimum varies according to both the source of the cells and the nature of the medium. It can usually be lowered by employing a ‘conditioned’ medium (i.e. a fresh medium into which the products of another medium in which cells are actively growing, have been added). Alternatively, initial growth at low densities can be supported by the close presence of other actively growing plant cells (‘nurse cultures’). Compounds responsible for this effect must be freely diffusible from living cells and could include growth substances, reducing sugars, vitamins and amino acids. Addition of such supplements has been found to overcome the inhibited growth of some cells at low densities (Kao and Michayluk, 1975).

2.2. PHOSPHATE

Phosphorus is a vital element in plant biochemistry. It occurs in numerous macromolecules such as nucleic acids, phospholipids and co-enzymes. It functions in energy transfer via the pyrophosphate bond in ATP. Phosphate groups attached to different sugars provide energy in respiration and photosynthesis and phosphate bound to proteins regulates their activity. Phosphorus is absorbed into plants in the form of the primary or secondary orthophosphate anions H$_2$PO$_4^-$ and HPO$_4^{2-}$ by an active process, which requires the expenditure of respiratory energy. Phosphate, in contrast to nitrate and sulphate, is not reduced in plants, but remains in the highly oxidized form. It is used in plants as the fully oxidized orthophosphate (PO$_4^{3-}$) form.

In culture media the element is provided as soluble potassium mono- and di-hydrogen phosphates. The di- and mono-valent phosphate anions respectively provided by these chemicals are interconvertible in solution depending on pH. Monovalent H$_2$PO$_4^-$ predominates at pH values below 7, characteristic of most tissue culture media, and it is this ion, which is most readily absorbed into plants (Devlin, 1975). Conversion of H$_2$PO$_4^-$ into divalent HPO$_4^{2-}$ begins to occur as solutions become more alkaline. The divalent ion is said to be only sparingly available to plants but Hagen and Hopkins (1955) and Jacobsen et al., (1958) thought that its absorption could be significant, because even though the ion is normally at a relatively low concentration in nutrient solutions, its affinity with the site of absorption is greater than that of the mono-valent form. Trivalent PO$_4^{3-}$, which appears in alkaline solutions, is not generally absorbed by plants.

In some early tissue culture media, all (e.g. Bouharmont, 1961), or part (e.g. Vacin and Went, 1949) of the phosphorus was supplied as sparingly-soluble phosphates. A slow rate of phosphorus availability seems to be possible from such compounds. The optimum rate of uptake of phosphate (HPO$_4^{2-}$) into cultured Petunia cells occurred at pH 4 (Chin and Miller, 1982) but Zink and Veliky (1979) did not observe any decline in the absorption of phosphate by *Ipomoea* suspension cultures at pH 6.5, when HPO$_4^{2-}$ and H$_2$PO$_4^-$ were present in approximately equal concentrations. Plant tissue cultures secrete phosphatase enzymes into the medium (Ciarrocchi et al., 1981), which could release phosphate ions from organic phosphates.

In the cytoplasm, phosphate is maintained at a constant concentration of 5-10 mM, more or less independent of the external concentration. Phosphate in the vacuole fluctuates according to the external concentration but does not increase above 25 mM (Schachtman et al., 1998). When there is a high supply of phosphate and it is taken up at rates that exceed the demand, a number of processes act to prevent toxic phosphate concentrations, among others storage into inorganic compounds such as phytic acid. High concentrations of dissolved phosphate can depress growth, possibly because calcium and some microelements are precipitated from solution and/or their uptake reduced. In Arabidopsis thaliana, four different phosphate transporter genes have been isolated (*APT1*-4). *In vivo*, the genes are predominantly expressed in the roots and their expression is constitutive or induced by phosphate starvation. Overexpression of *APT1* gene in tobacco cell cultures increased the rate of phosphate uptake (Mitsukawa et al., 1997).
Although the concentration of phosphate introduced into plant culture media has been as high as 19.8 mM, the average level is 1.7 mM and most media contain about 1.3 mM. However, many reports indicate that such typical levels may be too low for some purposes. When phosphate is depleted from MS medium, there is an increase in free amino acids in *Catharanthus roseus* cells, because protein synthesis has ceased and degradation of proteins is occurring (Ukaji and Ashihara, 1987). Phosphate (starting concentration 2.64 mM) and sucrose were the only nutrients completely depleted in *Catharanthus roseus* batch suspension cultures, and the period of growth could be prolonged by increasing the levels of both (MacCarthy et al., 1986). MS medium contains 1.25 mM phosphate which may be insufficient for suspension cultures of some plants. The phosphate in MS medium is insufficient for *Cardamine pratensis* suspension cultures, all having been absorbed in 5 days: it is however adequate for *Silene alba* suspensions (Bister-Miel et al., 1985).

The phosphate in MS medium is also inadequate for static cultures of some plants, or where a large amount of tissue or organs are supported on a small amount of medium (for example where many separate shoots are explanted together in a static shoot culture). The concentration of the ion is then likely to be reduced almost to zero over several weeks (Barroso et al., 1985; Singha et al., 1987; Lumsden et al., 1990). Insufficient levels of phosphate were present from MS during culture of *Hemerocallis*, *Iris* and *Delphinium* (Leiffert et al., 1995). Although growth can continue for a short while after the medium is depleted of phosphate, for some purposes it has been found to be beneficial to increase the phosphate concentration of MS to 1.86 mM (Jones and Murashige, 1974), 2.48 mM (Murashige et al., 1972; Murashige, 1974; Jakobek et al., 1986), 3.1 mM (Miller and Murashige, 1976) or 3.71 mM (Thorpe and Murashige, 1968, 1970), for example, to induce adventitious shoot formation from callus, or to increase the rate of shoot multiplication in shoot cultures. It should be noted that there is in vivo a significant retranlocation of phosphate from older leaves to the growing shoot (Schachtman et al., 1998). Retranlocation also occurs in tissue culture. In *Dahlia* culture in liquid medium, phosphate is almost completely taken up after 2 weeks (Fig. 3.4a). In spite of this, the concentration in tissues formed after the exhaustion is ‘normal’ (Fig. 3.4b). The depletion of phosphate early during culture has also a major effect on the pH of tissue culture media in which added phosphate is the major buffering component. When phosphate levels are increased to obtain a more rapid rate of growth of a culture, it can be advisable to investigate the simultaneous enhancement of the level of *myo*-inositol in the medium.

2.3. POTASSIUM

Potassium is the major cation (positive ion) within plants reaching in the cytoplasm and chloroplasts concentrations of 100 – 200 mM. The biphasic uptake kinetics suggest two uptake systems: a high-affinity and a low-affinity one. K⁺ is not metabolised. It contributes significantly to the osmotic potential of cells. K⁺ counterbalances the negative charge of inorganic and organic anions. It functions in cell extension through the regulation of turgor, it has a major role in stomatal movements and functions in long-distance nutrient flow. Potassium ions are transported quickly across cell membranes and two of their major roles are regulating the pH and osmotic environment within cells. Potassium, calcium, sodium and chloride ions conserve their electrical charges within the plant, unlike the cation NH₄⁺ and the anions NO₃⁻, SO₄²⁻, and H₂PO₄⁻, which are rapidly incorporated into organic molecules. In intact plants, potassium ions are thought to cycle. They move, associated with cations (particularly NO₃⁻), upwards from the roots in the xylem. As nitrate is reduced to ammonia and assimilated, carboxylic acid ions (RCO₃⁻, malate) are produced. These become associated with the released K⁺ ions and are transported in the phloem to the roots, where they are decarboxylated, releasing K⁺ for further anion transport (Ben-Zioni et al., 1971). Carboxylate transported to the roots gives rise to OH⁻ ion, which is excreted into the soil (or medium) to counterbalance NO₃⁻ uptake (Touraine et al., 1988). Potassium ions will clearly have a similar role in cultured tissues, but obvious transport mechanisms will usually be absent.

Many proteins show a high specificity for potassium which, acting as a cofactor, alters their configuration so that they become active enzymes. Potassium ions also neutralise organic anions produced in the cytoplasm, and so stabilise the pH and osmotic potential of the cell. In whole plants, deficiency of potassium results in loss of cell turgor, flaccid tissues and an increased susceptibility to drought, salinity, frost damage and fungal attack. A high potassium to calcium ratio is said to be
Chapter 3

characteristic of the juvenile stage in woody plants (Boulay, 1987). Potassium deficiency in plant culture media is said to lead to hyperhydricity (Pasqualetto et al., 1988), and a decrease in the rate of absorption of phosphate (Chin and Miller, 1982). However quite wide variations in the potassium content of MS medium had little effect on the growth or proliferation of cultured peach shoots (Loreti et al., 1988).

Lavee and Hoffman (1971) reported that the optimum rate of callus growth of two apple clones was achieved in a medium containing 3.5 mM K⁺: when the concentration was much higher than this, or when it was less than 1.4 mM, the callus grew less vigorously. However, the growth rate of wild carrot suspensions was said by Brown et al., (1976) to be at, or near, the maximum when K⁺ concentration was 1 mM: for embryogenesis 10-50 mM K⁺ was required. Uptake of potassium into plants is reduced in the absence of calcium (Devlin, 1975).

Within a large sample of different macronutrient compositions, it is found that authors have tended to relate the concentration of potassium to the level of nitrate. This is correlated with a coefficient of 0.78, P<0.001 (George et al., 1988). The average concentration of potassium in these media was 13.6 mM and the most common value (median), 10.5 mM. Murashige and Skoog (1962) medium contains 20.04 mM K⁺.

2.4. SODIUM

Sodium ions (Na⁺) are taken up into plants, but in most cases they are not required for growth and development and many plants actively secrete them from their roots to maintain a low internal concentration. The element can function as an osmotic stabilizer in halophytic plants; these have become adapted so that, in saline soils with low water potential, they can accumulate abnormally high concentrations of Na⁺ ion in vacuoles, and thereby maintain sufficient turgor for growth.

Sodium does appear to have a beneficial nutritional effect on some plants and is therefore considered as a functional element (Subbarao et al., 2003). Small amounts of sodium chloride (e.g. 230 mg/l) can stimulate the growth of plants in the families Chenopodiaceae and Compositae even when there is no limitation on the availability of K⁺ (Brownell, 1979). In other plants such as wheat, oats, cotton and cauliflower (Sharma and Singh, 1990), sodium can partially replace potassium, but is not essential.

Sodium only appears to be essential to those salt-tolerant plants, which have a C4 (crassulacean acid) metabolism. Examples are Bryophyllum tubiflorum (Crassulaceae) and Mesembryanthemum crystallinum (Aizoaceae). In these plants the element is necessary for CO₂ fixation in photosynthesis.

![Fig. 3.4 Top: Depletion of P in the medium compared to the growth of Dahlia cultures. Bottom (Right) P content in 1-week old Dahlia shoots taken from the culture after 1 week when P had not yet been exhausted. (Left) 6-week old shoots in which the upper part had been formed after all P had been taken up from the medium. The high content in the newly formed upper part of the shoots indicates massive retranslocation of P after uptake from older to newer tissue (G. de Klerk, unpub. data).](image)

Most macronutrient formulations do not contain any sodium at all, and the average concentration in 615 different preparations was 1.9 mM (George et al., 1988). Even if the element is not deliberately added as a macronutrient, small amounts are incorporated in most media from the salts added to provide micronutrients. Plant macronutrient preparations
containing high concentrations of both sodium and chloride ions are not well formulated.

2.5. MAGNESIUM

Magnesium is an essential component of the chlorophyll molecule and is also required non-specifically for the activity of many enzymes, especially those involved in the transfer of phosphate. ATP synthesis has an absolute requirement for magnesium and it is a bridging element in the aggregation of ribosome subunits. Magnesium is the central atom in the porphyrin structure of the chlorophyll molecule. Within plants, the magnesium ion is mobile and diffuses freely and thus, like potassium, serves as a cation balancing and neutralising anions and organic acids. Macklon and Sim (1976) estimated there to be 2.1 mM Mg\(^{2+}\) in the cytoplasm of Allium cepa roots while McClendon (1976) put the general cytoplasmic requirement of plants as high as 16 mM. Plant culture media invariably contain relatively low concentrations of magnesium (average 6.8 mM, median 5.3 mM). Very often MgSO\(_4\) is used as the unique source of both magnesium and sulphate ions.

Walker and Sato (1981) found there to be a large reduction in the number of somatic embryos formed from Medicago sativa callus when Mg\(^{2+}\) was omitted from the medium. In sympathy with this finding, Kintzios et al., (2004) observed in tissue culture of melon that the highest level of magnesium occurred in direct somatic embryogenic cultures and the lowest level in callus cultures.

2.6. SULPHUR

The sulphur utilised by plants is mainly absorbed as SO\(_4^{2-}\), which is the usual source of the element in plant culture media. Uptake is coupled to nitrogen assimilation (Reuveny et al., 1980), and is said to be independent of pH. It results in the excretion of OH\(^-\) ions by the plant, making the medium more alkaline. However, according to Mengel and Kirkby (1982), plants are relatively insensitive to high sulphate levels and only when the concentration is in the region of 50 mM, is growth adversely affected. Although sulphur is mainly absorbed by plants in the oxidized form, that which is incorporated into chemical compounds is mainly as reduced -SH, -S- or -S-S- groups. The sulphur-containing amino acids cysteine and methionine become incorporated into proteins. Sulphur is used by plants in lipid synthesis and in regulating the structure of proteins through the formation of S-S bridges. The element also acts as a ligand joining ions of iron, zinc and copper to metalloproteins and enzymes. The reactive sites of some enzymes are -SH groups. Sulphur is therefore an essential element and deficiency results in a lack of protein synthesis. Sulphur-deficient plants are rigid, brittle and thin-stemmed. Important sulphur compounds are glutathione, which acts in detoxification of oxygen radicals, and the proteins thioredoxin and ferredoxin that are involved in redox chemistry.

Growth and protein synthesis in tobacco cell suspensions were reduced on a medium containing only 0.6 mM SO\(_4^{2-}\) instead of 1.73 mM (Klapheck et al., 1982) and when the supply of S in the medium was used up, large amounts of soluble nitrogen accumulated in the cells. Most media contain from 2-5 meq/l SO\(_4^{2-}\) (1 – 2.5 mM).

2.7. CALCIUM

As a major cation, calcium helps to balance anions within the plant, but unlike potassium and magnesium, it is not readily mobile. Because of its capacity to link biological molecules together with coordinate bonds, the element is involved in the structure and physiological properties of cell membranes and the middle lamella of cell walls. The enzyme β-(1→3)-glucan synthase depends on calcium ions, and cellulose synthesis by cultured cells does not occur unless there are at least micro-molar quantities of Ca\(^{2+}\) in the medium. Many other plant enzymes are also calcium-dependent and calcium is a cofactor in the enzymes responsible for the hydrolysis of ATP.

Although calcium can be present in millimolar concentrations within the plant as a whole, calcium ions are pumped out of the cytoplasm of cells. Ca\(^{2+}\) is sequestered in the vacuole, complexes with calcium-binding proteins and may precipitate into calcium oxalate crystals to maintain the concentration at around only 0.1 mM. The active removal of Ca\(^{2+}\) is necessary to prevent the precipitation of phosphate (and the consequent disruption of phosphate-dependent metabolism) and interference with the function of Mg\(^{2+}\). The uniquely low intra-cellular concentration of Ca\(^{2+}\) allows plants to use calcium as a chemical ‘second messenger’ (Hepler and Wayne, 1985; Sanders et al., 1999). Regulatory mechanisms are initiated when Ca\(^{2+}\) binds with the protein calmodulin, which is thus enabled to modify enzyme activities. A temporary increase in Ca\(^{2+}\) concentration to 1 or 10 mM does not significantly alter the ionic environment within the cell, but is yet sufficient to
trigger fundamental cell processes such as polarized
growth (for example that of embryos - Shelton et al.,
1981), response to gravity and plant growth
substances, cytoplasmic streaming, and mitosis
(Ferguson and Drbak, 1988; Poovaiah, 1988).
Physiological and developmental processes, which
are initiated through the action of phytochrome are
also dependent on the presence of Ca\(^{2+}\) (Shacklock
et al., 1992). A short-term increase in cytosolic free
Ca\(^{2+}\) has been observed for osmoadaptation (Taylor
et al., 1996), phytoalexin synthesis (Knight et al.,
1991), thermotolerance (Gong et al., 1998) and
induction of free-radical scavengers (Price et al.,
1994).

Large quantities of calcium can be deposited
outside the protoplast, in cell vacuoles and in cell
walls. Calcification strengthens plant cell walls and
is thought to increase the resistance of a plant to
infection. By forming insoluble salts with organic
acids, calcium immobilises some potentially
damaging by-products. The element gives protection
against the effects of heavy metals and conveys some
resistance to excessively saline conditions and low
pH.

The Ca\(^{2+}\) ion is involved in in vitro
morphogenesis and is required for many of the
responses induced by plant growth substances,
particularly auxins and cytokinins. In the moss
Funaria, cytokinin causes an increase in membrane-
associated Ca\(^{2+}\) specifically in those areas which are
undergoing differentiation to become a bud (Saunders
and Hepler, 1981). Protocorm formation from callus
of Dendrobium fimbriatum was poor on Mitra
et al., (1976) A medium when calcium was omitted (Mitra
et al., 1976) and in Torenia stem segments,
adventitious bud formation induced by cytokinin
seems to be mediated, at least in part, by an increase
in the level of Ca\(^{2+}\) within cells (Tanimoto and
Harada, 1986). Exogenous Ca\(^{2+}\) enhanced the
formation of meristemoids and the first phases of
outgrowth into organs in tobacco pith explants
(Capitani and Altamura, 2004). In carrot, somatic
embryogenesis coincides with a rise of free cytosolic
Ca\(^{2+}\) (Timmers et al., 1996) and applied Ca\(^{2+}\)
increases the number of somatic embryos (Jansen
et al., 1990).

2.7.1. Shoot tip necrosis

Calcium deficiency in plants results in poor root
growth and in the blackening and curling of the
margins of apical leaves, often followed by a
cessation of growth and death of the shoot tip. The
latter symptoms are similar to aluminium toxicity
(Wyn Jones and Hunt, 1967). Tip necrosis has been
especially observed in shoot cultures, sometimes
associated with hyperhydricity. It often occurs after
several subcultures have been accomplished (e.g. in
Cercis canadensis - Yusnita et al., 1990). After
death of the tip, shoots often produce lateral
branches, and in extreme cases the tips of these will
also die and branch again. The cause of tip necrosis
has not always been determined [e.g. in Pistacia
shoot cultures (Borghchi, 1986), where shoots
showing symptoms may die after planting out
(Martinelli, 1988)]. The occurrence of necrosis was
reduced in Pistacia (Borghchi loc. cit.) and Prunus
tenella (Alderson et al., 1987) by more frequent
subculturing, but this is a costly and time-consuming
practice. In Pictavia, calcium reduced necrosis
(Borghchi and Alderson, 1996).

Tip necrosis was found in Psidium guajava shoot
cultures after prolonged subculturing, if shoots were
allowed to grow longer than 3 cm, and was common
in rapidly growing cultures (Amin and Jaiswal,
1988); it occurred on Sequoiodendron giganteum
shoots only when they were grown on relatively
dilute media (Monteuuis et al., 1987). Necrosis of
Rosa hybrida ‘White Dream’, was cured by adding
0.1 mg/l GA\(_3\) to the medium (Valle and Boxus,
1987).

Analysis of necrotic apices has shown them to be
deficient in calcium (Debergh, 1988), and a shortage
of this element has been associated with tip necrosis
in Amelanchier, Betula, Populus, Sequoia, Ulmus,
Cydonia and other woody plants, although the extent
of damage is variable even between genotypes within
a species (Sha et al., 1985; Singha et al., 1990). As
calcium is not remobilised within plant tissues,
actively growing shoots need a constant fresh supply
of ions in the transpiration stream. An inadequate
supply of calcium can result from limited uptake of
the ion, and inadequate transport, the latter being
caused by the absence of transpiration due to the high
humidity in the culture vessel. A remedy can
sometimes be obtained by reducing the culture
temperature so that the rate of shoot growth matches
calcium supply, using vessels which promote better
gas exchange (thereby increasing the transpiration
and xylem transport), or by increasing the
concentration of calcium in the medium (McCown
and Sellmar, 1987). The last two remedies can have
drawbacks: the medium will dry out if there is too
free gas exchange; adding extra calcium ions to the
medium is not always effective (e.g. in cultures of
Castanea sativa - Mullins, 1987); and can introduce
undesirable anions. Chloride toxicity can result if too much calcium chloride is added to the medium (see below). To solve this difficulty, McCown et al., (Zeldin and McCown, 1986; Russell and McCown, 1988) added 6 mM calcium gluconate to Lloyd and McCown (1981) WPM medium to correct Ca\(^{2+}\) deficiency, without altering the concentrations of the customary anions. There is a limit to the concentration of calcium, which can be employed in tissue culture media because several of its salts have limited solubility.

2.8. CHLORIDE

The chloride ion (Cl\(^{-}\)) has been found to be essential for plant growth (Broyer et al., 1954; Johnson et al., 1957; Ozanne et al., 1957; Ozanne, 1958), but seems to be involved in few biological reactions and only very small quantities are really necessary. Rains (1976) listed chlorine as a micronutrient. Chloride is required for the water-splitting protein complex of Photosystem II, and it can function in osmoregulation in particular in stomatal guard cells. The chloride ion is freely transported and many plants can tolerate the presence of high concentrations without showing toxicity. The chief role of chloride seems to be in the maintenance of turgor and in balancing rapid changes in the level of free cations such as K\(^{+}\), Mg\(^{2+}\) and Na\(^{+}\). Plants deprived of Cl\(^{-}\) are liable to wilting (Johnson et al., 1957).

In isolated chloroplasts, chloride (together with Mn\(^{2+}\)) ions are required for oxygen evolution in photosystem II of photosynthesis (Bov et al., 1963; Mengel and Kirkby, 1982; Shkolnik, 1984), although there has been some doubt whether this requirement exists in vivo (Terry, 1977). Chloride ions are best taken into plants at slightly acid pH (Jacobson et al., 1971).

The most common concentration of chloride in culture media is 3 mM, the average 6 mM. MS medium contains 6 mM Cl\(^{-}\); Quoirin and Lepoivre (1977) medium, only 0.123 μM. Some species are sensitive to chloride ions. McCown and Sellmer (1987) reported that too high a concentration, seemed to cause woody species to have yellow leaves and weak stems: sometimes tissues collapsed and died. An excess of Cl\(^{-}\) has been thought to be one cause of the induction of hyperhydricity, and omission of the ion does seem to prevent the development of these symptoms in Prunus (Volume 2). Pevalek-Kozlina and Jelaska (1987) deliberately omitted chloride ions from WPM medium for the shoot culture of Prunus avium and obtained infrequent hyperhydricity in only one genotype. The presence of 7 mM Cl\(^{-}\) can be toxic to pine suspension cultures (Teasdale, 1987).

As chlorine has only a relatively small nutritional significance, steps are sometimes taken to reduce the concentration of chloride ion in culture media, but in order to adjust the concentration of other ions, it is then often necessary to make a marked increase in SO\(_4^{2-}\). For example, using ammonium sulphate instead of ammonium chloride to supply NH\(_4^{+}\) in Eeuwens (1976) Y3 medium, would increase the sulphate level from 2 to 12 meq/l (from 1 to 6 mM).

3. MICRONUTRIENTS

Plant requirements for microelements have only been elucidated over the past 50-60 years. Before the end of the last century, it had been realised that too little iron caused chlorophyll deficiency in plants, but the importance of other elements took many years to prove conclusively. Mazé, for example, used hydroponic techniques during the years 1914-1919 to show that zinc, manganese and boron improved the growth of maize plants. Sommer and Lipman (1926) also showed the essentiality of boron, and Sommer (1931) of copper, but uncertainty over which elements were really indispensable to growth still existed in 1933 when Hoagland and Snyder proposed two supplementary nutrient solutions for water culture which in total contained 26 elements. It took several further years to prove that molybdenum (Arnon and Stout, 1939) and cobalt in very small amounts, were most important for healthy plant growth. Early plant tissue culture work was to both profit from, and contribute to the findings of previous hydroponic studies. Our understanding has been enhanced by investigations into the biochemical role of minor elements.

3.1. EARLY USE IN PLANT TISSUE CULTURE MEDIA

At the time of the early plant tissue culture experiments, uncertainty still existed over the nature of the essential microelements. Many tissues were undoubtedly grown successfully because they were cultured on media prepared from impure chemicals (see below) or solidified with agar, which acted as a micronutrient source.
In the first instance, the advantage of adding various micronutrients to culture media was mainly evaluated by the capability of individual elements to improve the growth of undifferentiated callus or isolated root cultures. Knudson (1922) incorporated Fe and Mn in his very successful media for the non-symbiotic germination of orchid seeds, and, following a recommendation by Berthelot (1934), Gautheret (1939) and Nobécourt (1937) included in their media (in addition to iron) copper, cobalt, nickel, titanium and beryllium. Zinc was found to be necessary for the normal development of tomato root systems (Eltinge and Reed, 1940), and without Cu, roots ceased to grow (Glasstone, 1947). Hannay and Street (1954) showed that Mo and Mn were also essential for root growth.

An advantage adding five micronutrients to tissue culture media was perhaps first well demonstrated by Heller in 1953 who found that carrot callus could be maintained for an increased number of passages when Fe, B, Mn, Zn and Cu were present.

3.2. MICRONUTRIENTS FROM TRACE IMPURITIES

Micronutrients tend to be added to modern media by the addition of fairly standard chemicals. Street (1977) rightly emphasised that even analytical grade chemicals contain traces of impurities that will provide a hidden supply of micronutrients to a medium. An illustration of this, comes from the work of Dalton et al., (1983) who found traces of silicon (Si) in a precipitate from MS medium which had been made up with analytical grade laboratory chemicals. Gelling agents contain inorganic elements but whether cultures can utilize them is unclear. Amounts of contaminating substances in chemicals would have been greater in times past, so that an early medium such as Knudson (1922; 1943) B, prepared today with highly purified chemicals, will not have quite the same composition as when it was first used by Knudson in 1922; the addition of some micronutrients might improve the results obtained from a present-day formulation of such early media.

3.3. OPTIMUM MICRO-ELEMENT CONCENTRATIONS

Most modern culture media use the microelements of Gamborg et al., (1968) B5 medium, or the more concentrated mixtures in MS or Bourgin and Nitsch (1967) H media. Several research workers have continued to use Heller (1953) micro-nutrient formulation, even though higher levels are now normally recommended. Quoirin and Lepoivre (1977) showed clearly that in conjunction with MS or their Quoirin and Lepoivre (1977) B macro-elements, the concentration of Mn in Heller’s salts should be increased by 100-fold to obtain the most effective growth of Prunus meristems.

Cell growth and morphogenesis of some species may even be promoted by increasing the level of micronutrients above that recommended by Murashige and Skoog (1962). The induction and maintenance of callus and growth of cell suspensions of juvenile and mature organs of both Douglas fir and loblolly pine, was said to be improved on Litvay et al., (1981) LM medium in which Mg, B, Zn, Mo, Co and I were at 5 times the concentration of MS micro-elements, and Mn and Cu at 1.25 and 20 times respectively (Litvay et al., 1981; Verma et al., 1982). Other authors to have employed high micronutrient levels are Barwale et al., (1986) who found that the induction of adventitious shoots from callus of 54 genotypes of Glycine max was assisted by adding four times the normal concentration of minor salts to MS medium.

A further example of where more concentrated micro-elements seemed to promote morphogenesis is provided by the work of Wang, et al., (1980, 1981). Embryogenesis could be induced most effectively in callus derived from Hevea brasiliensis anthers, by doubling the concentration of microelements in MS medium, while at the same time reducing the level of macronutrients to 60-80% of the original.

Despite these reports, few research workers seem to have accepted the need for such high micronutrient levels. To diminish the occurrence of hyperhydricity in shoot culture of carnation, Dencso (1987) reduced the level of micronutrients (except iron, which was as recommended by Dalton et al., 1983) to those in MS medium, but this mixture was inadequate for Gerbera shoot cultures and the rate of propagation was less than that with the normal MS formulation.

The need for macronutrient concentrations to be optimised as the first step in media development seems to be emphasised by results of Eeuwens (1976). In an experiment with factorial combinations of the macro- and micro-nutrient components of four media, his Eeuwens (1976) Y3 micronutrients gave a considerable improvement in the growth of coconut callus, compared with other micro-element mixtures, when they were used with Y3 and MS macronutrients, but not when used with those of White (1942) or Heller (1953; 1955).
3.4. CELLULAR DIFFERENTIATION AND MORPHOGENESIS

Welander (1977) obtained evidence, which suggested that plant cells are more demanding for minor elements when undergoing morphogenesis. Petiole explants of *Begonia hiemalis* produced callus on media without micronutrients, but would only produce adventitious shoot buds directly when micronutrients were added to the macronutrient formulation. The presence of iron is particularly important for adventitious shoot and root formation (Legrand, 1975).

That mineral nutrition can influence cellular differentiation in combination with growth hormones, was shown by Beasley et al., (1974). Cotton ovules cultured on a basic medium containing 5.0 mM IAA and 0.5 mM GA₃, required 2 mM calcium (normally present in the medium) for the ovules to develop fibres. Magnesium and boron were essential for fibre elongation.

3.5. THE ROLES OF MICRONUTRIENTS

3.5.1. Manganese

The essential micronutrient metals Fe, Mn, Zn, B, Cu, Co and Mo are components of plant cell proteins of metabolic and physiological importance. At least five of these elements are, for instance, necessary for chlorophyll synthesis and chloroplast function (Sundqvist et al., 1980). Micronutrients have roles in the functioning of the genetic apparatus and several are involved with the activity of growth substances.

Manganese (Mn) is one of the most important microelements and has been included in the majority of plant tissue culture media. It is generally added in similar concentrations to those of iron and boron, i.e. between 25-150 mM. Manganese has similar chemical properties to Mg²⁺ and is apparently able to replace magnesium in some enzyme systems (Hewitt, 1948). However there is normally 50- to 100-fold more Mg²⁺ than Mn²⁺ within plant tissues, and so it is unlikely that there is frequent substitution between the two elements.

The most probable role for Mn is in definition of the structure of metalloproteins involved in respiration and photosynthesis (Clarkson and Hanson, 1980). It is known to be required for the activity of several enzymes, which include decarboxylases, dehydrogenases, kinases and oxidases and superoxide dismutase enzymes. Manganese is necessary for the maintenance of chloroplast ultra-structure. Because Mn(II) can be oxidized to Mn(IV), manganese plays an important role in redox reactions. The evolution of oxygen during photosystem II of the photosynthetic process, is dependent on a Mn-containing enzyme and is proportional to Mn content (Mengel and Kirkby, 1982; Shkolnik, 1984). Mn is toxic at high concentration (Sarkar et al., 2004).

In tissue cultures, omission of Mn ions from Doerschug and Miller (1967) medium reduced the number of buds initiated on lettuce cotyledons. A high level of manganese could compensate for the lack of molybdenum in the growth of excised tomato roots (and vice versa) (Hannay and Street, 1954). Natural auxin levels are thought to be reduced in the presence of Mn²⁺ because the activity of IAA-oxidase is increased. This is possibly due to Mn²⁺ or Mn-containing enzymes inactivating oxidase inhibitors, or because manganous ions are one of the cofactors for IAA oxidases in plant cells (Galston and Hillman, 1961). Manganese complexed with EDTA increased the oxidation of naturally-occurring IAA, but not the synthetic auxins NAA or 2,4-D (MacLachlan and Waygood, 1956). However, Chée (1986) has suggested that, at least in blue light, Mn²⁺ tends to cause the maintenance of, or increase in, IAA levels within tissues by inactivating a co-factor of IAA oxidase. When the Mn²⁺ level in MS medium was reduced from 100 mM to 5 mM, the production in blue light, of axillary shoots by *Vitis* shoot cultures was increased.

3.5.2. Zinc

Zinc is a component of stable metallo-enzymes with many diverse functions, making it difficult to predict the unifying chemical property of the element, which is responsible for its essentiality (Clarkson and Hanson, 1980). Zinc is required in more than 300 enzymes including alcohol dehydrogenase, carbonic anhydrase, superoxide dismutase and RNA-polymerase. Zinc forms tetrahedral complexes with N-, O-, and S-ligands. In bacteria, Zn is present in RNA and DNA polymerase enzymes, deficiency resulting in a sharp decrease in RNA levels. DNA polymerase is concerned with the repair of incorrectly formed pieces of DNA in DNA replication, and RNA polymerase locates the point on the DNA genome at which initiation of RNA synthesis is to take place. Divalent Mg²⁺, Mn²⁺ or Co²⁺ are also required for activation of these enzymes (Eichhorn, 1980).

Zinc deficient plants suffer from reduced enzyme activities and a consequent diminution in protein, nucleic acid and chlorophyll synthesis. Molybdenum- and zinc-deficient plants have a decreased chlorophyll content and poorly developed...
chloroplasts. Plants deprived of zinc often have short internodes and small leaves.

The concentration of Zn$^{2+}$ in MS medium is 30 μM but amounts added to culture media have often varied widely between 0.1-70 μM and experimental results to demonstrate the most appropriate level are limited. When Eriksson (1965) added 15 mg/l Na$_2$ZnEDTA.2H$_2$O (40μM Zn$^{2+}$) to *Haplopappus gracilis* cell cultures, he obtained a 15% increase in cell dry weight which was thought to be due to the presence of zinc rather than the chelating agent. Zinc was also shown to increase growth of a rice suspension. The highest concentration tested, 520 μM, resulted in the fastest rate of growth and it was suggested that zinc had increased auxin activity (see below) (Hossain *et al.*, 1997). Zinc is required for adventitious root formation in *Eucalyptus* (Schwambach *et al.*, 2005). In cassava, additional zinc promotes somatic embryogenesis and rooting (C.J.J.M Raemakers, pers. commun.). However, very high concentrations of zinc are found to be inhibitory, and the microelement has been noted to prevent root growth at a concentration higher than 50 μM.

There is a close relationship between the zinc nutrition of plants and their auxin content (Skooog, 1940). It has been suggested that zinc is a component of an enzyme concerned with the synthesis of the IAA precursor, tryptophan (Tsui, 1948). The importance of Zn for tryptophan synthesis is especially noticeable in crown gall callus which normally produces sufficient endogenous auxin to maintain growth on a medium without synthetic auxins, but which becomes auxin-deficient and ceases to grow in the absence of Zn (Klein *et al.*, 1962).

3.5.3. Boron

Boron is involved in plasma membrane integrity and functioning, probably by influencing membrane proteins, and cell wall intactness. Reviews have been provided by Lewis (1980) and by Blevins and Lukaszewski (1998). The element is required for the metabolism of phenolic acids, and for lignin biosynthesis: it is probably a component, or co-factor, of the enzyme which converts *p*-coumaric acid to caffeate and 5-hydroxyferulate. Boron is necessary for the maintenance of meristematic activity, most likely because it is involved in the synthesis of N-bases (uracil in particular); these are required for RNA synthesis (Mengel and Kirkby, 1982). It is also thought to be involved in the maintenance of membrane structure and function, possibly by stabilizing natural metal chelates which are important in wall and membrane structure and function (Pollard *et al.*, 1977; Clarkson and Hanson, 1980). Boron is concerned with regulating the activities of phenolase enzymes; these bring about the biosynthesis of phenylpropane compounds, which are polymerized to form lignin. Lignin biosynthesis does not take place in the absence of boron. Boron also mediates the action of phytochrome and the response of plants to gravity (Tanada, 1978).

Use in culture media. In the soil, boron occurs in the form of boric acid and it is this compound, which is generally employed as the source of the element in tissue cultures. Uptake of boric acid occurs most readily at acid pH, possibly in the undissociated form (Oertli and Grgurevic, 1974) or as H$_2$BO$_3^-$ (Devlin, 1975). A wide range of boron concentrations has been used in media, the most usual being between from 50 and 100 μM: MS medium contains 100 μM. Bowen (1979) found boron to be toxic to sugarcane suspensions above 2 mg/l (185 μM), but there are a few reports of higher concentrations being employed (Table 3.8). High concentrations of boron may have a regulatory function; for example, 1.6-6.5 mM have been used in simple media to stimulate pollen germination (Brewbaker and Kwack, 1963; Taylor, 1972).

Boric acid reacts with some organic compounds having two adjacent *cis*-hydroxyl groups (Greenwood, 1973). This includes *o*-diphenols, hexahydric alcohols such as mannitol and sorbitol (commonly used in plant tissue culture as osmotic agents), and several other sugars, but excludes sucrose which forms only a weak association. Once the element is complexed it appears to be unavailable to plants. This led Lewis (1980) to suggest that because boric acid was required for lignin biosynthesis, vascular plants were led, during evolution, to use sucrose exclusively for the transport of carbohydrate reserves.

Although the addition of sugar alcohols and alternative sugars to sucrose can be beneficial during plant tissue culture (see Chapter 4), it is clearly necessary to return to a sucrose-based medium for long-term culture, or boron deficiency may result.

Deficiency symptoms. Boron is thought to promote the destruction of natural auxin and increase its translocation. Endogenous IAA levels increase in the absence of boron and translocation is reduced, the compound probably being retained at the site of synthesis (Goldbach and Amberger, 1986). Plants suffering from boron deficiency have restricted root systems (Odhnoff, 1957; Whittington, 1959) and a
reduced capacity to absorb \(\text{H}_2\text{PO}_4^- \) and some other ions. High levels of auxins can have the same effect on growth and ion uptake (Pollard et al., 1977). Neales (1959, 1964) showed that isolated roots stopped growing unless a minimum concentration of boron was present (although the necessity for the element was not so apparent when cultures were grown in borosilicate glass vessels). Inhibition of root elongation in the absence of boron has been shown to be due to the cessation of mitosis and the inhibition of DNA synthesis (Moore and Hirsch, 1981). Boron deficiency also results in depressed cytokinin synthesis. Cell division is inhibited in the absence of boron, apparently because there is a decrease in nuclear RNA synthesis (Ali and Jarvis, 1988). However, deficiency often leads to increased cambial growth in intact dicotyledonous plants.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Concentration of boron (μM)</th>
<th>Type of Culture</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antirrhinum majus</td>
<td>323</td>
<td>Embryos from protoplast colonies</td>
<td>Poirier-Hamon et al., (1974)</td>
</tr>
<tr>
<td>Brassica napus</td>
<td>200</td>
<td>Embryo</td>
<td>Monnier (1976)</td>
</tr>
<tr>
<td>Capsella bursa-pastoris</td>
<td>200</td>
<td>Embryo</td>
<td></td>
</tr>
<tr>
<td>Citrus medica</td>
<td>646</td>
<td>Anther callus</td>
<td>Drira and Benbadis (1975)</td>
</tr>
<tr>
<td>Hevea brasiliensis</td>
<td>320</td>
<td>Anther: plant regeneration</td>
<td>Chen (1984)</td>
</tr>
<tr>
<td>Hordeum crosses</td>
<td>242</td>
<td>Embryo rescue</td>
<td>Jensen (1974)</td>
</tr>
<tr>
<td>Larix deciduas</td>
<td>250</td>
<td>Direct morphogenesis</td>
<td>Bonga (1984)</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>242</td>
<td>Callus and embryogenesis</td>
<td>Street and McGregor (1952)</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>323</td>
<td>Isolated root</td>
<td>Ohyama and Nitsch (1972)</td>
</tr>
<tr>
<td>Petunia hybrida</td>
<td>566</td>
<td>Callus and root formation</td>
<td>Sangwan and Norreel (1975)</td>
</tr>
<tr>
<td>Prunus amygdalus</td>
<td>200</td>
<td>Shoot</td>
<td>Hisjima (1982a)</td>
</tr>
</tbody>
</table>

One of the changes seen in some plants grown under boron deficiency is the outgrowth of lateral buds resulting in plants with a bushy or rosette appearance. In pea, this was associated with a sharp decrease in IAA-export from the apex (Li et al., 2001). It is generally accepted that the outgrowth of lateral buds is inhibited by polar auxin transport in the stem and that disruption of this transport by decapitation or auxin transport inhibitors results in the outgrowth of lateral buds (Tamas, 1987).

Cotton ovules which otherwise develop fibres when cultured, commence extensive callus formation when placed on a medium deficient in boron. On the other hand, the growth rate of callus cultures of *Helianthus annuus* and *Daucus carota* (Krosing, 1978), and cell cultures of sugar cane (Bowen, 1979), was much reduced when boron was not present in the growth medium. Boron influences the development of the suspensor of somatic embryos in *Larix deciduas* (Behrendt and Zoglauer, 1996). Boron had no influence on the induction of embryogenesis in *Daucus carota* but altered the development of embryos: root development was promoted at low concentrations and shoot development at high. This coincided with a high and low auxin-cytokinin ratio, respectively (Mashayekhi and Neumann, 2006).

Adventitious root formation. Boron is thought to promote the destruction of auxin. Although auxin is required for the formation of adventitious root initials, boron is necessary in light grown-plants for the growth of these primordia (Middleton et al., 1978); possibly boron enhances the destruction of auxin in these circumstances, which in high concentrations is inhibitory to root growth (Jarvis, 1986). An interaction between boron and auxins in the rooting of cuttings has been noticed in several species (Hemberg, 1951; Weiser, 1959; Weiser and Blaney, 1960; Bowen et al., 1975; Josten and Kutschera, 1999) and a supply of exogenous borate has been shown to be essential (Ali and Jarvis, 1988). However, excessive boron concentrations lead to a reduction in the number of roots formed (Jarvis, 1986). Boron deficiency had no observed effect...
on the rooting of *Eucalyptus* microcuttings (Schwambach *et al.*, 2005).

3.6. CUPPER AND MOLYBDENUM

Copper is an essential micronutrient, even though plants normally contain only a few parts per million of the element. Two kinds of copper ions exist; they are the monovalent cuprous [Cu(I)] ion, and the divalent cupric [Cu(II)] ion: the former is easily oxidized to the latter; the latter is easily reduced. The element becomes attached to enzymes, many of which bind to, and react with oxygen. They include the cytochrome oxidase enzyme system, responsible for oxidative respiration, and superoxide dismutase (an enzyme which contains both copper and zinc atoms). Detrimental superoxide radicals, which are formed from molecular oxygen during electron transfer reactions, are reacted by superoxide dismutase and thereby converted to water. Copper atoms occur in plastocyanin, a pigment participating in electron transfer.

Several copper-dependent enzymes are involved in the oxidation and hydroxylation of phenolic compounds, such as ABA and dopamine (Lerch, 1981). The hydroxylation of monophenols by copper-containing enzymes leads to the construction of important polymeric constituents of plants, such as lignin. These same enzymes can lead to the blackening of freshly isolated explants. Copper is a constituent of ascorbic acid oxidase and the characteristic growth regulatory effects of ethylene are thought to depend on its metabolism by an enzyme, which contains copper atoms.

High concentrations of copper can be toxic. Most culture media include ca. 0.1-1.0 µM Cu²⁺. Ions are usually added through copper sulphate, although occasionally cupric chloride or cupric nitrate have been employed. In hydroponic culture of *Trifolium pratense*, uptake of copper into the plant depended on the amount of nitrate in solution. Uptake was considerably reduced when NO₃ was depleted (Jarvis, 1984). The concentration of Cu in tissue culture media is very small relative to the level in plants (Table 3.1). It is therefore not surprising that various authors report strong increases of growth when Cu is added at 1-5 µM (Dahleen, 1995; Nirwan and Kothari, 2003; Kintzios *et al.*, 2001; Nas and Read, 2004; Bouman and Tiekstra, 2005)

Plants utilise hexavalent molybdenum and absorb the element as the molybdate ion (MoO₄²⁻). This is normally added to culture media as sodium molybdate at concentrations up to 1 mM. Considerably higher levels have occasionally been introduced [e.g. in the media of Abou-Mandour (1977) and Asahira and Kano (1977)] apparently without adverse effect, although Teasdale (1987) found pine suspension cultures were injured by 50 mM. Molybdenum is a component of several plant enzymes, two being nitrate reductase and nitrogenase, in which it is a cofactor together with iron: it is therefore essential for nitrogen utilisation. Tissues and organs presented with NO₃ in a molybdenum-deficient medium can show symptoms of nitrate toxicity because the ion is not reduced to ammonia.

3.7. COBALT

Cobalt is not regarded as an essential element. Nevertheless, it was found to have been included in approximately half of a large sample of published plant culture media (George, *et al.*, 1987). Murashige and Skoog (1962) included Co in their medium because it had been shown to be required by lower plants (Holm-Hansen *et al.*, 1954) and that it might have a role in regulating morphogenesis in higher plants (Miller, 1954; Salisbury, 1959). However, no stimulatory effect on the growth of tobacco callus was observed by adding cobalt chloride to the medium at several concentrations from 0.1 µM and above, and at 80.0 and 160 µM the compound was toxic. Similarly Schenk and Hildebrandt (1972) obtained no clear evidence for a Co requirement in tests on a wide variety of plants, but retained the element in their medium because they occasionally observed an apparent stimulation to the callus growth of some monocotyledons. *Pinus* suspension cultures do not require cobalt (Teasdale, 1987). The concentration most commonly added to a medium is ca. 0.1 µM, although ten times this amount has sometimes been used. Cobalt is the metal component of Vitamin B12 which is concerned with nucleic acid synthesis (Fries, 1962), but evidence that the element has any marked stimulatory effect on growth or morphogenesis in plant tissue cultures is hard to find. Cobalt may replace nickel in urease and thereby render it inactive, e.g., in potato (Witte *et al.*, 2002).

Advantage from adding cobalt to plant culture media might be derived from the fact that the element can have a protective action against metal chelate toxicity and it is able to inhibit oxidative reactions catalysed by ions of copper and iron (Albert, 1958). The Co²⁺ ion can inhibit ethylene synthesis.
3.8. ALUMINIUM AND NICKEL

Several workers, following Heller (1953), have included aluminium and nickel in their micronutrient formulations. However, the general benefit of adding the former metal does not seem to have been adequately demonstrated.

It was believed that in most plants Ni\(^{2+}\) is not absolutely required for normal growth and development (Mishra and Kar, 1975). However, more recently, it has been found by careful experimentation that nickel is essential (Gerendás \textit{et al.}, 1999). The ion is a component of urease enzymes (Dixon \textit{et al.}, 1975; Polacco, 1977a), which convert urea to ammonia. It has been shown to be an essential micronutrient for some legumes and to activate urease in potato microshoot cultures (Witte \textit{et al.}, 2002). In tissue cultures the presence of 0.1 mM Ni\(^{2+}\) strongly stimulates the growth of soybean cells in a medium containing only urea as a nitrogen source. Slow growth occurs on urea without the deliberate addition of nickel, possibly supported by trace amounts of the element remaining in the cells (Polacco, 1977b). Cells and tissues are not normally grown with urea as a nitrogen source, and as urease is the only enzyme, which has been shown to have a nickel component, it could be argued that nickel is not essential. However, without it soybean plants grown hydroponically, accumulate toxic concentrations of urea (2.5\%) in necrotic lesions on their leaf tips, whether supplied with inorganic nitrogen, or with nitrogen compounds obtained from bacterial symbiotic nitrogen fixation. These symptoms can be alleviated in plants growing in hydroponic culture by adding 1 mg/l Ni to the nutrient solution. Absence of nickel in a hydroponic solution also results in reduced early growth and delayed nodulation (Eskew \textit{et al.}, 1983).

Despite these findings nickel has not been added deliberately to tissue culture media. However, it should be noted that agar contains relatively high levels of nickel (Table 3.2) and the possibility of urea toxicity may have been avoided because, in tissue cultures, urea diffuses into the medium (Teasdale, 1987). Quoirin and Lepoivre (1977) showed that at the concentrations recommended by Heller, Al\(^{3+}\) and Ni\(^{2+}\) were without effect on the growth of \textit{Prunus} meristems and were inhibitory at higher levels. If it is thought that Ni should be added to a culture medium, 0.1 mM is probably sufficient.

Aluminium has been said to be necessary for the growth of some ferns (Taubck, 1942), but is not generally added to tissue culture media for fern propagation.

3.9. IODINE

Iodine is not recognised as an essential element for the nutrition of plants (Rains, 1976), although it may be necessary for the growth of some algae, and small amounts do accumulate in higher plants (ca.12 and 3 mol/kg dry weight in terrestrial and aquatic plants respectively – Raven, 1986). However, the iodide ion has been added to many tissue culture media (e.g. to 65\% of micronutrient formulations).

The practice of including iodine in plant culture media began with the report by White (1938) that it improved the growth of tomato roots cultured \textit{in vitro}. Hannay (1956) obtained similar results and found that root growth declined in the absence of iodine which could be supplied not only from potassium iodide, but also from iodoacetate or methylene iodide, compounds which would only provide iodide ions very slowly in solution by hydrolysis. Street (1966) thought that these results indicated that iodine could be an essential nutrient element, but an alternative hypothesis is that any beneficial effect may result from the ability of iodide ions to act as a reducing agent (George \textit{et al.}, 1988). Oxidants convert iodide ions to free iodine. Eeuwens (1976) introduced potassium iodide into his Y3 medium at 0.05 mM (ten times the level used by Murashige and Skoog), as it prevented the browning of coconut palm tissue cultures. The presence of 0.06 \(\mu\)M potassium iodide slightly improved the survival and growth of cultured \textit{Prunus} meristems (Quoirin and Lepoivre, 1977).

Although Gautheret (1942) and White (1943) had recommended the addition of iodine to media for callus culture, Hildebrandt \textit{et al.}, (1946) obtained no statistically significant benefit from adding potassium iodide to tumour callus cultures of tobacco and sunflower. However, as the average weight of tobacco callus was 11\% less without it, the compound was included (at different levels) in both of the media they devised. Once again iodine also had no appreciable effect on tobacco callus yield in the experiments of Murashige and Skoog (1962), but was nevertheless included in their final medium. Other workers have omitted iodine from MS medium (e.g. Roest and Bokelmann, 1975; Périnet \textit{et al.}, 1988; Gamborg, 1991) or from new media formulations without any apparent ill effects. However, Teasdale \textit{et al.}, (1986); Teasdale, (1987) reported a definite requirement of \textit{Pinus taeda} suspensions for 25 mM
KI when they were grown on Litvay et al., (1981) LM medium.

There seems, at least in some plants, to be an interaction between iodine and light. Eriksson (1965) left KI out of his modification of MS medium, finding that it was toxic to *Haplopappus gracilis* cells cultured in darkness: shoot production in *Vitis* shoot cultures kept in blue light was reduced when iodine was present in the medium (Chée, 1986), but the growth of roots on rooted shoots was increased. Chée thought that these results supported the hypothesis that iodine enhanced the destruction and/or the lateral transport of IAA auxin. This seems to be inconsistent with the suggestion that I⁻ acts mainly as a reducing agent.

3.10. SILICON

Silicon (Si) is the second most abundant element on the surface of the earth. Si has been demonstrated to be beneficial for the growth of plants and to alleviate biotic and abiotic stress (Epstein, 1971). The silicate ion is not normally added to tissue culture media, although it is likely to be present in low concentrations. Deliberate addition to the medium might, however, improve the growth of some plants. Adatia and Besford (1986) found that cucumber plants depleted silicate from a hydroponic solution and in consequence their leaves were more rigid, had a higher fresh weight per unit area and a higher chlorophyll content than the controls. The resistance of the plants to powdery mildew was also much increased.

3.11. IRON

Chelating agents. Some organic compounds are capable of forming complexes with metal cations, in which the metal is held with fairly tight chemical bonds. The complexes formed may be linear or ring-shaped, in which case the complex is called a chelate (from the Greek word meaning a crab’s claw). Metals can be bound (or sequestered) by a chelating agent and held in solution under conditions where free ions would react with anions to form insoluble compounds, and some complexes can be more chemically reactive than the metals themselves. For example, Cu²⁺ complexed with amino acids is more active biologically than the free ion (Cruickshank et al., 1987). Chelating agents vary in their sequestering capacity (or avidity) according to chemical structure and their degree of ionisation, which changes with the pH of the solution. Copper is chelated by amino acids at relatively high pH, but in conditions of greater acidity, it is more liable to be complexed with organic acid ligands (White et al., 1981). The higher the stability of a complex, the higher the avidity of the complexing agent. One, and in many cases, two or three molecules of a complexing agent may associate with one metal ion, depending on its valency.

Despite tight bonding, there is always an equilibrium between different chelate complexes and between ions in solution. Complexing agents also associate with some metal ions more readily than with others. In general Fe³⁺ (for agents able to complex with trivalent ions) complexes have a higher stability than those of Cu²⁺, then (in descending order), Ni²⁺, Al³⁺ (where possible), Zn²⁺, Co²⁺, Fe²⁺, Mn²⁺ and Ca²⁺ (Albert, 1958; Reilley and Schmid, 1958). For a chelated metal ion to be utilised by a plant there must be some mechanism whereby the complex can be broken. This could occur if it is absorbed directly and the ion displaced by another more avid binding agent, or if the complex is biochemically denatured. Metals in very stable complexes can be unavailable to plants; copper in EDTA chelates may be an example (Coombes et al., 1977). High concentrations of avid chelating agents are phytotoxic, probably because they competitively withdraw essential elements from enzymes.

Naturally-occurring compounds act as chelating agents. Within the plant very many constituents such as proteins, peptides, porphyrins, carboxylic acids and amino acids have this property (Albert, 1958; Martin, 1979): some of those with high avidity are metal-containing enzymes. Amino acids are able to complex with divalent metals (Fig. 3.5). Grasses are thought to secrete a chelating agent from their roots to assist the uptake of iron (Römheld and Marschner, 1986). There are also synthetic chelating agents with high avidities (stability constants) for divalent and trivalent ions. Some are listed in Table 3.9, and the structure of those most commonly used in plant culture media is illustrated in Fig 3.6. The application of synthetic chelating agents and chelated micronutrients to the roots of some plants growing in alkaline soils can improve growth by supplying essential metals such as iron and zinc which are otherwise unavailable. The addition of such compounds to tissue culture media can help to make macro- and micro-nutrients more accessible to plant cells.
Iron chelates. A key property of iron is its capacity to be oxidized easily from the ferrous \([\text{Fe(II)}]\) to the ferric \([\text{Fe(III)}]\) state, and for ferric compounds to be readily reduced back to the ferrous form. In plants, iron is primarily used in the chloroplasts, mitochondria and peroxisomes of plants for effecting oxidation/reduction (redox) reactions. The element is required for the formation of amino laevulinic acid and protoporphyrinogen (which are respectively early and late precursors of chlorophyll) and deficiency leads to marked leaf chlorosis. Iron is also a component of ferredoxin proteins, which function as electron carriers in photosynthesis.

Iron is therefore an essential micronutrient for plant tissue culture media and can be provided from either ferrous or ferric salts. In early experiments, ferrous sulphate or ferric citrate or tartrate were used in media as a source of the element. Citric and and tartaric acids can act as chelating agents for some divalent metals (Bobtelsky and Jordan, 1945), but are not very efficient at keeping iron in solution (Fig 3.6). If \(\text{Fe}^{2+}\) and \(\text{Fe}^{3+}\) ions escape from the chelating agent, they are liable to be precipitated as iron phosphate. The iron may then not be available to plant cells, unless the pH of the medium falls sufficiently to bring free ions back into solution. The problem of precipitation is more severe in aerated media and where the pH of the medium drifts towards alkalinity. Under these conditions \(\text{Fe}^{2+}\) (ferrous) ions are oxidized to \(\text{Fe}^{3+}\) (ferric) ions and unchelated ferric ions may then also be converted to insoluble \(\text{Fe(OH)}_3\). For plant hydroponic culture, the advantages of adding iron to nutrient solutions in the form of a chelate with EDTA was first recognised in the 1950’s (Jacobson, 1951; Weinstein et al., 1951). Street et al., (1952) soon found that iron in this form was less toxic and could be utilised by in vitro cultures of isolated tomato roots over a wider pH range than ferric citrate. Klein and Manos (1960) showed that callus cultures of several species grew more rapidly on White (1954) medium if \(\text{Fe}^{3+}\) ions from \(\text{Fe}_2(\text{SO}_4)_3\) were chelated with EDTA, rather than added to the medium from the pure compound, and Doerschug and Miller (1967), that 0.036 mM Fe from NaFeEDTA was as effective as 0.067 mM Fe as ferric citrate, in promoting shoot bud initiation on lettuce cotyledons. Iron presented as ferric sulphate (0.025 mM Fe) was much less effective than either chelated form.

Skoog and co-workers began to use EDTA in media for tobacco callus cultures in 1956 and discussed their findings in the same paper that describes MS medium (Murashige and Skoog, 1962). The addition of an iron (Fe)-EDTA chelate once again greatly improved the availability of the element. Following this publication, (Fe)-EDTA complexes were rapidly recognised to give generally improved growth of all types of plant cultures (Nitsch, 1969). EDTA has now become almost a standard medium component and is generally preferred to other alternative chelating agents (Table 3.8).

Preparation and use. (Fe)-EDTA chelates for tissue cultures are prepared in either of two ways.
- A ferric or ferrous salt is dissolved in water with EDTA and the solution is heated;
- A ready-prepared salt of iron salt of EDTA is dissolved and heated.

Heating can take place during the preparation of chelate stock solutions, or during the autoclaving of a medium.

The form of iron complexed is invariably Fe(III). If iron has been provided from ferrous salts, it is oxidised during heating in aerated solutions. The rate of oxidation of the ferrous ion is enhanced in some complexes and retarded in others (Albert, 1958). That of \(\text{Fe}^{2+}\)-EDTA is extremely rapid (Kolthoff and Auerbach (1952). Only a small proportion of \(\text{Fe}^{2+}\) is likely to remain: its chelate with EDTA is much less stable than the Fe(III) complex. Iron is however thought to be absorbed into plants in the ferrous form. Uptake of iron from EDTA probably occurs when molecules of Fe(III)-chelate bind to the outer plasma membrane (the plasmalemma) of the cytoplasm, where Fe(III) is reduced to Fe(II) and freed from the chelate (Chaney et al., 1972; Römheld and Marschner, 1983).
In most recent plant tissue culture work, EDTA has been added to media at an equimolar concentration with iron, where it will theoretically form a chelate with all the iron in solution. However, it has been found in practice that the Fe(III)-EDTA chelate, although stable at pH 2-3, is liable to lose some of its bound iron in culture media at higher pH levels; the displaced iron may form insoluble ferric hydroxides and iron phosphate (Dalton et al., 1983). If this occurs, free EDTA will tend to form chelates with other metal ions in solution. Some micronutrients complexed with EDTA may then not be available to the plant tissues. Re-complexing may also happen if the EDTA to Fe ratio is increased by decreasing the amount of iron added to the medium (as has been proposed to solve the precipitation problem, see Chapter 4). It is not possible to add very much more than 0.1 mM EDTA to culture media because the chelating agent can become toxic to some plants (see below).

Hill-Cottingham and Lloyd-Jones (1961) showed that tomato plants absorbed iron from FeEDTA more rapidly than they absorbed EDTA itself, but concluded that both Fe and Fe-chelate were probably taken up. They postulated that EDTA liberated by the absorption of Fe, would chelate other metals in the nutrient solution in the order given at the beginning of Section 3.6.. Teasdale (1987) calculated that in many media, nearly all the copper and zinc, and some manganese ions might be secondarily chelated, but it is unclear whether micronutrients in this form are freely available to plant tissues. One presumes they are, for deficiency symptoms are not reported from in vitro cultures.

Ambiguous descriptions. In many early papers on plant tissue culture, the authors of scientific papers have failed to describe which form of EDTA was used in experiments, or have ascribed weights to EDTA, which should refer to its hydrated sodium salts. Singh and Krikorian (1980) drew attention to this lack of precision. They assumed that in papers where Na$_2$EDTA is described as a medium constituent, it indicates the use of the anhydrous salt (which would give 11 mol/l excess of EDTA to iron, with unknown consequences). However, the disodium salt of EDTA is generally made as the dihydrate (Beilstein’s Handbuch der Organischen Chemie) and this is the form which will almost invariably have been used, Na$_2$EDTA merely being a shorthand way of indicating the hydrated salt without being intended as a precise chemical formula.

Further confusion has arisen through workers using ready-prepared iron-EDTA salts in media without specifying the weight or molar concentration of actual Fe used. Mono-, di-, tri-, and tetra-sodium salts of EDTA are possible, each with different (and sometimes alternative) hydrates, so that when a research report states only that a certain weight of ‘FeEDTA’ was used, it is impossible to calculate the concentration of iron that was employed with any certainty.

The compound ‘monosodium ferric EDTA’ with the formula NaFeEDTA (no water of hydration) exists, and is nowadays commonly selected as a source of chelated iron. However in some papers ‘NaEDTA’ has been used as an abbreviation for some other form of iron-EDTA salt. For example the paper of Eeuwens (1976) describing Y3 medium, says that to incorporate 0.05 mM iron, 32.5 mg/l ‘sodium ferric EDTA’ was used. The weight required using a compound with the strict molecular formula NaFeEDTA would be 18.35 mg/l. Hackett (1970) employed ‘Na$_4$FeEDTA’. Gamborg and Shyluk (1981) and Gamborg (1982) said that to prepare B5 or MS medium with 0.1 mM Fe, 43 mg/l of ‘ferric EDTA’ or ‘Fe-verseinate’ (EDTA) should be weighed. The compound recommended in these papers was probably the Na$_2$FeEDTA.2H$_2$O chelate (theoretical mol. Wt. 428.2) as was the ‘FeEDTA’ (13% iron) employed by Davis et al., (1977). It should be noted that NaFeEDTA is the only source of Na in MS medium apart from the contamination in the gelling agents.

Alternatives to EDTA. A few other chelating agents have been used in culture media in place of EDTA. The B5 medium of Gamborg et al., (1968) was originally formulated with 28 mg/l of the iron chelate ‘Sequestrene 330 Fe’. According to Heberle-Bors (1980), ‘Sequestrene 330 Fe’ is FeDTPA (Table 3.9), containing 10% iron (Anon, 1978). This means that the concentration of Fe in B5 medium was originally 0.05 mM. Gamborg and Shyluk (1981) have proposed more recently that the level of Fe should be increased to 0.1 mM. B5 medium is now often used with 0.1 mM FeEDTA, but some researchers still prefer FeDTPA, for example (Garton and Moses, 1986) used it in place of FeEDTA in Lloyd and McCown (1981) WPM medium for shoot culture of several woody plants.
Growth regulatory effects of chelating agents. Although most iron, previously complexed to chelating agents such as EDTA, EDDHA and DTPA (Table 3.9) is absorbed as uncomplexed ions by plant roots, there is evidence that the chelating agents themselves can be taken up into plant tissues (Weinstein et al., 1951; Tiffin et al., 1960; Tiffin and Brown, 1961). Chelating compounds such as EDTA, in low concentrations, exert growth effects on plants, which are similar to those produced by auxins. The effects include elongation of oat coleoptiles (Heath and Clark, 1956a,b), and etiolated lupin hypocotyls (Weinstein et al., 1956), the promotion of leaf epinasty (Weinstein et al., 1956) and the inhibition of root growth (Burstrom, 1961, 1963). Hypotheses put
forward to explain these observations have included that:

- chelating agents act as auxin synergists by sequestering Ca from the cell wall (Thimann and Takahashi, 1958);
- the biological properties of the natural auxin IAA may be related to an ability to chelate ions; other chelating agents therefore mimic its action (Heath and Clark, 1960).

Burstrom (1960) noted that EDTA inhibited root growth in darkness (not in light) but that the growth inhibition could be overcome by addition of Fe\(^{3+}\) or several other metal ions (Burstrom, 1961). He recognised that reversal of EDTA action by a metal does not mean that the metal is physiologically active but that it might only release another cation, which had previously been made unavailable to the tissue by chelation.

Effects in tissue culture. Growth and morphogenesis in tissue cultures have been noted on several occasions to be influenced by chelating agents other than EDTA. It has not always been clear whether the observed effects were caused by the chelation of metal ions, or by the chelating agent *per se*.

The growth rate of potato shoot tips was increased by 0.01-0.3 mg/l 8-hydroxyquinoline (8-HQ) when cultured on a medium which also contained EDTA (Goodwin, 1966), and more callus cultures of a haploid tobacco variety formed shoots in the absence of growth regulators when DHPTA was added to Kasperbauer and Reinert (1967) medium which normally contains 22.4 mg/l EDTA. The DHPTA appears to have been used in addition to the EDTA, not as a replacement, and was not effective on callus of a diploid tobacco (Kochhar *et al.*, 1970). In the same experimental system, Fe-DHPTA and Fe-EDDHA were more effective in promoting shoot formation from the haploid-derived tissue than Fe with CDTA, citric acid or tartaric acid (Kochhar *et al.*, 1971).

The inclusion of EDTA into a liquid nutrient medium caused the small aquatic plant *Lemna perpusilla* to flower only in short day conditions whereas normally the plants were day-neutral (Hillman, 1959, 1961). In the related species *Wolffia microscopica*, plants did not flower unless EDTA was present in the medium, and then did so in response to short days (Maheshwari and Chauhan, 1963). When, however, Maheshwari and Seth (1966) substituted Fe-EDDHA for EDTA and ferric citrate, they found that plants not only flowered more freely under short days, but also did so under long days. The physiological effect of EDTA and EDDHA as chelating agents was thus clearly different. This was again shown by Chopra and Rashid (1969) who found that the moss *Anoectangium thomsonii* did not form buds as other mosses do, when grown on a simple medium containing ferric citrate or Fe-EDTA, but did so when 5-20 mg/l Fe-EDDHA was added to the medium instead. An optimum concentration was between 5 and 8 mg/l. Rashid also discovered that haploid embryos developed more freely from *in vitro* cultures of *Atropa belladonna* pollen microspores when Fe-EDDHA was incorporated into the medium, rather than Fe-EDTA (Rashid and Street, 1973). Heberle-Bors (1980) did not obtain the same result, and found that FeEDTA was superior to FeEDDHA for the production of pollen plants from anthers of this species and of two Nicotianas. In tobacco, the production of haploid plants was greatest with FeEDTA, next best with FeDTPA, FeEGTA, FeEDDHA, and poorest with Fe citrate. Each complex was tested at or about the same iron concentration. Heberle-Bors also showed that chelating agents are differentially absorbed by activated charcoal (see Chapter 7). In tissue culture of rose (Van Der Salm, 1994), *Prunus* (Mallosiotis *et al.*, 2003), citrus (Dimassi *et al.*, 2003) and red raspberry (Zawadzka and Orlikowska, 2006), it is advantageous to use FeEDDHA rather than FeEDTA.

Toxicity caused by chelating agents. Although low concentrations of EDTA markedly stimulate the growth of whole plants in hydroponic cultures by making iron more readily available, the compound begins to be toxic at higher levels. By comparisons

<table>
<thead>
<tr>
<th>Chelating Agent</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethyleneglycol-bis(2-aminoethylether)tetraacetic acid</td>
</tr>
<tr>
<td>EDDHA</td>
<td>Ethylenediamine-di(o-hydroxyphenyl)acetic acid</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylenetriaminepentaaetic acid</td>
</tr>
<tr>
<td>DHPT</td>
<td>1,3-diamino-2-hydroxypropane-tetraacetic acid</td>
</tr>
</tbody>
</table>

Table 3.9 Some common chelating agents.
with observations on animal tissues, Weinstein et al., (1951) suggested that toxicity arose through competition between EDTA and enzymes (and other physiologically-active complexes) in the plant, for metals essential to their activity. This will occur if the avidity of the chelating agent is greater than the metal binding capacity of proteins on the surface of cells (Albert, 1958).

Toxicity can also occur in in vitro cultures. Legrand (1975) found that an optimum rate of adventitious shoot initiation occurred in endive leaf segments when only 7.5 mg/l EDTA (one fifth the concentration used in MS medium) was employed. In these circumstances, higher levels of EDTA were clearly inhibitory and more than 55 mg/l prevented shoot formation. Dalton et al., (1983) found that 0.3 mM EDTA (compared to the 0.1 mM in MS medium) reduced the growth rate of Ocimum cell suspensions.

Flower buds of Begonia franconis died within a few days if cultured with a high level of FeEDTA (1-1.5 mM, i.e. 10-15 times the normal level) together with 0.4-1.6 mM \(\text{H}_3\text{PO}_4 \). Berghoef and Bruinsma (1979a) thought that Fe\(^{3+}\) released from the FeEDTA complex, had precipitated the phosphate. Necrosis was avoided by increasing \(\text{H}_3\text{PO}_4 \) concentration to 6.4 mM.

Tissues may be damaged by culture in media containing synthetic chelating agents where the pH approaches neutrality, because at these pH levels, EDTA and EGTA have been shown to remove calcium ions from the membranes of mitochondria and this inhibits NAD(P)H oxidation and respiration (Moller and Palmer, 1981). Chelating agents have been found to inhibit the action of the growth substance ethylene (see Chapter 7) and are thought to do so by sequestering Cu ions within plant tissues, thereby interfering with the synthesis or action of a Cu-containing enzyme responsible for ethylene metabolism. EDTA can also inhibit the activity of plant polyphenol oxidase enzymes in vitro (Weinstein et al., 1951) and Smith (1968) thought that this might occur because EDTA made Cu ions less available for enzyme incorporation, when he found the chelating agent was able to prevent the blackening of freshly-isolated Carex flacca shoot tips. Several oxidative reactions are also biochemically catalysed by ions such as Cu\(^{2+}\), Co\(^{2+}\) and Zn\(^{2+}\), and where this is the case [e.g. the oxidation of glutathione – Martin (1979); catechol amine oxidation – Kiss and Gergely (1979)], chelating agents such as EDTA and CDTA are inhibitory.

REFERENCES

BARROSO M., LEVA A.R. & MURILLO J.M. 1985 La multiplicación del melo con la técnica de la micropropagación. Influenza del mezza nutritivo sul contenuto di alcuni elementi...
Chapter 3

GOLDBACH H. & AMBERGER A. 1986 Influence of boron deficiency on H-indole-3-yl-acetic acid uptake and efflux in cell cultures of Daucus carota L. Plant Growth Reg. 4, 81-86.

Chapter 3

The Components of Plant Tissue Culture Media I: Macro- and Micro-Nutrients

TAYLOR R.M. 1972 Germination of cotton (Gossypium hirsutum L.) pollen on an artificial medium. Crop Sci. 12, 243-244.

Chapter 3

WHITE P.R. 1942 Plant tissue cultures. Annu. Rev. Biochem. 11, 615-628.

1. ORGANIC SUPPLEMENTS

Growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic nutrients. These are mainly vitamins (including some substances that are not strictly animal vitamins), amino acids and certain undefined supplements. The amount of these substances required for successful culture varies with the species and genotype, and is probably a reflection of the synthetic capacity of the explant.

1.1. VITAMINS

Vitamins are compounds required by animals in very small amounts as necessary ancillary food factors. Absence from the diet leads to abnormal growth and development and an unhealthy condition. Many of the same substances are also needed by plant cells as essential intermediates or metabolic catalysts, but intact plants, unlike animals, are able to produce their own requirements. Cultured plant cells and tissues can however become deficient in some factors; growth and survival is then improved by their addition to the culture medium.

In early work, the requirements of tissue cultures for trace amounts of certain organic substances were satisfied by "undefined" supplements such as fruit juices, coconut milk, yeast or malt extracts and hydrolysed casein. These supplements can contribute vitamins, amino acids and growth regulants to a culture medium. The use of undefined supplements has declined as the need for specific organic compounds has been defined, and these have become listed in catalogues as pure chemicals.

1.2. THE DEVELOPMENT OF VITAMIN MIXTURES

The vitamins most frequently used in plant tissue culture media are thiamine (Vit. B₁), nicotinic acid (niacin) and pyridoxine (Vit. B₆) and apart from these three compounds, and myo-inositol, there is little common agreement about which other vitamins are really essential.

The advantage of adding thiamine was discovered almost simultaneously by Bonner (1937, 1938), Robbins and Bartley (1937) and White (1937). Nicotinic acid and pyridoxine appear, in addition to thiamine, in media published by Bonner (1940), Gautheret (1942) and White (1943b); this was following the findings of Bonner and Devirian (1939) that nicotinic acid improved the growth of isolated roots of tomato, pea and radish; and the papers of Robbins and Schmidt (1939a,b) which indicated that pyridoxine was also required for tomato root culture. These four vitamins; myo-inositol, thiamine, nicotinic acid, and pyridoxine are ingredients of Murashige and Skoog (1962) medium and have been used in varying proportions for the culture of tissues of many plant species (Chapter 3). However, unless there has been research on the requirements of a particular plant tissue or organ, it is not possible to conclude that all the vitamins which have been used in a particular experiment were essential.

The requirements of cells for added vitamins vary according to the nature of the plant and the type of culture. Welander (1977) found that Nitsch and Nitsch (1965) vitamins were not necessary, or were even inhibitory to direct shoot formation on petiole explants of Begonia x hiemalis. Roest and Bokelmann (1975) on the other hand, obtained increased shoot formation on Chrysanthemum pedicels when MS vitamins were present. Callus of Pinus strobus grew best when the level of inositol in MS medium was reduced to 50 mg/l whereas that of P. echinata. proliferated most rapidly when no inositol was present (Kaul and Kochbar, 1985).

Research workers often tend to adopt a 'belt and braces' attitude to minor media components, and add unusual supplements just to ensure that there is no missing factor which will limit the success of their experiment. Sometimes complex mixtures of as many as nine or ten vitamins have been employed.

Experimentation often shows that some vitamins can be omitted from recommended media. Although four vitamins were used in MS medium, later work at Professor Skoog’s laboratory showed that the optimum rate of growth of tobacco callus tissue on MS salts required the addition of only myo-inositol and thiamine. The level of thiamine was increased four-fold over that used by Murashige and Skoog (1962), but nicotinic acid, pyridoxine and glycine...
(amino acid) were unnecessary (Linsmaier and Skoog, 1965). A similar simplification of the MS vitamins was made by Earle and Torrey (1965) for the culture of *Convolvulus* callus.

Soczck and Hempel (1988) found that in the medium of Murashige *et al.* (1974) devised for the shoot culture of *Gerbera jamesonii*, thiamine, pyridoxine and inositol could be omitted without any reduction in the rate of shoot multiplication of their local cultivars. Ishihara and Katano (1982) found that *Malus* shoot cultures could be grown on MS salts alone, and that inositol and thiamine were largely unnecessary.

1.3. SPECIFIC COMPOUNDS

Myo-inositol. Myo-inositol (also sometimes described as meso-inositol or i-inositol) is the only one of the nine theoretical stereoisomers of inositol which has significant biological importance. Medically it has been classed as a member of the Vitamin B complex and is required for the growth of yeast and many mammalian cells in tissue culture. Rats and mice require it for hair growth and can develop dermatitis when it is not in the diet. Myo-inositol has been classed as a plant ‘vitamin’, but note that some authors think that it should be regarded as a supplementary carbohydrate, although it does not contribute to carbohydrate utilization as an energy source or as an osmoticum.

Historical use in tissue cultures. Myo-inositol was first shown by Jacquiot (1951) to favour bud formation by elm cambial tissue when supplied at 20-1000 mg/l. Necrosis was retarded, though the proliferation of the callus was not promoted. Myo-inositol at 100 mg/l was also used by Morel and Wetmore (1951) in combination with six other vitamins for the culture of callus from the monocotyledon *Amorphophallus rivieri* (Araceae). Bud initials appeared on some cultures and both roots and buds on others according to the concentration of auxin employed. The vitamin was adopted by both Wood and Braun (1961) and Murashige and Skoog (1962) in combination with thiamine, nicotinic acid and pyridoxine in their preferred media for the culture of *Catharanthus roseus* and *Nicotiana tabacum* respectively. Many other workers have since included it in culture media with favourable results on the rate of callus growth or the induction of morphogenesis. Letham (1966) found that myo-inositol interacted with cytokinin to promote cell division in carrot phloem explants.

Occurrence and biochemistry. Part of the growth promoting property of coconut milk is due to its myo-inositol content (Pollard *et al.*, 1961). Coconut milk also contains scyllo-inositol (Table 4.1). This can also promote growth but to a smaller extent than the myo-isomer (Pollard *et al.*, 1961). Inositol is a constituent of yeast extract (Steiner *et al.*, 1969; Steiner and Lester, 1972) and small quantities may also be contained in commercial agar (Wolter and Skoog, 1966). Myo-inositol is a natural constituent of plants and much of it is often incorporated into phosphatidyl-inositol which may be an important factor in the functioning of membranes (Jung *et al.*, 1972; Harran and Dickinson, 1978). The phosphatidylinositol cycle controls various cellular responses in animal cells and yeasts, but evidence of it playing a similar role in plants is only just being accumulated. Enzymes which are thought to be involved in the cycle have been observed to have activities in plants and lithium chloride (which inhibits myo-inositol-1-phosphatase and decreases the cycle) inhibits callus formation in *Brassica oleracea* (Bagga *et al.*, 1987), and callus growth in *Amaranthus paniculatus* (Das *et al.*, 1987). In both plants the inhibition is reversed by myo-inositol.

As the myo-inositol molecule has six hydroxyl units, it can react with up to six acid molecules forming various esters. It appears that inositol phosphates act as second messengers to the primary action of auxin in plants: phytic acid (inositol hexaphosphate) is one of these. Added to culture media it can promote tissue growth if it can serve as a source of inositol (Watanabe *et al.*, 1971). In some species, auxin can be stored and may be transported as IAA-myoinositol ester (Chapter 5). *O*-Methyl-inositol is present in quite large quantities in legumes; inositol methyl ethers are known to occur in plants of several other families, although their function is unknown (Phillips and Smith, 1974).

The stimulatory effect of myo-inositol in plant cultures probably arises partly from the participation of the compound in biosynthetic pathways leading to the formation of the pectin and hemicelluloses needed in cell walls (Loewus *et al.*, 1962; Loewus, 1974; Loewus and Loewus, 1980; Harran and Dickinson, 1978; Verma and Dougal, 1979; Loewus and Loewus, 1980) and may have a role in the uptake and utilization of ions (Wood and Braun, 1961). In the experiments of Staadt (1984) mentioned below, when the P0,3 content of the medium was raised to 4.41 mM, the rate of callus growth of cv. ‘Aris’ was
progressively enhanced as the myo-inositol in the medium was put up to 4000 mg/l. This result seems to stress the importance of inositol-containing phospholipids for growth.

Table 4.1. Substances identified as components of coconut milk (water) from mature green fruits and market-purchased fruits.

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>QUANTITY/REFERENCE</th>
<th>SUBSTANCE</th>
<th>QUANTITY/REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mature green fruits</td>
<td>Mature fresh fruits</td>
<td></td>
</tr>
<tr>
<td>Amino acids (mg/l)</td>
<td></td>
<td></td>
<td>Sugars (g/l)</td>
</tr>
<tr>
<td>Alanine</td>
<td>127.3 (14)</td>
<td>312 (13), 177.1</td>
<td>Sucrose</td>
</tr>
<tr>
<td>Arginine</td>
<td>25.6 (14)</td>
<td>133 (13), 16.8</td>
<td>Glucose</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>35.9 (14)</td>
<td>65 (13), 5.4</td>
<td>Fructose</td>
</tr>
<tr>
<td>Asparagine</td>
<td>10.1 (14)</td>
<td>ca.60 (13), 10.1</td>
<td></td>
</tr>
<tr>
<td>γ-Aminobutyric acid</td>
<td>34.6 (14)</td>
<td>820 (13), 168.8</td>
<td>Mannitol</td>
</tr>
<tr>
<td>Glutamine acid</td>
<td>70.8 (14)</td>
<td>240 (13), 78.7</td>
<td>Sorbitol</td>
</tr>
<tr>
<td>Glutamine</td>
<td>45.4 (14)</td>
<td>ca.60 (13), 13.4</td>
<td>myo-Inositol</td>
</tr>
<tr>
<td>Glycine</td>
<td>9.7 (14)</td>
<td>13.9 (14)</td>
<td>scyllo-Inositol</td>
</tr>
<tr>
<td>Histidine</td>
<td>6.3 (14)</td>
<td>Trace (13,14)</td>
<td></td>
</tr>
<tr>
<td>Homoserine</td>
<td>-- (14)</td>
<td>5.2 (14)</td>
<td>Nicotinic acid</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td></td>
<td>Trace (13,14)</td>
<td>Pantothenic acid</td>
</tr>
<tr>
<td>Lysine</td>
<td>21.4</td>
<td>65.8 (14)</td>
<td>Biotin, Riboflavin</td>
</tr>
<tr>
<td>Methionine</td>
<td>16.9 (14)</td>
<td>8 (13), Trace (14)</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>-- (14)</td>
<td>12 (13), 10.2 (14)</td>
<td>Folic acid</td>
</tr>
<tr>
<td>Proline</td>
<td>31.9</td>
<td>97 (13), 21.6 (14)</td>
<td>Thiamine, pyridoxine</td>
</tr>
<tr>
<td>Serine</td>
<td>45.3 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typtophan</td>
<td>39 (13)</td>
<td>Trace (13,14)</td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td>16.2 (2)</td>
<td>44 (13), 26.3 (14)</td>
<td>Gibberelin</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>6.4 (14)</td>
<td>16 (13), 3.1 (14)</td>
<td>1,3-Diphenylurea</td>
</tr>
<tr>
<td>Valine</td>
<td>20.6 (14)</td>
<td>27 (13), 15.1 (14)</td>
<td>Zeatin</td>
</tr>
<tr>
<td>Other nitrogenous compounds</td>
<td></td>
<td></td>
<td>Zeatin glucoside</td>
</tr>
<tr>
<td>Ammonium</td>
<td>(19)</td>
<td>Zeatin riboside</td>
<td>(20), (24), (25)</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>(19)</td>
<td>6-Oxypurine growth promoter</td>
<td>(27)</td>
</tr>
<tr>
<td>Dihydroxyphenyl alanine</td>
<td>(19)</td>
<td>Unknown cytokinin/s</td>
<td>6, (18) (22)</td>
</tr>
<tr>
<td>Inorganic elements (mg/100g dry wt.)</td>
<td></td>
<td></td>
<td>Other (mg/l)</td>
</tr>
<tr>
<td>Potassium</td>
<td>312.0 (3)</td>
<td>RNA-polymerase</td>
<td>(23)</td>
</tr>
<tr>
<td>Sodium</td>
<td>105 (3)</td>
<td>RNA-phosphorus</td>
<td>20.0 (14)</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>37.0 (3)</td>
<td>DNA-phosphorus</td>
<td>0.1 (14)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>30.0 (3)</td>
<td>Uracil, Adenine</td>
<td></td>
</tr>
<tr>
<td>Organic acids (meq/ml)</td>
<td></td>
<td></td>
<td>Leucoanthocyanins</td>
</tr>
<tr>
<td>Malic acid</td>
<td>34.3 (14)</td>
<td>12.0 (14)</td>
<td>Phyllococosine</td>
</tr>
<tr>
<td>Shikimic, Quinic and 2 unknowns</td>
<td>0.6 (14)</td>
<td>0.41 (2)</td>
<td>Acid Phosphatase</td>
</tr>
<tr>
<td>Pyrroline dine carboxylic acid</td>
<td>0.4 (14)</td>
<td>0.2 (14)</td>
<td>Diastase</td>
</tr>
<tr>
<td>Citric acid</td>
<td>0.4 (14)</td>
<td>0.3 (14)</td>
<td>Dehydrogenase</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>-- (14)</td>
<td>0.3 (14)</td>
<td>Peroxidase</td>
</tr>
</tbody>
</table>

Numbered references (within brackets) in the above table are listed in Section 1.11 of this Chapter.
Activity in tissue cultures. Cultured plant tissues vary in their capacity for myo-inositol biosynthesis. Intact shoots are usually able to produce their own requirements, but although many unorganised tissues are able to grow slowly without the vitamin being added to the medium (Murashige, 1974) the addition of a small quantity is frequently found to stimulate cell division. The compound has been discovered to be essential to some plants. In the opinion of Kaul and Sabharwal (1975) this includes all monocotyledons, the media for which, if they do not contain inositol, need to be complemented with coconut milk, or yeast extract.

Fraxinus pennsylvanica callus had an absolute requirement for 10 mg/l myo-inositol to achieve maximum growth; higher levels, up to 250 mg/l had no further effect on fresh or dry weight yields (Wolter and Skoog, 1966). The formation of shoot buds on callus of Haworthia spp was shown to be dependent on the availability of myo-inositol (Kaul and Sabharwal, 1972, 1975). In a revised Linsmaier and Skoog (1965) medium [Staudt (1984) containing 1.84 mM PO\textsubscript{4}3-], callus tissue of Vitis vinifera cv ‘Müller-Thurgau’ did not require myo-inositol for growth, but that of Vitis vinifera x V. riparia cv. ‘Aris’ was dependent on it and the rate of growth increased as the level of myo-inositol was increased up to 250 mg/l (Staudt, 1984).

Gupta et al. (1988) found that it was essential to add 5 g/l myo-inositol to Gupta and Durzan (1985) DCR-1 medium to induce embryogenesis (embryonal suspensor masses) from female gametophyte tissue of Pseudotsuga menziesii and Pinus taeda. The concentration necessary seems insufficient to have acted as an osmotic stimulus (see section 3). myo-Inositol reduced the rate of proliferation in shoot cultures of Euphorbia fulgens (Zhang et al., 1986).

Thiamine. Thiamine (Vit. B\textsubscript{1}, aneurine) in the form of thiamine pyrophosphate, is an essential co-factor in carbohydrate metabolism and is directly involved in the biosynthesis of some amino acids. It has been added to plant culture media more frequently than any other vitamin. Tissues of most plants seem to require it for growth, the need becoming more apparent with consecutive passages, but some cultured cells are self sufficient. The maize suspension cultures of Polikarpochkina et al. (1979) showed much less growth in passage 2, and died in the third passage when thiamine was omitted from the medium. MS medium contains 0.3 μM thiamine. That this may not be sufficient to obtain optimum results from some cultures is illustrated by the results of Barwale et al. (1986): increasing the concentration of thiamine-HCl in MS medium to 5 μM, increased the frequency with which zygotic embryos of Glycine max formed somatic embryos from 33% to 58%. Adding 30 μM nicotinic acid (normally 4 μM) improved the occurrence of embryogenesis even further to 76%. Thiamine was found to be essential for stimulating embryogenic callus induction in Zoysia japonica, a warm season turf grass from Japan (Asano et al., 1996). It has also been shown to stimulate adventitious rooting of Taxus spp. (Chée, 1995).

There can be an interaction between thiamine and cytokinin growth regulators. Digby and Skoog (1966) discovered that normal callus cultures of tobacco produced an adequate level of thiamine to support growth providing a relatively high level of kinetin (ca. 1 mg/l) was added to the medium, but the tissue failed to grow when moved to a medium with less added kinetin unless thiamine was provided.

Sometimes a change from a thiamine-requiring to a thiamine-sufficient state occurs during culture (see habituation – Chapter 7). In rice callus, thiamine influenced morphogenesis in a way that depended on which state the cells were in. Presence of the vitamin in a pre-culture (Stage I) medium caused thiamine-sufficient callus to form root primordia on an induction (Stage II) medium, but suppressed the stimulating effect of kinetin on Stage II shoot formation in thiamine-requiring callus. It was essential to omit thiamine from the Stage I medium to induce thiamine-sufficient callus to produce shoots at Stage II (Inoue and Maeda, 1982).

1.4. OTHER VITAMINS

Pantothenic acid. Pantothenic acid plays an important role in the growth of certain tissues. Itfavoured callus production by hawthorn stem fragments (Morel, 1946) and stimulated tissue proliferation in willow and black henbane (Telle and Gautheret, 1947; Gautheret, 1948). However, pantothenic acid showed no effects with carrot, vine and Virginia creeper tissues which synthesize it in significant amounts (ca. 1 μg/ml).

Vitamin C. The effect of Vitamin C (L-ascorbic acid) as a component of culture media will be discussed in Chapter 12. The compound is also used during explant isolation and to prevent blackening.
Besides, its role as an antioxidant, ascorbic acid is involved in cell division and elongation, e.g., in tobacco cells (de Pinto et al., 1999). Ascorbic acid (4-8 x 10⁻⁴ M) also enhanced shoot formation in both young and old tobacco callus. (Joy et al., 1988). It speeded up the shoot-forming process, and completely reversed the inhibition of shoot formation by gibberellic acid in young callus, but was less effective in old callus. Clearly its action here was not as a vitamin.

Vitamin D. Some vitamins in the D group, notably vitamin D₂ and D₃ can have a growth regulatory effect on plant tissue cultures. Their effect is discussed in Chapter 7.

Vitamin E. The antioxidant activity of vitamin E (α-tocopherol) will be discussed in Chapter 12.

Other vitamins. Evidence has been obtained that folic acid slows tissue proliferation in the dark, while enhancing it in the light. This is probably because it is hydrolysed in the light to p-aminobenzoic acid (PAB). In the presence of auxin, PAB has been shown to have a weak growth-stimulatory effect on cultured plant tissues (de Capite, 1952a,b).

Riboflavin which is a component of some vitamin mixtures, has been found to inhibit callus formation but it may improve the growth and quality of shoots (Drew and Smith, 1986). Suppression of callus growth can mean that the vitamin may either inhibit or stimulate root formation on cuttings. Riboflavin has been shown to stimulate adventitious rooting on shoots of *Carica papaya* (Drew et al., 1993), apple shoots (van der Krieken et al., 1992) and *Eucalyptus globulus* (Trindade and Pais, 1997). It also enhances embryogenic callus induction in *Zoysia japonica* in association with cytokinins and thiamine (Asano et al., 1996).

Glycine is occasionally described as a vitamin in plant tissue cultures: its use has been described in the section on amino acids.

Adenine. Adenine (or adenine sulphate) has been widely used in tissue culture media, but because it mainly gives rise to effects which are similar to those produced by cytokinins, it is considered in the chapter on cytokinins (Chapter 6).

Stability. Some vitamins are heat-labile; see the section on medium preparation in Volume 2.

1.5. UNDEFINED SUPPLEMENTS

Many undefined supplements were employed in early tissue culture media. Their use has slowly declined as the balance between inorganic salts has been improved, and as the effect of amino acids and growth substances has become better understood. Nevertheless several supplements of uncertain and variable composition are still in common use.

The first successful cultures of plant tissue involved the use of yeast extract (Robbins, 1922; White, 1934). Other undefined additions made to plant tissue culture media have been:

- meat, malt and yeast extracts and fibrin digest;
- juices, pulps and extracts from various fruits (Steward and Shantz, 1959; Ranga Swamy, 1963; Guha and Maheshwari, 1964, 1967), including those from bananas and tomatoes (La Rue, 1949);
- the fluids which nourish immature zygotic embryos;
- extracts of seedlings (Saalbach and Koblitz, 1978) or plant leaves (Borkird and Sink, 1983);
- the extract of boiled potatoes and corn steep liquor (Fox and Miller, 1959);
- plant sap or the extract of roots or rhizomes. Plant roots are thought to be the main site of cytokinin synthesis in plants (Chapter 6);
- protein (usually casein) hydrolysates (containing a mixture of all the amino acids present in the original protein). Casein hydrolysates are sometimes termed casamino acids: they are discussed in Chapter 3).

Many of these amendments can be a source of amino acids, peptides, fatty acids, carbohydrates, vitamins and plant growth substances in different concentrations. Those which have been most widely used are described below.

1.6. YEAST EXTRACT.

Yeast extract (YE) is used less as an ingredient of plant media nowadays than in former times, when it was added as a source of amino acids and vitamins, especially inositol and thiamine (Vitamin B₁) (Bonner and Addicott, 1937; Robbins and Bartley, 1937). In a medium consisting only of macro- and micro-nutrients, the provision of yeast extract was often found to be essential for tissue growth (White, 1934; Robbins and Bartley, 1937). In a medium consisting only of macro- and micro-nutrients, the provision of yeast extract was often found to be essential for tissue growth (White, 1934; Robbins and Bartley, 1937). The vitamin content of yeast extract distinguishes it from casein hydrolysate (CH) so that in such media CH or amino acids alone, could not be substituted for YE (Straus and La Rue, 1954; Nickell and Maretzki, 1969). It was soon found that amino acids such as glycine, lysine and arginine, and vitamins such as thiamine and nicotinic acid, could serve as replacements for YE, for example in the growth of tomato roots (Skinner and Street, 1954), or sugar cane cell suspensions (Nickell and Maretzki, 1969).
The percentage of amino acids in a typical yeast extract is high (e.g. 7% amino nitrogen - Nickell and Maretzki, 1969; Bridson, 1978; Thom et al., 1981), but there is less glutamic acid than in casein or other protein hydrolysate. Malt extract contains little nitrogen (ca. 0.5% in total).

Yeast extract has been typically added to media in concentrations of 0.1-1 g/l; occasionally 5, 10 and even 20 g/l (Morel and Muller, 1964) have been included. It normally only enhances growth in media containing relatively low concentrations of nitrogen, or where vitamins are lacking. Addition of 125-5000 mg/l YE to MS medium completely inhibited the growth of green callus of 5 different plants whereas small quantities added to Vasil and Hildebrandt (1966) THS medium (which contained 0.6 times the quantity of NO$_3^-$ and NH$_4^+$ ions and unlike MS did not contain nicotinic acid or pyridoxine) gave more vigorous growth of carrot, endive and lettuce callus than occurred on MS. There was still no growth of parsley and tomato callus on THS medium: these tissues only grew well on unmodified MS (Vasil and Hildebrandt, 1966a,b,c).

Stage I media are sometimes fortified with yeast extract to reveal the presence of micro-organisms which may have escaped decontamination procedures: it is then omitted at later stages of culture.

Yeast extract has been shown to have some unusual properties which may relate to its amino acid content. It elicits phytoalexin accumulation in several plant species and in Glycyrrhiza echinata suspensions it stimulated chalcone synthase activity leading to the formation of naringin (Ayabe et al., 1988). It also stimulated furomocoumarin production in Glahnia littoralis cell suspensions (Kitamura et al., 1998). On Monnier (1976, 1978) medium 1 g/l yeast extract was found to inhibit the growth of immature zygotic embryos of Linum, an effect which, when 0.05 mg/l BAP and 400 mg/l glutamine were added, induced the direct formation of adventitious embryos (Pretova and Williams, 1986).

Yeast extract is now purchased directly from chemical suppliers. In the 1930s and 1940s it was prepared in the laboratory. Brink et al. (1944) macerated yeast in water which was then boiled for 30 minutes and, after cooling, the starchy material was removed by centrifugation. However, Robbins and Bartley (1937) found that the active components of yeast could be extracted with 80% ethanol.

1.7. POTATO EXTRACT

Workers in China found that there was a sharp increase in the number of pollen plants produced from wheat anthers when they were cultured on an agar solidified medium containing only an extract of boiled potatoes, 0.1 mM FeEDTA, 9% sucrose and growth regulators. Potato extract alone or potato extract combined with components of conventional culture media (Chuang et al., 1978) has since been found to provide a useful medium for the anther culture of wheat and some other cereal plants. For example, the potato medium was found to be better for the anther culture of spring wheat than the synthetic (N6) medium (McGregor and McHughen, 1990). Sopory et al. (1978) obtained the initiation of embryogenesis from potato anthers on potato extract alone and Lichter (1981) found it beneficial to add 2.5 g/l Difco potato extract to a medium for Brassica napus anther culture, but it was omitted by Chuong and Beversdorf (1985) when they repeated this work. We are not aware of potato extract being added to media for micropropagation, apart from occasional reports of its use for orchid propagation. Sagawa and Kunisaki (1982) supplemented 1 litre of Vacin and Went (1949) medium with the extract from 100g potatoes boiled for 5 minutes, and Harvais (1982) added 5% of an extract from 200g potatoes boiled in 1 litre water to her orchid medium. Of interest was the finding that potato juice treatment enabled in vitro cultures of Doritaenopsis (Orchidaceae) to recover from hyperhydryicity (Zou, 1995).

1.8. MALT EXTRACT

Although no longer commonly used, malt extract seems to play a specific role in cultures of Citrus. Malt extract, mainly a source of carbohydrates, was shown to initiate embryogenesis in nucellar explants (Rangan et al., 1968; Rangan, 1984). Several recent studies showed a role for the extract in the multiplication of Citrus sinensis somatic embryos (Das et al., 1995), and in other Citrus spp. (Jumin, 1995), in the promotion of plantlet formation from somatic embryos derived from styles of different Citrus cultivars (De Pasquale et al., 1994), and in somatic embryogenesis and plantlet regeneration from pistil thin cell layers of Citrus (Carimi et al., 1999). Malt extract also promoted germination of early cotyledonary stage embryos arising from the in vitro rescue of zygotic embryos of sour orange (Carimi et al., 1998). The extract is commercially available and used at a level of 0.5 – 1 g/l.
1.9. BANANA HOMOGENATE

Homogenised banana fruit is sometimes added to media for the culture of orchids and is often reported to promote growth. The reason for its stimulatory effect has not been explained. One suggestion mentioned earlier is that it might help to stabilise the pH of the medium. Pierik et al. (1988) found that it was slightly inhibitory to the germination of Paphiopedilum ciliolare seedlings but promoted the growth of seedlings once germination had taken place.

1.10. FLUIDS WHICH NOURISH EMBRYOS

The liquid which is present in the embryo sac of immature fruits of Aesculus (e.g. A. woelitzensis) (Shantz and Steward, 1956, 1964; Steward and Shantz, 1959; Steward and Rao, 1970) and Juglans regia (Steward and Caplin, 1952) has been found to have a strong growth-promoting effect on some plant tissues cultured on simple media, although growth inhibition has occasionally been reported (Fonnesbech, 1972). Fluid from the immature female gametophyte of Ginkgo biloba (Steward and Caplin, 1952) and extracts from the female gametophyte of Pseudotsuga menziesii (Mapes and Zaerr, 1981) and immature Zea mays grains (less than two weeks after pollination) can have a similar effect. The most readily obtained fluid with this kind of activity is coconut milk (water).

1.11. COCONUT MILK/WATER

When added to a medium containing auxin, the liquid endosperm of Cocos nucifera fruits can induce plant cells to divide and grow rapidly. The fluid is most commonly referred to as coconut milk, although Tulecke et al. (1961) maintained that the correct English term is 'coconut water', because the term coconut milk also describes the white liquid obtained by grating the solid white coconut endosperm (the 'meat') in water and this is not generally used in tissue culture media. However, in this section, both terms are used.

Coconut milk was first used in tissue cultures by Van Overbeek et al. (1941, 1942) who found that its addition to a culture medium was necessary for the development of very young embryos of Datura stramonium. Gautheret (1942) found that coconut milk could be used to initiate and maintain growth in tissue cultures of several plants, and Caplin and Steward (1948) showed that callus derived from phloem tissue explants of Daucus carota roots grew much more rapidly when 15% coconut milk was added to a medium containing IAA. Unlike other undefined supplements to culture media (such as yeast extract, malt extract and casein hydrolysate) coconut milk has proved harder to replace by fully defined media. The liquid has been found to be beneficial for inducing growth of both callus and suspension cultures and for the induction of morphogenesis. Although commercial plant tissue culture laboratories (particularly those in temperate countries) would endeavour not to use this ingredient on account of its cost, it is still frequently employed for special purposes in research.

It is possible to get callus growth on coconut milk alone (Steward et al., 1952), but normally it is added to a recognised medium. Effective stimulation only occurs when relatively large quantities are added to a medium; the incorporation of 10-15 percent by volume is quite usual. For instance, Burnet and Ibrahim (1973) found that 20% coconut milk (i.e. one-fifth of the final volume of the medium) was required for the initiation and continued growth of callus tissue of various Citrus species in MS medium; Rangan (1974) has obtained improved growth of Panicum miliaceum in MS medium using 2,4-D in the presence of 15% coconut milk. By contrast, Vasil and co-workers (e.g. Vasil and Vasil, 1981a,b) needed to add only 5% coconut milk to MS medium to obtain somatic embryogenesis from cereal callus and suspension cultures.

Many workers try to avoid having to use coconut milk in their protocols. It is an undefined supplement whose composition can vary considerably (Swedlund and Locy, 1988). However, adding coconut milk to media often provides a simple way to obtain satisfactory growth or morphogenesis without the need to work out a suitably defined formulation. Suggestions that coconut milk is essential for a particular purpose need to be treated with some caution. For instance, in the culture of embryogenic callus from root and petiole explants of Daucus carota, coconut milk could be replaced satisfactorily either by adenine or kinetin, showing that it did not contribute any unique substances required for embryogenesis (Halperin and Wetherell, 1964).

Preparation. Ready prepared coconut water (milk) can be purchased from some chemical suppliers, but the liquid from fresh nuts (obtained from the greengrocer) is usually perfectly adequate. One nut will usually yield at least 100 ml. The water is most simply drained from dehusked coconuts by drilling holes through two of the micropyles. Only normal uncontaminated water should be used and so
nests should be extracted one by one, and the liquid endosperm from each examined to ascertain that it is unfermented before addition to a bulk supply. Water from green but mature coconuts may contain slightly different quantities of substances to that in the nuts purchased in the local market (Table 4.1) and has been said to be a more effective stimulant in plant media than that from ripe fruits, but Morel and Wetmore (1951) found to the contrary. Tulecke et al. (1961) discovered that the water from highly immature coconuts contained smaller quantities of the substances normally present in mature nuts.

Use of Coconut water. Coconut water is usually strained through cloth and deproteinized by being heated to 80-100°C for about 10 minutes while being stirred. It is then allowed to settle and the supernatant is separated from the coagulated proteins by filtration through paper. The liquid is stored frozen at -20°C. Borkird and Sink (1983) did not boil the water from fresh ripe coconuts, but having filtered it through several layers of cheesecloth, adjusted the pH to 10 with 2 N NaOH and then kept it overnight at 4°C. The following day the pH was re-adjusted to 7.0 with 5 N HCl, and the preparation was refiltered before being stored frozen at -20°C.

Some workers autoclave media containing coconut milk; others filter-sterilise coconut milk and add it to a medium after autoclaving has been carried out. Morel and Wetmore (1951) used filter sterilisation, but found that the milk lost its potency if stored sterile (but presumably unfrozen) for 3 months. Street (1977) advocated autoclaving coconut milk after it had been boiled and filtered; it was then stored at -20°C until required.

Active ingredients. The remarkable growth stimulating property of coconut milk has led to attempts to isolate and identify the active principles. This has proved to be difficult because the fractions into which coconut milk has been separated each possess only a small proportion of the total activity and the different components appear to act synergistically. Substances so far identified include amino acids, organic acids, nucleic acids, purines, sugars, sugar alcohols, vitamins, growth substances and minerals (Table 4.1). The variable nature of the product is illustrated in the table by the analytical results obtained by different authors.

Auxin activity. The liquid has been found to have some auxin activity which is increased by autoclaving, probably because any such growth substances exist in a bound form and are released by hydrolysis. But although coconut milk can stimulate the growth of some in vitro cultures in the absence of exogenous auxin, it normally contains little of this kind of growth regulator and an additional exogenous supply is generally required. In modern media, where organic compounds are often added in defined amounts, the main benefit from using coconut milk is almost certainly due to its providing highly active natural cytokinin growth substances.

Cytokinin activity. Coconut milk was shown to have cytokinin activity by Kuraishi and Okumura (1961) and recognised natural cytokinin substances have since been isolated [9-β-D-ribo-furanosyl zeatin (Letham, 1968); zeatin and several unidentified ones (Zwar and Bruce, 1970); N, N'-diphenyl urea (Shantz and Steward, 1955)] but the levels of these compounds in various samples of coconut milk have not been published. An unusual cytokinin-like growth promoter, 2-(3-methylbut-2-enylamino)-purin-6-one was isolated by Letham (1982).

Because coconut milk contains natural cytokinins, adding it to media often has the same effect as adding a recognised cytokinin. This means that a beneficial effect on growth or morphogenesis is often dependent on the presence of an auxin. Steward and Caplin (1951) showed that there was a synergistic action between 2,4-D and coconut milk in stimulating the growth of potato tuber tissue. Lin and Staba (1961) similarly found that coconut milk gave significantly improved callus growth on seedling explants of peppermint and spearmint initiated by 2,4-D, but only slightly improved the growth initiated by the auxin 2-BTOA (2-benzoithiazoleoxyacetic acid). The occurrence of gibberellin-like substances in coconut milk has also been reported (Radley and Dear, 1958).
Suboptimum stimulation and inhibition. In cases where optimal concentrations of growth adjuvants have been determined, it has been found that the level of the same or analogous substances in coconut milk may be suboptimal. La Motte (1960) noted that 150 mg/l of tyrosine most effectively induced morphogenesis in tobacco callus cultures, but coconut milk added at 15% would provide only 0.96 mg/l of this substance (Tulecke et al., 1961). Fresh and autoclaved coconut milk from mature nuts has proved inhibitory to growth or morphogenesis (Noh et al., 1988) in some instances. It is not known which ingredients cause the inhibition but the growth of cultured embryos seems particularly liable to be prevented, suggesting that the compound responsible might be a natural dormancy-inducing factor such as abscisic acid. Van Overbeck et al. (1942, 1944) found that a factor was present in coconut milk which was essential for the growth of *Datura stramonium* embryos, but that heating the milk or allowing it to stand could lead to the release of toxic substances. These could be removed by shaking with alcohols or ether or lead acetate precipitation. Duhamet and Mentzer (1955) isolated nine fractions of coconut milk by chromatography, and found one of these to be inhibitory to cultured crown gall tissues of black salsify when more than 10-20% coconut milk was incorporated into the medium. Norstog (1965) showed that autoclaved coconut milk could inhibit the growth of barley embryos but that filter-sterilised milk was stimulatory. Coconut water inhibited somatic embryo induction in *Pinus taeda* (Li and Huang, 1996) and both autoclaved or filter-sterilized coconut milk inhibited the growth of wheat embryo-shoot apices (Smith, 1967).

2. ORGANIC ACIDS

Organic acids can have three roles in plant culture media:
- they may act as chelating agents, improving the availability of some micronutrients,
- they can buffer the medium against pH change,
- they may act as nutrients.

A beneficial effect is largely restricted to the acids of the Krebs’ cycle. Dougall et al. (1979) found that 20 mM succinate, malate or fumarate supported maximum growth of wild carrot cells when the medium was initially adjusted to pH 4.5. Although 1 mM glutarate, adipate, pimelate, suberate, azelate or phthalate controlled the pH of the medium, little or no cell growth took place.

2.1. USE AS BUFFERS

The addition of organic acids to plant media is not a recent development. Various authors have found that some organic acids and their sodium or potassium salts stabilise the pH of hydroponic solutions (Trelease and Trelease, 1933) or in *vitro* media (Van Overbeek et al., 1941, 1942; Arnow et al., 1953), although it must be admitted that they are not as effective as synthetic biological buffers in this respect (see Section 5). Norstog and Smith (1963) discovered that 100 mg/l malic acid acted as an effective buffering agent in their medium for barley embryo culture and also appeared to enhance growth in the presence of glutamine and alanine. Malic acid, now at 1000 mg/l was retained in the improved Norstog (1973) Barley II medium. In the experiments of Schenk and Hildebrandt (1972) low levels of citrate and succinate ions did not impede callus growth of a wide variety of plants and appeared to be stimulatory in some species. The acids were also effective buffers between pH 5 and pH 6, but autoclaving a medium containing sodium citrate or citric acid caused a substantial pH increase.

2.1.1. Complexing with metals

Divalent organic acids such as citric, maleic, malic and malonic (depending on species) are found in the xylem sap of plants, where together with amino acids they can complex with metal ions and assist their transport (White et al., 1981). These acids can also be secreted from cultured cells and tissues into the growth medium and will contribute to the conditioning effect. Ojima and Ohira (1980) discovered that malic and citric acids, released into the medium by rice cells during the latter half of a passage, were able to make unchelated ferric iron available, so correcting an iron deficiency.

2.1.2. Nutritional role

As explained in Chapter 3, adding Krebs’ cycle organic acids to the medium can enhance the metabolism of NH$_4^+$. Gamborg and Shyluk (1970) found that some organic acids could promote ammonium utilisation and the incorporation of small quantities of sodium pyruvate, citric, malic and fumaric acids into the medium, was one factor which enabled Kao and Michayluk (1975) to culture *Vicia hajastana* cells at low density. Their mixture of
organic acid ions has been copied into many other media designed for protoplast culture. Cultures may not tolerate the addition of a large quantity of a free acid which will acidify the medium. For example, *Triticale* anther callus grew well on Chu *et al.* (1975) N6 medium supplemented with 35 mg/l of a mixture of sodium pyruvate, malic acid, fumaric acid, citric acid, but not when 100 mg/l was added (Chien and Kao, 1983). When organic anions are added to the medium from the sodium or potassium salts of an acid there are metallic cations to counterbalance the organic anions, and it seems to be possible to add larger quantities without toxicity. Five mM (1240 mg/l \(3\)H_2O) potassium succinate enhanced the growth of cultured peach embryos (Ramming, 1990), and adding 15 mM (4052 mg/1 \(4\)H_2O) sodium succinate to MS medium (while also increasing the sucrose content from 3% to 6%) increased the cell volume and dry weight of *Brassica nigra* suspensions by 2.7 times (Molnar, 1988).

Some plants seem to derive nutritional benefit from the presence of one particular organic acid. Murashige and Tucker (1969) showed that orange juice added to a medium containing MS salts promoted the growth of *Citrus* albedo callus. Malic and other Krebs’ cycle acids also have a similar effect; of these, citric acid produces the most pronounced growth stimulation. A concentration of up to 10.4 mM can be effective (Goldschmidt, 1976; Einset, 1978; Erner and Reuveni, 1981). Succulent plants, in particular those in the family Crassulaceae, such as *Bryophyllum* and *Kalanchoe* fix relatively large amounts of carbon dioxide during darkness, converting it into organic acids, of which malic acid is particularly important. The organic acids are metabolised during daylight hours. In such plants, malic acid might be expected to prove especially efficient in enhancing growth if added to a culture medium. Lassocinski (1985) has shown this to be the case in chlorophyll-deficient cacti of three genera. The addition of L-malic acid to the medium of Savage *et al.* (1979) markedly improved the rate of survival and vigour of small cacti or areoles.

Organic acid (citrate, lactate, succinate, tartrate, and oxalate) pretreatment of alfalfa callus dramatically decreased the growth of callus, but increased the subsequent yield of somatic embryos and embryo development, as well as conversion to plantlets (Nichol *et al.*, 1991). They suggested that the acids may act in the physiological selection for embryogenic callus, by inducing preferential growth of slower-growing-compact cell aggregates compared to the faster growing friable callus.

3. Sugars -Nutritional and Regulatory Effects

Carbohydrates play an important role in *in vitro* cultures as an energy and carbon source, as well as an osmotic agent. In addition, carbohydrate-modulated gene expression in plants is known (Koch, 1996). Plant gene responses to changing carbohydrate status can vary markedly. Some genes are induced, some are repressed, and others minimally affected. As in microorganisms, sugar-sensitive plant genes are part of an ancient system of cellular adjustment to critical nutrient availability. However, there is no evidence that this role of carbohydrate is important in normal growth and organized development in cell cultures.

3.1. Sugars as energy sources

3.1.1. Carbohydrate autotrophy.

Only a limited number of plant cell lines have been isolated which are autotrophic when cultured *in vitro*. Autotrophic cells are capable of fully supplying their own carbohydrate needs by carbon dioxide assimilation during photosynthesis (Bergmann, 1967; Tandeau de Marsac and Peaud-Lenoel, 1972a,b; Chandler *et al.*, 1972; Anon, 1980; Larosa *et al.*, 1981). Many autotrophic cultures have only been capable of relatively slow growth (e.g. Fukami and Hildebrandt, 1967), especially in the ambient atmosphere where the concentration of carbon dioxide is low (see Chapter 12). However, since these early trials, very good progress is being made with photoautrophic shoot cultures and photoautotrophic micropropagation is now possible (Kozai, 1991). Success is dependent on enriching the CO\(_2\) concentrations in the vessels during the photoperiod, reducing or eliminating sugar from the medium, and optimising the *in vitro* environment.

Nevertheless, for the normal culture of either cells, tissues or organs, it is necessary to incorporate a carbon source into the medium. Sucrose is almost universally used for micropropagation purposes as it is so generally utilisable by tissue cultures. Refined white domestic sugar is sufficiently pure for most practical purposes. The presence of sucrose in tissue culture media specifically inhibits chlorophyll formation and photosynthesis (see below) making autotrophic growth less feasible.
3.2 ALTERNATIVES TO SUCROSE

3.2.1. Other Sugars.

The selection of sucrose as the most suitable energy source for cultures follows many comparisons between possible alternatives. Some of the first work of this kind on the carbohydrate nutrition of plant tissue was done by Gautheret (1945) using normal carrot tissue. Sucrose was found to be the best source of carbon followed by glucose, maltose and raffinose; fructose was less effective and mannose and lactose were the least suitable. The findings of this and other work is summarized in Table 4.2. Sucrose has almost invariably been found to be the best carbohydrate; glucose is generally found to support growth equally well, and in a few plants it may result in better in vitro growth than sucrose, or promote organogenesis where sucrose will not; but being more expensive than sucrose, glucose will only be preferred for micropropagation where it produces clearly advantageous results.

Multiplication of Alnus crispa, A. cordata and A. rubra shoot cultures was best on glucose, while that of A. glutinosa was best on sucrose (Tremblay and Lalonde, 1984; Tremblay et al., 1984; Barghchi, 1988). Direct shoot formation from Capsicum annum leaf discs in a 16 h day required the presence of glucose (Phillips and Hubstenberger, 1985). Glucose is required for the culture of isolated roots of wheat (Furguson, 1967) and some other monocotyledons (Bhojwani and Razdan, 1983).

Table 4.2. The main sugars which can utilized by plants.

<table>
<thead>
<tr>
<th>SUGAR</th>
<th>Reducing Capacity</th>
<th>Products of hydrolytic/enzymatic breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monosaccharides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexoses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>Reducing sugar</td>
<td>None</td>
</tr>
<tr>
<td>Fructose</td>
<td>Reducing sugar</td>
<td>None</td>
</tr>
<tr>
<td>Galactose</td>
<td>Reducing sugar</td>
<td>None</td>
</tr>
<tr>
<td>Mannose</td>
<td>Reducing sugar</td>
<td>None</td>
</tr>
<tr>
<td>Pentoses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td>Slow reduction</td>
<td>None</td>
</tr>
<tr>
<td>Ribose</td>
<td>Slow reduction</td>
<td>None</td>
</tr>
<tr>
<td>Xylose</td>
<td>Slow reduction</td>
<td>None</td>
</tr>
<tr>
<td>Disaccharides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>Non-reducing</td>
<td>Glucose, fructose</td>
</tr>
<tr>
<td>Maltose</td>
<td>Reducing sugar</td>
<td>Glucose</td>
</tr>
<tr>
<td>Cellobiose</td>
<td>Reducing sugar</td>
<td>Glucose</td>
</tr>
<tr>
<td>Trehalose</td>
<td>Non-reducing</td>
<td>Glucose</td>
</tr>
<tr>
<td>Lactose</td>
<td>Reducing sugar</td>
<td>Glucose, fructose</td>
</tr>
<tr>
<td>Trisaccharides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinose</td>
<td>Non-reducing</td>
<td>Glucose, galactose, fructose</td>
</tr>
</tbody>
</table>

Some other monosaccharides such as arabinose and xylose; disaccharides such as cellobiose, maltose and trehalose; and some polysaccharides; all of which are capable of being broken down to glucose and fructose (Table 4.2), can also sometimes be used as partial replacements for sucrose (Straus and LaRue, 1954; Sievert and Hildebrandt, 1965; Yatazawa et al., 1967; Smith and Stone, 1973; Minocha and Halperin, 1974; Zaghamout and Torres, 1985). In Phaseolus callus, Jeffs and Northcote (1967) found that sucrose could be replaced by maltose and trehalose (all three sugars have an alpha-glucosyl radical at the non-reducing end), but not by glucose or fructose alone or in combination, or by several other different sugars. Galactose has been said to be toxic to most plant tissues; it inhibits the growth of orchids and other plants in concentrations as low as 0.01% (0.9 mM) (Ernst et al., 1971; Arditti and Ernst, 1984). However, cells can become adapted and grown on galactose, e.g., sugar cane cells (Maretzki and Thom, 1978). The key was the induction of the enzyme galactose kinase, which converts galactose to galactose-1-phosphate. More recently, other reports on galactose use have appeared. It promoted callus growth in rugosa rose, but inhibited somatic embryogenesis (Kunitake et al., 1993). Galactose
promoted early somatic embryo maturation stages in European silver fir (Schuller and Reuther, 1993). When used instead of sucrose, it improved rooting of *Annona squamosa* microshoots (Lemos and Blake, 1996). In addition, galactose has been found to reduce or overcome hyperhydricity in shoot cultures (Druart, 1988; see Volume 2). Fructose has also been reported to be effective in preventing hyperhydricity (Rugini et al., 1987).

There are some situations where fructose supports growth just as well as sucrose or glucose (Steffen et al., 1988) and occasionally it gives better results. Some orchid species have been reported to grow better on fructose than glucose (Ernst, 1967; Ernst et al., 1971; Arditti, 1979). Fructose was the best sugar for the production of adventitious shoots from *Glycine max* cotyledonal nodes, especially if the concentration of nutrient salts supplied was inadequate (Wright et al., 1986). Shoot and leaf growth and axillary shoot formation in *Castanea* shoot cultures was stimulated when sucrose was replaced by 30 g/l fructose. The growth of basal callus was reduced and it was possible to propagate from mature explants of *C. crenata*, although this was not possible on the same medium supplemented with sucrose (Chauvin and Salesses, 1988). However, fructose was reported to be toxic to carrot tissue if, as the sole source of carbon, it was autoclaved with White (1943a) A medium. When filter sterilized, fructose supported the growth of callus cultures which had a final weight 70% of those grown on sucrose (Pollard et al., 1961).

Sucrose in culture media is usually hydrolysed totally, or partially, into the component monosaccharides glucose and fructose (see below) and so it is logical to compare the efficacy of combinations of these two sugars with that of sucrose. Kromer and Kukuczanka (1985) found that meristem tips of *Canna indica* survived better on a mixture of 25 g/l glucose plus 5 g/l fructose, than on 30 g/l sucrose. Germination of *Paphiopedilum* orchid seeds was best on a medium containing 5g/l fructose plus 5 g/l glucose; a mixture of 7.5 g/l of each sugar was optimal for further growth of the seedlings (Pierik et al., 1988). In spite of its rapid hydrolysis to glucose and fructose, sucrose appears to have a specific stimulatory effect on embryo development in Douglas fir, that was not observed when it was replaced by the monosaccharides (Taber et al., 1998).

The general superiority of sucrose over glucose for the culture of organised plant tissues such as isolated roots may be on account of the more effective translocation of sucrose to apical meristems (Butcher and Street, 1964). In addition, there could be an osmotic effect, because, from an equal weight of compound, a solution of glucose has almost twice the molarity of a sucrose solution, and will thus, in the absence of inversion of the disaccharide, induce a more negative water potential (see below).

Maltose. Plant species vary in their ability to utilise unusual sugars. For instance, although Gautheret (1945) could grow carrot callus on maltose, Mathes et al. (1973) obtained only minimal growth of *Acer* tissue on media supplemented with this sugar. Similarly, growth of soybean tissue on maltose is normally very slow, but variant strains of cells have been selected which can utilise it (Limberg et al., 1979), perhaps because the new genotypes possessed an improved capacity for its active transport. Later studies have given a more prominent role to maltose as a component of tissue culture media. Maltose serves as both a carbon source and an osmoticum. Compared to sucrose there is a slower rate of extracellular hydrolysis, it is taken up more slowly, and hydrolysed intracellularly more slowly. Maltose led to a substantial increase in somatic embryos from *Petunia* anthers (Raquin, 1983). It also led to an increase in callus induction and plantlet regeneration during *in vitro* androgenesis of hexaploid winter triticale and wheat (Karsai et al., 1994). Maltose also increased callus induction in rice microspore culture, with an acceleration of initial cell divisions (Xie et al., 1995). For barley microspore culture, the inclusion of maltose led to a higher frequency of green plants (Finnie et al., 1989). Maltose has been reported to equal or surpass sucrose in supporting embryogenesis in a number of species, including carrot (Verma and Dougall, 1977; Kinnersley and Henderson, 1988), alfalfa (Strickland et al., 1987), wild cherry (Reidiboym-Talleux et al., 1999), *Malus* (Daigny et al., 1996), *Abies* (Norgaard et al., 1997) and loblolly pine (Li et al., 1998). The number of plants regenerated from *indica* (Biswas and Zapata, 1993), and *japonica* (Jain et al., 1997) rice varieties was also greater when protoplasts were cultured with maltose rather than sucrose. Transfer from a medium containing sucrose or glucose to one supplemented with maltose has been used by Stuart et al. (1986) and Redenbaugh et al. (1987) to enhance the conversion of alfalfa embryos. Similarly, maltose led to a much higher germination rate from asparagus somatic embryos than sucrose (Kunitake et al., 1997).

Lactose. The disaccharide lactose has been detected in only a few plants. When added to tissue
culture media it has been found to induce the activity of β-galactosidase enzyme which can be secreted into the medium. The hydrolysis of lactose to galactose and glucose then permits the growth of *Nemesia strumosa* and *Petunia hybrida* callus, cucumber suspensions (Hess et al., 1979; Callebaut and Motte, 1988), cotton callus and cell suspensions (Mitchell et al., 1980), and Japanese morning glory callus (Hisajima and Thorpe, 1981). The key to lactose utilization in Japanese morning glory was not only the extracellular hydrolysis of this disaccharide, but the induction of galactose kinase, which prevented the accumulation of toxic galactose (Hisajima and Thorpe, 1985). Rodriguez and Lorenzo Martin (1987) found that adding 30 g/l lactose to MS medium instead of sucrose increased the number of shoots produced by a *Musa acuminate* shoot culture, but no new shoots were produced on subsequent subculture, although they were when sucrose was present.

In addition to lactose, plant cells have been shown to become adapted and then to grow on other galactose-containing oligosaccharides, including melibiose (Nickell and Maretzki, 1970; Gross et al., 1981), raffinose (Wright and Northcote, 1972; Thorpe and Laishley, 1974; Gross et al., 1981), and stachyose (Verma and Dougall, 1977; Gross et al., 1981).

Corn syrups. Kinnersley and Henderson (1988) have shown that certain corn syrups can be used as carbon sources in plant culture media and that they may induce morphogenesis which is not provoked by supplementing with sucrose. Embryogenesis was induced in a 10-year old non-embryogenic cell line of *Daucus carota* and plantlets were obtained from *Nicotiana tabacum* anthers by using syrups. Those used contained a mixture of glucose, maltose, maltotriose and higher polysaccharides. Their stimulatory effect was reproduced by mixtures of maltose and glucose.

3.2.2. Sugar alcohols.

Sugar alcohols were thought not usually to be metabolised by plant tissues and therefore unavailable as carbon sources. For this reason, mannitol and sorbitol have been frequently employed as osmotica to modify the water potential of a culture medium. In these circumstances, sufficient sucrose must also be present to supply the energy requirement of the tissues. Adding either mannitol or sorbitol to the medium may make boron unavailable (See Chapter 3).

Mannitol was found to be metabolised by *Fraxinus* tissues (Wolter and Skoog, 1966). Later, studies with carrot and tobacco suspensions and cotyledon cultures of radiata pine showed that although mannitol was taken up very slowly, it was readily metabolized (Thompson et al., 1986). Thus, this sugar alcohol is only of value as a short-term osmotic agent. In contrast, sorbitol is readily taken up and metabolized in some species. It has been found to support the growth of apple callus (Chong and Taper, 1972, 1974a,b) and that of other rosaceous plants (Coffin et al., 1976), occasionally giving rise to more vigorous growth than can be obtained on sucrose. The ability of Rosaceae to use sorbitol as a carbon source is reported to be variety dependent. Albrecht (1986) found that shoot cultures of one crabapple variety required sorbitol for growth and would not grow on sucrose; another benefited from being grown on a mixture of sorbitol and sucrose and the growth of a third suffered if any sucrose was replaced by sorbitol. The apple rootstock ‘Ottawa 3’ produced abnormal shoots on sorbitol (Chong and Pua, 1985). Evidence is accumulating to show that sugar alcohols generally exhibit non-osmotic roles in regulating morphogenesis and metabolism in plants that do not produce polyols as primary photosynthetic products (Steinitz, 1999). In addition to being metabolised to varying degrees in heterotrophic cultures, such as tobacco, maize, rice, citrus and chicory, sugar alcohols stimulate specific molecular and physiological responses, where they apparently act as chemical signals.

The cyclic hexahydric alcohol myo-inositol does not seem to provide a source of energy (Smith and Stone, 1973) and its beneficial effect on the growth of cultured tissues when used as a supplementary nutrient must depend on its participation in biosynthetic pathways (see vitamins above).

3.2.3. Starch.

Cultured cells of a few plants are able to utilise starch in the growth medium and appear to do so by release of extracellular amylases (Nickell and Burkholder, 1950). Growth rates of these cultures are increased by the addition of gibberellic acid, probably because it increases the synthesis or secretion of amylase enzymes (Maretzki et al., 1971, 1974).

3.3. HYDROLYSIS OF SUCROSE.

The remainder of this section on sugars is devoted to the apparent effects of sucrose concentration on cell differentiation and morphogenesis. Reports on
the subject should be tempered with the knowledge that some or all of the sucrose in the medium is liable to be broken down into its constituent hexose sugars, and that such inversion will also occur within plant tissues, where reducing sugar levels of at least 0.5 per cent are likely to occur (Helgeson et al., 1972).

3.3.1. Autoclaving.

A partial hydrolysis of sucrose takes place during the autoclaving of media (Ball, 1953; Wolter and Skoog, 1966) the extent being greater when the compound is dissolved together with other medium constituents than when it is autoclaved in pure aqueous solution (Ferguson et al., 1958). In a fungal medium, not dissimilar to a plant culture medium, Bretzloff (1954) found that sucrose inversion during autoclaving (15 min at 15 lbs/in²) was dependent on pH in the following way:

<table>
<thead>
<tr>
<th>pH</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>100</td>
</tr>
<tr>
<td>3.4</td>
<td>75</td>
</tr>
<tr>
<td>3.8</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>25</td>
</tr>
<tr>
<td>4.7</td>
<td>12.5</td>
</tr>
<tr>
<td>5.0</td>
<td>10</td>
</tr>
<tr>
<td>6.0</td>
<td>0</td>
</tr>
</tbody>
</table>

These results suggest that the proportion of sucrose hydrolysed by autoclaving media at conventional pH levels (5.5-5.8) should be negligible. Most evidence suggests that this is not the case and that 10-15% sucrose can be converted into glucose and fructose. Cultures of some plants grow better in media containing autoclaved (rather than filter-sterilised) sucrose (Ball, 1953; Guha and Johri, 1966; Johri and Guha, 1963; Verma and Van Huystee, 1971; White, 1932) suggesting that the cells benefit from the availability of glucose and/or fructose. However, Nitsch and Nitsch (1956) noted that glucose only supported the growth of *Helianthus* callus if it had been autoclaved, and Romberger and Tabor (1971) that the growth of *Picea* shoot apices was less when the medium contained sucrose autoclaved separately in water (or sucrose autoclaved with only the organic constituents of the medium) than when all the constituents had been autoclaved together. They suggested that a stimulatory substance might be released when sugars are autoclaved with agar.

In other species there has been no difference between the growth of cultures supplied with autoclaved or filter sterilised sucrose (Mathes et al., 1973) or growth has been less on a medium containing autoclaved instead of filter sterilised sucrose (Stehsel and Caplin, 1969).

3.3.2. Enzymatic breakdown.

Sucrose in the medium is also inverted into monosaccharides during the in vitro culture of plant material. This occurs by the action of invertase located in the plant cell walls (Burstrom, 1957; Yoshida et al., 1973) or by the release of extracellular enzyme (King and Street, 1977). In most cultures, inversion of sucrose into glucose and fructose takes place in the medium; but, because the secretion of invertase enzymes varies, the degree to which it occurs differs from one kind of plant to another. After 28 days on a medium containing either 3 or 4% sucrose, single explants of *Hemerocallis* and *Delphinium* had used 20-30% of the sugar. Of that which remained in the medium which had supported *Hemerocallis*, about 45% was sucrose, while only 5% was sucrose in the media in which *Delphinium* had been grown. In both cases the rest of the sucrose had been inverted (Lumsden et al., 1990).

The sucrose-inverting capacity of tomato root cultures was greatest in media of pH 3.6-4.7. Activity sharply declined in less acid media (Weston and Street, 1968). Helgeson et al. (1972) found that omission of IAA auxin from the medium in which tobacco callus was cultured, caused there to be a marked rise in reducing sugar due to the progressive hydrolysis of sucrose, both in the medium and in the tissue. A temporary increase in reducing sugars also occurred at the end of the lag phase when newly transferred callus pieces started to grow rapidly. It is interesting to note that cell wall invertase possessed catalytic activity *in situ*, whether or not tobacco tissue was grown on sucrose (Obata-Sasamoto and Thorpe, 1983).

In cultures of some species, uptake of sugar may depend on the prior extracellular hydrolysis of sugar. This is the ease in sugar cane (Komor et al., 1981); and possibly also in *Dendrobium* orchids (Hew et al., 1988) and carrot (Kanabus et al., 1986). Nearly all the sucrose in suspension cultures of sugar cane and sugar beet was hydrolysed in 3 days (Zamski and Wyse, 1985) and *Daucus carota* suspensions have been reported to hydrolyse all of the sucrose in the medium (Thorpe, 1982) into the constituent hexoses within 3 days (Kanabus et al., 1986) or within 24 h (Dijkema et al., 1990). However, most species can take up sucrose directly as was shown through studies with asymmetrically labeled ¹⁴C-sucrose (Parr and Edelman, 1975), and metabolise it intracellularly. Within the cell, soluble invertase, sucrose phosphate synthetase and sucrose synthetase serve to hydrolyse sucrose (Thorpe, 1982). Thus, in *Acer* (Copping and
Street, 1972) the soluble invertase activity paralleled growth rate, while in tobacco (Thorpe and Meier, 1973) and Japanese morning glory (Hisajima et al., 1978) sucrose synthetase was more important. In the last species, the change in activity of sucrose synthetase was greater than that of sucrose phosphate synthetase, an enzyme not extensively examined in cultured cells.

The growth of shoots from non-dormant buds of mulberry is not promoted by sucrose, only by maltose, glucose or fructose. Even though mulberry tissue hydrolysed sucrose into component monosaccharides, shoots did not develop. In the presence of 3% fructose, sucrose was actually inhibitory to shoot development at concentrations as low as 0.2% (Oka and Ohyama, 1982).

3.4. UPTAKE.

The uptake of sugar molecules into plant tissues appears to be partly through passive permeation and partly through active transport. The extent of the two mechanisms may vary. Active uptake is associated with the withdrawal of protons (H⁺) from the medium. Charge compensation is effected by the excretion of a cation (H⁺ or K⁺) (Komor et al., 1977, 1981). Glucose was taken up preferentially by carrot suspensions during the first 7 days of a 14 day passage; fructose uptake followed during days 7-9 (Dijkema et al., 1990). At concentrations below 200 mM, glucose was taken up more rapidly into strawberry fruit discs and protoplasts than either sucrose or fructose (Scott and Breen, 1988).

3.5. EFFECTIVE CONCENTRATIONS.

In most of the comparisons between the nutritional capabilities of sugars discussed above, the criterion of excellence has been the most rapid growth of unorganised callus or suspension-cultured cells. For this purpose 2-4% sucrose w/v is usually optimal. Similar concentrations are also used in media employed for micropropagation, but laboratories probably pay insufficient attention to the effects of sucrose on morphogenesis (see below) and plantlet development. Sucrose levels in culture media which result in good callus growth may not be optimal for morphogenesis, and either lower or higher levels may be more effective.

The optimum concentration of sucrose to induce morphogenesis or growth differs between different genotypes, sometimes even between those which are closely related. For instance, Damiano et al. (1987) found that the concentration of sucrose necessary to produce the best rate of shoot proliferation in Eucalyptus gunnii shoot cultures varied between clones. The influence of sucrose concentration on direct shoot formation from Chrysanthemum explants varied with plant cultivar (Fig 4.1).

Experiments of Molnar (1988) have shown that the optimum level of sucrose may depend upon the other amendments added to a culture medium. The most rapid growth of Brassica nigra suspensions on one containing MS salts (but less iron and B5 vitamins) occurred when 2% sucrose was added. However, when it was supplemented with 1-4 g/l casein hydrolysate or a mixture of 3 defined amino acids, growth was increased on up to 6% sucrose. A similar result was obtained if, instead of the amino acids, 15 mM sodium succinate was added. There was an extended growth period and the harvested dry weight of the culture was 2.8 times that on the original medium with 2% sucrose.

The level of sucrose in the medium may have a direct effect on the type of morphogenesis. Thus, sucrose (87 mM) favored organogenesis, while a higher level (350 mM) favoured somatic embryogenesis from immature zygotic embryos of sunflower (Jeannin et al., 1995). In vitro minicrowns of asparagus developed short, thickened storage roots at high frequencies when the sucrose concentration in the medium was increased to 6% (Conner and Falloon, 1993). Lower sucrose concentrations, even with the addition of non- or poorly metabolised carbohydrates, such as celllobiose, maltose, mannose, melibiose and sorbitol produced thin fibrous roots, indicating that the additional sucrose was nutritional rather than osmotic.

The respiration rate of cultured plant tissues rises as the concentration of added sucrose or glucose is increased. In wheat callus, it was found to reach a maximum when 90 g/1 (0.263 M) was added to the medium, even though 20 g/l produced the highest rate of growth and number of adventitious shoots (Galiba and Erdei, 1986). The uptake of inorganic ions can be dependent on sugar concentration and the benefit of adding increased quantities of nutrients to a medium may not be apparent unless the amount of sugar is increased at the same time (Gamborg et al., 1974).

3.5.1. Cell differentiation

Formation of vascular elements. Although sugars are clearly involved in the differentiation of xylem and phloem elements in cultured cells, it is still uncertain whether they have a regulatory role apart from providing a carbon energy source necessary for
active cell metabolism. Sucrose is generally required to be present in addition to IAA before tracheid elements are differentiated in tissue cultures. The number of both sieve and xylem elements formed [and possibly the proportion of each kind - Wetmore and Rier (1963); Rier and Beslow (1967)] depends on sucrose concentration (Aloni, 1980). In *Helianthus tuberosus* tuber slices, although sucrose, glucose and trehalose were best for supporting cell division and tracheid formation, maltose was only a moderately effective carbon source (Minocha and Halperin, 1974). Shininger (1979) has concluded that only carbohydrates which enable significant cell division are capable of promoting tracheary element formation. The occurrence of lignin in cultured cells is not invariably associated with thickened cell walls. Sycamore suspension cultures produced large amounts of lignin when grown on a medium with abnormally high sucrose (more than 6%) and 2,4-D levels. It was deposited within the cells and released into the medium (Carceller *et al.*, 1971).

![Fig. 4.1](image)

Fig. 4.1 The effect of sucrose concentration on direct adventitious shoot formation from flower pedicels of two chrysanthemum cultivars [from data of Roest and Bokelmann, 1975].

Chlorophyll formation. Levels of sucrose normally used to support the growth of tissue cultures are often inhibitory to chlorophyll synthesis (Rier and Chen, 1964; Edelman and Hanson, 1972) but the degree of inhibition does vary according to the species of plant from which the tissue was derived. In experiments of Hildebrandt *et al.* (1963) and Fukami and Hildebrandt (1967) for example, carrot and rose callus had a high chlorophyll content on Hildebrandt *et al.* (1946) tobacco medium with 2-8% sucrose; but tissue of endive, lettuce and spinach only produced large amounts of the pigment on a medium with no added sucrose (although a small amount of sugar was probably supplied by 15-16% coconut milk).

Cymbidium protocorms contain high chlorophyll levels only if they are cultured on media containing 0.2-0.5% sucrose. Their degree of greening declines rapidly when they are grown on sucrose concentrations higher than this (Vanséveren-Van Espen, 1973). Likewise, orchid protocorm-like bodies will not become green and cannot develop into plantlets if sucrose is present in the medium beyond the stage of their differentiation from the explants. Where added sucrose does reduce chlorophyll formation, it is thought that the synthesis of 5-aminolaevulinic acid (ALA - a precursor of the porphyrin molecules of which chlorophyll is composed) is reduced due to an inhibition of the activity of the enzyme ALA synthase (Pamplin and
3.6 STARCH ACCUMULATION AND MORPHOGENESIS

3.6.1. Starch deposition preceding morphogenesis.

Cells of callus and suspension cultures commonly accumulate starch in their plastids and it is particularly prevalent in cells at the stationary phase. Starch in cells of rice suspensions had different chemical properties to that in the endosperm of seeds (Landry and Smyth, 1988). In searching for features which might be related to later morphogenetic events in *Nicotiana* callus, Murashige and co-workers (Murashige and Nakano, 1968; Thorpe and Murashige, 1968a, b) noticed that starch accumulated preferentially in cells sited where shoot primordia ultimately formed. The starch is produced from sucrose supplied in the culture medium (Thorpe *et al*., 1987). An increase in photosynthesis occurs when sucrose is omitted from the medium in which rooted plantlets are growing (Short *et al*., 1987), but these treatments are not successful in ensuring a greater survival of plantlets when they are transferred extra *vitrum*. A more recent study also showed the relative contribution of autotrophic and heterotrophic carbon metabolism in cultured potato plants (Wolf *et al*., 1998). With 8% sucrose in the medium 90% of the tissue carbon was of heterotrophic origin in light-grown plants; while on 3% sucrose, only 50% was of heterotrophic origin.

3.6.2. Morphogenesis without starch deposition

Cells of other plants which become committed to initiate organs do not necessarily accumulate starch as a preliminary to morphogenesis and it seems likely that the occurrence of this phenomenon is species-related. The deposition of starch was observed as an early manifestation of organogenesis in *Pinus coulteri* embryos (Patel and Berlyn, 1983), but not in those of *Picea abies* (Von Arnold, 1987). Although zygotic embryos of the latter species immediately began to accumulate starch (particularly in the chloroplasts of cells in the cortex) when they were placed on a medium containing sucrose. It was never observed in meristematic cells from which adventitious buds developed (Von Arnold, 1987). However, if a major role for the accumulation of starch prior to the initiation of organized development is for energy production, this role would be satisfied by the lipid reserves in zygotic embryos of conifers (Thorpe, 1982). Indeed, the rapid and nearly linear degradation of triglycerides during the period of high respiration during shoot initiation in excised cotyledons of radiata pine (Biondi and Thorpe, 1982; Douglas *et al*., 1982) would support this view.

Meristematic centres in bulb scales of *Nerine bowdenii* can be detected as groups of cells from which starch is absent (Grootaarts *et al*., 1981). Starch was not accumulated in caulogenic callus of *Rosa persica* *x* *R. xanthina* initiated from recently-initiated shoot cultures, but cells did accumulate starch when the shoot forming capacity of the callus was lost after more than three passages (Lloyd *et al*., 1988). Callus derived from barley embryos was noted to accumulate starch very rapidly and this was accompanied by a reduction in osmotic pressure within the cells (Granatek and Cockerline, 1978). Gibberellic acid, which in this plant could be used to induce shoot formation, brought about an increase in cell osmolarity.

There are some further examples where a diminution of the amount of stored carbohydrate in cultured tissues has restored or improved their
organogenetic capacity. A salt-tolerant line of alfalfa cells which showed no ability for shoot regeneration after three and a half years in culture on 3% sucrose was induced to form shoots and plantlets by being cultured for one passage of 24 days on 1% sucrose, before being returned to a medium containing 3% sucrose and a high 2,4-D level (Rains et al., 1980, and personal communication). Cells which in 3% sucrose were full of starch became starch-depleted during culture on a lower sucrose level. The number of somatic embryos formed by embryogenic ‘Shamouti’ orange callus, was increased when sucrose was omitted from the medium for one passage, before being returned to Murashige and Tucker (1969) medium with 5-6% sucrose (Kochba and Button, 1974).

3.6.3. Unusual sugars

In some plants, unusual sugars are able to regulate morphogenesis and differentiation. Galactose stimulates embryogenesis in Citrus cultures (Kochba et al., 1978) and can enhance the maturation of alfalfa embryos. Callus of Cucumis sativus grew most rapidly on raffinose and was capable of forming roots when grown on this sugar; somatic embryos were only differentiated when the callus was cultured on sucrose (88-175 mM), but if a small amount of stachyose (0.3 mM) was added to 88 mM sucrose the callus produced adventitious shoots instead (Kim and Janick, 1989). Stachyose is the major translocated carbohydrate in cucurbits.

4. OSMOTIC EFFECT OF MEDIA INGREDIENTS

Besides having a purely nutritive effect, solutions of inorganic salts and sugars, which compose tissue culture media, influence plant cell growth through their osmotic properties. A discussion is most conveniently accommodated at this point, as many of the papers published on the subject stress the osmotic effects of added sugars.

4.1. OSMOTIC AND WATER POTENTIALS: A GENERAL INTRODUCTION

Water movement into and out of a plant cell is governed by the relative concentrations of dissolved substances in the external and internal solutions, and by the pressure exerted by its restraining cell wall. The manner of defining the respective forces has changed in recent years, and as both old and new terminology are found in the tissue culture literature, the following brief description may assist the reader. More detailed explanations can be found in many texts on plant physiology.

In the older concept, cells were considered to take up water by suction (i.e. by exerting a negative pressure) induced by the osmotically active concentration of dissolved substances within the cell. The suction force or suction pressure (SP) was defined as that resulting from the osmotic pressure of the cell sap (OPcs) minus the osmotic pressure of the external solution (OPext), and the pressure exerted on, and stretching the cell wall, turgor pressure (TP) - so called because it is at a maximum when the cells are turgid. This may be represented by the equations:

\[\text{SP} = (\text{OP}_{\text{cs}} - \text{OP}_{\text{ext}}) - \text{TP} \]

\[\text{SP} = \text{OP}_{\text{cs}} - (\text{OP}_{\text{ext}} + \text{TP}) \]

4.1. OSMOTIC AND WATER POTENTIALS: A GENERAL INTRODUCTION

Water movement into and out of a plant cell is governed by the relative concentrations of dissolved substances in the external and internal solutions, and by the pressure exerted by its restraining cell wall. The manner of defining the respective forces has changed in recent years, and as both old and new terminology are found in the tissue culture literature, the following brief description may assist the reader. More detailed explanations can be found in many texts on plant physiology.

In the older concept, cells were considered to take up water by suction (i.e. by exerting a negative pressure) induced by the osmotically active concentration of dissolved substances within the cell. The suction force or suction pressure (SP) was defined as that resulting from the osmotic pressure of the cell sap (OPcs) minus the osmotic pressure of the external solution (OPext), and the pressure exerted on, and stretching the cell wall, turgor pressure (TP) - so called because it is at a maximum when the cells are turgid. This may be represented by the equations:

\[\text{SP} = (\text{OP}_{\text{cs}} - \text{OP}_{\text{ext}}) - \text{TP} \]

\[\text{SP} = \text{OP}_{\text{cs}} - (\text{OP}_{\text{ext}} + \text{TP}) \]
‘A’ and ‘B’, of different water potential, is given by:

\[\Delta \Psi = \Psi_{\text{cellA}} - \Psi_{\text{cellB}} \]

the direction of movement being towards the more negative water potential.

The osmotic potential (pressure) of solutions is determined by their molar concentration and by temperature. The water potential of a plant tissue culture medium (\(\Psi_{\text{tcm}} \)) is equivalent to the osmotic potential of the dissolved compounds (\(\Psi_s \)). There is no pressure potential but, if they are added, substances such as agar and Gelrite contribute a matric potential (\(\Psi_m \)):

\[\Psi_{\text{tcm}} = \Psi_s + \Psi_m \]

Osmotic pressure and water potential are measured in standard pressure units thus:

1 bar = 0.987 atm
 = \(10^6 \) dynes cm\(^{-2} \)
 = \(10^5 \) Pa (0.1 MPa = 1 bar).

Whereas molarity is defined as number of gram moles of a substance in one litre of a solution (i.e. one litre of solution requires less than one litre of solvent), molality is the number of gram moles of solute per kilogram of solvent, and thus, unlike osmotic potential (osmolality, measured in pressure units) is independent of temperature. It is therefore more convenient to give measurements of osmotic pressure in osmolality units. The osmole (Osm) is defined as:

The unit of the osmolality of a solution exerting an osmotic pressure equal to that of an ideal non-dissociating substance which has a concentration of one mole of solute per kilogram of solvent.

The osmolality of a very dilute solution of a substance which does not dissociate into ions, will be the same as its molality (i.e. g moles per kilogram of solvent). The osmolality of a weak solution of a salt, or salts, which has completely dissociated into ions, will equal that of the total molality of the ions.

The osmotic potential of dilute solutions approximates to Van’t Hoff’s equation: \(\Psi = -cRT \); where

- \(c \) = concentration of solutes in mol/litre;
- \(R \) = the gas constant and
- \(T \) = temperature in °K

From the above equation, at 0°C one litre of a solution containing 1 mole of an undissociated compound, or 1 mole of ions, could be expected to have an osmolality of 1 Osm/kg, and an osmotic (water) potential of:

\[\Psi = -1 \text{ (mole)} \times 0.082054 \text{ (atm/mole/°C)} \times 273.16 \text{ (°K)} = -22.414 \text{ atm} \]

Thus, although in practice the Van’t Hoff equation must be corrected by the osmotic coefficient, \(\Phi \):

\[\Psi = - \Phi cRT \text{ (Lang, 1967),} \]

it is possible to give approximate figures for converting osmolality into osmotic potential pressure units. These are shown in Table 4.3. This table can also be used to estimate the osmotic potential of non-dissociating molecules such as sugars or mannitol. Thus at 25°C, 30 g/l sucrose (molecular wt. 342.3) should exert an osmotic potential of:

\[-2.4789 \times \frac{30}{342.3} = -0.217 \text{ MPa} \]

The observed potential is -0.223 Mpa (Table 4.4).

A definition. The osmotic properties of solutions can be difficult to describe without confusion. In this book, the addition of solutes to a solvent (which makes the osmotic or water potential more negative, but makes the osmolality of the solution increase to a larger positive value), has been said to reduce

<table>
<thead>
<tr>
<th>For conversion to</th>
<th>Multiply Osm/kg by the factor shown for an equivalent osmotic potential in pressure units (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 °C</td>
</tr>
<tr>
<td>Dyne/cm(^2) (^2)</td>
<td>-22.711 \times 10^6</td>
</tr>
<tr>
<td>Mpa</td>
<td>-2.2711</td>
</tr>
</tbody>
</table>

\(^1\) Divide pressure units by the figures shown to find approximate osmolality, e.g. \(223 \text{ kPa} = \frac{-223}{1000} \times 1 = 0.090 \text{ Osm/kg}.\)
(decrease) the osmotic potential of solutions. MS medium containing 3% sucrose (osmolality, ca. 186 mOsm/kg; ca. -461 kPa at 25°C) is thus described as having a lower water potential than the medium of White (1954) supplemented with 2% sucrose (osmolality, ca. 78 mOsm/kg; ca. -193 kPa at 25°C).

4.2. THE OSMOTIC POTENTIAL OF TISSUE CULTURE MEDIA

4.2.1. The total osmotic potential of solutes

The approximate total osmotic potential of a medium due to dissolved substances, can be estimated from: \[\Psi_s = \Psi_{\text{macronutrients}} + \Psi_{\text{sugars}} \]

When 3% w/v sucrose is added to Murashige and Skoog (1962) medium, the osmolality of a filter sterilised preparation rises from 0.096 to 0.186 Osm/kg and at 25°C, the osmotic potential of the medium decreases from -0.237 to -0.460 MPa. Sugars are thus responsible for much of the osmotic potential of normal plant culture media. Even without any inversion to monosaccharides, the addition of 3% w/v sucrose is responsible for over four fifths of the total osmotic potential of White (1954) medium, 60% of that of Schenk and Hildebrandt (1972), and for just under one half that of MS.

The contribution of the gelling agent. The water potential of media solidified with gels is more negative than that of a liquid medium, due to their matric potential, but this component is probably relatively small (Amador and Stewart, 1987). In the following sections, the matric potential of semi-solid media containing ca. 6 g/l agar has been assumed to be -0.01 MPa at 25°C, but as adding extra agar to media helps to prevent hyperhydricity, it is possible that this is an underestimate.

The contribution of nutrient salts. Inorganic salts dissociate into ions when they are dissolved in water, so that the water potential of their solutions (especially weak solutions) does not depend on the molality (or molarity) of undissociated compounds, but on the molality (or molarity) of their ions. Thus a solution of KCl with a molality of 0.1, will have a theoretical osmolality of 0.2, because in solution it dissociates into 0.1 mole K⁺ and 0.1 mole Cl⁻. Osmolality of a solution of mixed salts is dependent on the total molality of ions in solution.

Dissociation may not be complete, especially when several different compounds are dissolved together as in plant culture media, which is a further reason why calculated predictions of water potential may be imprecise. In practice, osmotic potentials should be determined by actual measurement with an osmometer. Clearly though, osmotic potential of a culture medium is related to the concentration of solutes, particularly that of the macronutrients and sugar.

Of the inorganic salts in nutrient media, the macronutrients contribute most to the final osmotic (water) potential because of their greater concentration. The osmolality of these relatively dilute solutions is very similar to the total osmolarity of the constituent ions at 0°C, and can therefore be estimated from the total molality of the macronutrient ions. Thus based on its macronutrient composition, a liquid Murashige and Skoog (1962) medium (without sugar) with a total macronutrient ion concentration of 95.75 mM, will have an osmolality of ca. 0.0958 osmoles (Osm) per kilogram of water solvent (95.8 mOsm/kg), at 25°C, an osmotic potential of ca. -0.237 MPa (237 kPa). Estimates of osmolality

\[\text{Table 4.4 The osmolality and osmotic potential of sucrose solutions at different concentrations.} \]

<table>
<thead>
<tr>
<th>Sucrose concentration (% , w/v)</th>
<th>Osmolality (Osm/kg)</th>
<th>Osmotic potential at 25 ºC (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 14.61</td>
<td>0.015</td>
<td>-0.037</td>
</tr>
<tr>
<td>1.0 29.21</td>
<td>0.030</td>
<td>-0.074</td>
</tr>
<tr>
<td>1.5 43.82</td>
<td>0.045</td>
<td>-0.112</td>
</tr>
<tr>
<td>2.0 58.43</td>
<td>0.060</td>
<td>-0.149</td>
</tr>
<tr>
<td>2.5 73.04</td>
<td>0.075</td>
<td>-0.186</td>
</tr>
<tr>
<td>3.0 87.64</td>
<td>0.090</td>
<td>-0.223</td>
</tr>
<tr>
<td>4.0 116.86</td>
<td>0.121</td>
<td>-0.300</td>
</tr>
<tr>
<td>5.0 175.28</td>
<td>0.186</td>
<td>-0.461</td>
</tr>
<tr>
<td>6.0 233.71</td>
<td>0.253</td>
<td>-0.627</td>
</tr>
<tr>
<td>8.0 292.14</td>
<td>0.324</td>
<td>-0.803</td>
</tr>
<tr>
<td>10.0 350.57</td>
<td>0.396</td>
<td>-0.982</td>
</tr>
</tbody>
</table>
derived in this way agree closely to actual measurements of osmolality or osmolarity for named media given in the papers of Yoshida et al. (1973), Kavi Kishor and Reddy (1986) and Lazzeri et al. (1988) (see Table 4.5).

The contribution of sugars. The osmolality and osmotic potential of sucrose solutions can be read from Table 4.6. Those of mannitol and sorbitol solutions of equivalent molarities will be approximately comparable. At concentrations up to 3% w/v, the osmolality of sucrose is close to molarity. It will be seen that the osmotic potential (in MPa) of sucrose solutions at 25°C can be roughly estimated by multiplying the % weight/volume concentration by -0.075: that of the monosaccharides fructose, glucose, mannitol and sorbitol (which have a molecular weight approximately 0.52 times that of sucrose), by multiplying by -0.14.

If any of the sucrose in a medium becomes hydrolysed into monosaccharides, the osmotic potential of the combined sugar components (sucrose + glucose + fructose), (Ψ_{sugars}), will be lower (more negative) than would be estimated from Table 4.5. The effect can be seen in Table 4.6. From this data it seems that 40-50% of the sucrose added to MS medium by Lazzeri et al. (1988) was broken down into monosaccharides during autoclaving. Hydrolysis of sucrose by plant-derived invertase enzymes will also have a similar effect on osmotic potential. In some suspension cultures, all sucrose remaining in the medium is inverted within 24 h. A fully inverted sucrose solution would have almost double the negative potential of the original solution, but as the appearance of glucose and fructose by enzymatic hydrolysis usually occurs concurrently with the uptake of sugars by the tissues, it will tend to have a stabilizing effect on osmotic potential during the passage of a culture. Reported measurements of the osmolality of MS medium containing 3% sucrose, after autoclaving, are:

- 230 mOsm/kg (0.65% Phytagar; Lazzeri et al., 1988)
- 240 ± 20 mOsm/kg (0.6-0.925% agar; Scherer et al., 1988)
- 230 ± 50 mOsm/kg (0.2-0.4% Gelrite; Scherer et al., 1988)

4.2.2. Decreasing osmotic potential with other osmotica

By adding soluble substances in place of some of the sugar in a medium, it can be shown that sugars not only act as a carbohydrate source, but also as osmoregulants. Osmotica employed for the deliberate modification of osmotic potential, should be largely lacking other biological effects. Those most frequently selected are the sugar alcohols mannitol and sorbitol. It is assumed that plants that do not have a native pathway for sugar alcohol biosynthesis are also deficient in pathways to assimilate them. Sugar alcohols, though, are usually translocated, and may be metabolised and utilized to various degrees (Steinitz, 1999; for mannitol Lipavska and Vreugedenhil, 1996 Tian and Russell, 1999; for sorbitol Pua et al., 1984). Polyethylene glycol may be more helpful as an inert nonpenetrating osmolyte although it may contain toxic contaminants (Chazen et al., 1995). Mannitol can easily penetrate cell walls, but the plasmalemma is considered to be relatively impermeable to it (Rains, 1989), whereas high-molecular-weight polyethylene glycol 4000 is too large to penetrate cell walls (Carpita et al., 1979; Rains, 1989). Thus, a nonpenetrating osmolyte cannot penetrate into the plant cells, but inhibits water uptake. Sodium sulphate and sodium chloride have also been used in some experiments.

<table>
<thead>
<tr>
<th>Predicted osmolality (no sucrose hydrolysis)</th>
<th>Observed total osmolality (mOsm/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salts (mOsm/kg)</td>
<td>Agar (mOsm/kg)</td>
</tr>
<tr>
<td>MS + agar</td>
<td>96</td>
</tr>
<tr>
<td>MS + agar + 0.5% sucrose</td>
<td>96</td>
</tr>
<tr>
<td>MS + agar + 1.0% sucrose</td>
<td>96</td>
</tr>
<tr>
<td>MS + agar + 2.0% sucrose</td>
<td>96</td>
</tr>
<tr>
<td>MS + agar + 4.0% sucrose</td>
<td>96</td>
</tr>
</tbody>
</table>

† 161 mOsm/kg by Brown et al. (1989)
Table 4.6. The osmolality and osmotic potential of sucrose solutions of different concentrations.

<table>
<thead>
<tr>
<th>Sucrose Concentration (% w/v)</th>
<th>Osmolality (Osm/Kg)</th>
<th>Osmotic potential at 25°C (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 14.61</td>
<td>0.015</td>
<td>-0.037</td>
</tr>
<tr>
<td>1.0 29.21</td>
<td>0.030</td>
<td>-0.074</td>
</tr>
<tr>
<td>1.5 43.82</td>
<td>0.045</td>
<td>-0.112</td>
</tr>
<tr>
<td>2.0 58.43</td>
<td>0.060</td>
<td>-0.149</td>
</tr>
<tr>
<td>2.5 73.04</td>
<td>0.075</td>
<td>-0.186</td>
</tr>
<tr>
<td>3.0 87.64</td>
<td>0.090</td>
<td>-0.223</td>
</tr>
<tr>
<td>4.0 116.86</td>
<td>0.121</td>
<td>-0.300</td>
</tr>
<tr>
<td>6.0 175.28</td>
<td>0.186</td>
<td>-0.461</td>
</tr>
<tr>
<td>8.0 233.71</td>
<td>0.253</td>
<td>-0.627</td>
</tr>
<tr>
<td>10.0 292.14</td>
<td>0.324</td>
<td>-0.803</td>
</tr>
<tr>
<td>12.0 350.57</td>
<td>0.396</td>
<td>-0.982</td>
</tr>
</tbody>
</table>

4.3. EFFECTS AND USES OF OSMOLYTES IN TISSUE CULTURE MEDIA

4.3.1. Protoplast isolation and culture

The osmotic potential of a plant cell is counter-balanced by the pressure potential exerted by the cell wall. To safely remove the cell wall during protoplast isolation without damaging the plasma membrane, it has been found necessary to plasmolyse cells before wall-degrading enzymes are used. This is done by placing the cells in a solution of lower water potential than that of the cell.

Glucose, sucrose and especially mannitol and sorbitol, are usually added to protoplast isolation media for this purpose, either singly or in combination, at a total concentration of 0.35-0.7 M. These addenda are then retained in the subsequent protoplast culture medium, their concentration being progressively reduced as cell colonies start to grow. Tobacco cell suspensions take up only a very small amount of mannitol from solution (Thompson and Thorpe, 1981) and its effect as an osmotic agent appears to be exerted outside the cell (Thorpe, 1982). When protoplasts were isolated from *Pseudotsuga* and *Pinus* suspensions, which required a high concentration of inositol to induce embryogenesis, it was found to be essential to add 60 g/l (0.33 M) myo-inositol (plus 30 g/l sucrose, 20 g/l glucose and 10 g/l sorbitol) to the isolation and culture media (Gupta *et al.*, 1988). Mannitol and further amounts of sorbitol could not serve as substitutes.

4.3.2. Osmotic effects on growth

Solutions of different concentrations partly exert their effect on growth and morphogenesis by their nutritional value, and partly through their varying osmotic potential. Lapeña *et al.* (1988) estimated that three quarters of the sucrose necessary to promote the optimum rate of direct adventitious shoot formation from *Digitalis obscura* hypocotyls, was required to supply energy, while the surplus regulated morphogenesis osmotically.

How osmotic potential influences cellular processes is still far from clear. Cells maintained in an environment with low (highly negative) osmotic potential, lose water and in consequence the water potential of the cell decreases. This brings about changes in metabolism and cells accumulate high levels of proline (Rabe, 1990). The activity of the main respiratory pathway of cells (the cytochrome pathway) is reduced in conditions of osmotic stress, in favour of an alternative oxidase system (De Klerk-Kiebert and Van der Plas, 1985). The increase of the concentration of osmolytes, may also result in high levels of the plant hormone abscisic acid, both *extra vitrum* and *in vitro* (recent reviews Zhu, 2002; Riera *et al.*, 2005).

Equilibrium between the water potential of the medium and that of *Echinopsis* callus, only occurred when the callus was dead. Normally the water potential of the medium was greater so that water flowed into the callus (Kirkham and Holder, 1981). Clearly this situation could not occur in media which were too concentrated, and Cleland (1977) proposed that a critical water potential needs to be established within a cell before cell expansion and cell division, can occur. The osmotic concentration of culture media could therefore be expected to influence the rate of cell division or the success of morphogenesis of the cells or tissues they support. Both the inorganic and organic components will be
contributory. The cells of many plants which are natives of sea-shores or deserts (e.g. many cacti) characteristically have a low water potential (Ψcell) and in consequence may need to be cultured in media of relatively low (highly negative) osmotic potentials (Lassocinski, 1985). Sucrose concentrations of 4.5-6% have sometimes been found to be beneficial for such plants (Sachar and Iyer, 1959; Johnson and Emino, 1979; Maushet, 1979; Lassocinski, 1985).

Above normal sucrose concentrations can often be beneficial in media for anther culture [e.g. 13% sucrose in Gamborg et al. (1968) B5 medium - Chuong and Beversdorff, 1985], and for the culture of immature embryos [e.g. 10% sucrose in MS medium - Stafford and Davies (1979); 12.5% in Phillips and Collins (1979) L2. medium - Phillips et al. (1982)].

If the osmotic potential of the medium does indeed influence the growth of tissue cultures, one might expect the sucrose concentration, which is optimal for growth, to vary from one medium to another, more sucrose being required in dilute media than in more concentrated ones. Evans et al. (1976) found this was so with cultures of soybean tissue. Maximum rates of callus growth were obtained in media containing either:

1. 50-75% of MS basal salts + 3-4% sucrose, or,
2. 75-100% of MS basal salts + 2% sucrose.

Similarly Yoshida et al. (1973) obtained equally good growth rates of Nicotiana glutinosa callus with nutrient media in which

1. the salts exerted -0.274 MPa and sucrose -0.223 MPa, or
2. the salts exerted -0.365 MPa and sucrose -0.091 MPa.

It was essential to add 60 g/l sucrose (i.e. Ψsucrose = -0.461 MPa at 25°C) to the ‘MEDIUM’ salts of de Fossard et al. (1974) (Ψ = -0.135 MPa) to obtain germination and seedling growth from immature zygotic embryos of tomato. However, if the ‘HIGH’ salts (Ψmedium = -0.260 MPa) were used, 60 g/l sucrose gave only slightly better growth than 2.1 g/l (Ψsucrose = -0.156 MPa) (Neal and Topoleski, 1983).

A detailed examination of osmotic effects of culture media on callus cultures was conducted by Kimball et al. (1975). Various organic substances were added to a modified Miller (1961) medium (which included 2% sucrose), to decrease the osmotic potential (Ψs) from -0.290 MPa. Surprisingly, the greatest callus growth was said to occur at -1.290 to -1.490 MPa (unusually low potentials which normally inhibit growth — see below) in the presence of mannitol or sorbitol, and between -1.090 to -1.290 MPa when extra sucrose or glucose were added. On the standard medium, many cells of the callus were irregularly shaped; as the osmotic potential of the solution was decreased there were fewer irregularities and at about Ψs = -1.090 MPa all the cells were spherical. The percentage dry matter of cultures also increased as Ψs was decreased.

Doley and Leyton (1970) found that decreasing the water (osmotic) potential of half White (1963) medium by -0.100 or -0.200 MPa through adding more sucrose (and/or polyethylene glycol), caused the rate of callus growth from the cut ends of Fraxinus stem sections to be lower than on a standard medium. At the reduced water potential, callus had suberised surfaces and grew through the activity of a vascular cambium. It also contained more lignified xylem and sclereids. At each potential there was an optimal IAA concentration for xylem differentiation.

When the concentration of sucrose in a high salt medium such as MS is increased above 4-5 per cent, there begins to be a progressive inhibition of cell growth in many types of culture. This appears to be an osmotic effect because addition of other osmotically-active substances (such as mannitol and polyethylene glycol) to the medium causes a similar response (Maretzki et al., 1972). Usually, high concentrations of sucrose are not toxic, at least not in the short term, and cell growth resumes when tissues or organs are transferred to media containing normal levels of sugar. Increase of Ψs is one method of extending the shelf life of cultures. Pech and Romani (1979) found that the addition of 0.4 M mannitol to MS medium (modified organics), was able to prevent the rapid cell lysis and death which occurred when 2,4-D was withdrawn from pear suspension cultures.

Decreasing the osmotic potential (usually by adding mannitol) together with lowering of the temperature has been used to reduce the growth rate for preservation of valuable genotypes in vitro. This has been reported, among others, for potato (Gopal et al., 2002; Harding et al., 1997), Dioscorea alata (Borges et al., 2003) and enset (Negash et al., 2001)

4.3.3. Tissue water content

The water content of cultured tissues decreases as the level of sucrose in the medium is increased. Isolated embryos of barley were grown by Dunwell (1981) on MS medium in sucrose concentrations up to 12 per cent. Dry weight increased as the sucrose concentration was raised to 6 or 9 per cent and shoot length of some varieties was also greater than on 3 per cent sucrose. Water content of the developing
The dry weight of *Lilium auratum* bulbs and roots on MS medium increased as the sucrose concentration was augmented to 90 g/l but decreased dramatically with 150 g/l because growth was inhibited. The fresh weight/dry weight ratio of both kinds of tissue once again declined progressively as sucrose was added to the medium (0 - 150 g/l). In a medium containing 30 mg/l sucrose, the number and fresh weight of bulblets increased as MS salt strength was raised from one eighth to two times its normal concentration. An interaction between salt and sucrose concentrations was demonstrated in that optimum dry weight of bulbs could be obtained in either single strength MS + 120 g/l sucrose (osmolality, without sucrose mOsm/kg; $\Psi_s = \text{ca.} -1.22 \text{ MPa}$), or double strength MS + 60 g/l sucrose (osmolality, without sucrose inversion = ca. 378 mOsm/kg; $\Psi_s = \text{ca.} -0.94 \text{ MPa}$) (Takayama and Misawa, 1979).

4.3.4. Morphogenesis

The osmotic effect of sucrose in culture solutions was well demonstrated by a series of experiments on tobacco callus by Brown et al., (1979): rates of callus growth and shoot regeneration which were optimal on culture media containing 3 per cent sucrose, could be maintained when the sugar was replaced partially by osmotically equivalent levels of manitol. The optimal (medium plus sucrose) here was between -0.4 and -0.6 MPa, and increasing sucrose levels above 3 per cent brought a progressive decrease in shoot regeneration. Similar results were obtained by Barg and Umiel (1977), but when they kept the osmotic potential of the culture solution roughly constant by additions of manitol, the sucrose concentrations optimal for tobacco callus growth or morphogenesis were not the same (Fig. 4.2)

Brown and Thorpe (1980) subsequently found that callus of *Nicotiana* capable of forming shoots, had a water potential (Ψ) of -0.8 MPa, while non-shoot-forming callus had a Ψ of -0.4 MPa. The two relationships were:

Shoot forming callus

$\Psi_{cell} = \Psi_s + \Psi_p + \Psi_m$

$-0.8 = -1 + 0.4 + 0 \text{ MPa}$

Non-shoot-forming callus

$\Psi_{cell} = \Psi_s + \Psi_p + \Psi_m$

$-0.4 = -0 + 0.3 + 0 \text{ MPa}$

Correct water potential. An optimum rate of growth and adventitious shoot formation of wheat callus occurred on MS medium containing 2% sucrose. Only a small number of shoots were produced on the medium supplemented with 1% sucrose, but if manitol was added so that the total $\Psi_{cell} = \Psi_s$ was the same as when 2% sucrose was present, the formation of adventitious shoots was stimulated (Galiba and Erdei, 1986). Very similar results were obtained by Lapeña et al. (1988). A small number of shoot buds were produced from *Digitalis obscura* hypocotyls on MS medium containing 1% sucrose: more than twice as many if the medium contained 2% sucrose (total Ψ_s given as -0.336 MPa), or 1% sucrose plus manitol to again give a total Ψ_s equal to -0.336 MPa.

Water potential can modify commitment. Morphogenesis can also be regulated by altering the water potential of media. Shepard and Totten (1977) found that very small (ca. 1-2 mm) calli lost formed from potato mesophyll protoplasts were unable to survive in 1 or 2% sucrose, and the base of larger (5-10 mm) ones turned brown, while the upper portions turned green but formed roots and no shoots. The calli became fully green only on 0.2-0.5% sucrose. At these levels shoots were formed in the presence of 0.2-0.3 M manitol. When the level of manitol was reduced to 0.05 M, the proportion of calli differentiating shoots fell from 61% to 2%. The possibility of an osmotic affect was suggested because equimolar concentrations of myo-inositol and sucrose were just as effective in promoting shoot regeneration.

Another way to modify morphogenesis is to increase the ionic concentration of the medium. Pith phloem callus of tobacco proliferates on Zapata et al. (1983) MY1 medium supplemented with 10^{-5} M IAA and 2.5 x 10^{-6} M kinetin, but forms shoots on Murashige et al. (1972) medium containing 10^{-5} M IAA and 10^{-5} M kinetin. These two media contain very similar macronutrients (total ionic concentrations, respectively 96 and 101mM), yet adding 0.5-1.0% sodium sulphate (additional osmolarity 89-130 mOsm/kg) decreased the shoot formation of callus grown on the shoot-forming medium, but increased it on the medium which previously only supported callus proliferation (Pua et al., 1985a). Callus cultured in the presence of sodium sulphate retained its shoot-producing capacity over a long period, although the effect was not permanent (Pua et al., 1985b; Chandler et al., 1987). In these experiments shoot formation was also enhanced by sodium chloride and manitol.

Increasing the level of sucrose from 1 to 3 per cent in MS medium containing 0.3 mg/l IAA,
induced tobacco callus to form shoots, while further increasing it to 6 per cent resulted in root differentiation (Rawal and Mehta, 1982; Mehta, 1982). The formation of adventitious shoots from \textit{Nicotiana tabacum} pith callus is inhibited on a medium with MS salts if 10-15\% sucrose is added. Preferential zones of cell division and meristemoids produced in 3\% sucrose then become disorganised into parenchymatous tissue (Hammersley-Straw and Thorpe, 1988).

It should be noted that auxin which has a very important influence on the growth and morphogenesis of cultured plant cells, causes their osmotic potential to be altered (Van Overbeek, 1942; Hackett, 1952; Ketellapper, 1953). When tobacco callus is grown on a medium which promotes shoot regeneration, the cells have a greater osmotic pressure (or more negative water potential) than callus grown on a non-inductive medium (Brown and Thorpe, 1980; Brown, 1982).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig42.png}
\caption{The effect of sucrose concentration on the growth and morphogenesis of tobacco callus. \cite{drawn from data for four lines of tobacco callus in Barg and Umiel, 1977}. Callus growth = solid line. Morphogenesis = line of dashes. Scale was, 1 = No differentiation, 2 = Dark green callus with meristemoids, 3 = leafy shoots.}
\end{figure}

Apogamous buds on ferns. Whittier and Steeves (1960) found a very clear effect of glucose concentration on the formation of apogamous buds on prothalli of the fern \textit{Pteridium}. (Apogamous buds give rise to the leafy and spore-producing generation of the plant which has the haploid genetic constitution of the prothallus). Bud formation was greatest between 2-3\% glucose (optimum 2.5\%). Results which confirm this observation were obtained by Menon and Lal (1972) in the moss \textit{Physcomitrium pyriforme}. Here apogamous sporophytes were formed most freely in low sucrose concentrations (0.5-2\%) and low light conditions (50-100 lux), and were not produced at all when prothalli were cultured in 6\% sucrose or high light (5000-6000 lux). Whittier and Steeves (loc. cit.) noted that they could not obtain the same rate of apogamous bud production by using 0.25\% glucose plus mannitol or polyethyleneglycol; on the other hand, adding these osmotica to 2.5\% glucose (so that the osmotic potential of the solution was equivalent to one with 8\% sucrose) did reduce bud formation. It therefore appeared that the stimulatory effect of glucose on morphogenesis was mainly due to its action as a respiratory substrate, but that inhibition might be caused by an excessively depressed osmotic potential.

Differentiation of floral buds. Pieces of cold-stored chicory root were found by Margara and Rancillac (1966) to require more sucrose (up to 68 g/l; 199 mM) to form floral shoots than to produce vegetative shoots (as little as 17 g/l; 50 mM). Tran Thanh Van and co-workers (Tran Thanh Van and Trinh, 1978) have similarly shown that the specific formation of vegetative buds, flower buds, callus or roots by thin cell layers excised from tobacco stems, could be controlled by selecting appropriate concentrations of sugars and of auxin and cytokinin growth regulators.

Root formation and root growth. Media of small osmotic potential are usually employed for the
induction and growth of roots on micropropagated shoots. High salt levels are frequently inhibitory to root initiation. Where such levels have been used for Stage II of shoot cultures, it is common to select a low salts medium (e.g. ¼ or ½ MS), when detached shoots are required to be rooted at Stage III. By testing four concentrations of MS salts (quarter, half, three quarters and full strength) against four levels of sucrose (1, 2, 3 and 4%), Harris and Stevenson (1979) found that correct salt concentration (½ or ¼ MS) was more important than sucrose concentration for root induction on grapevine cuttings in vitro. The benefit of low salt levels for root initiation may be due more to the need for a low nitrogen level, than for an increased osmotic potential. Dunstan (1982) showed that microcuttings of several tree-fruit rootstocks rooted best on MS salts, but that in media of these concentrations, the amount of added sugar was not critical, although it was essential for there to be some present. For the best rooting of Castanea, it was important to place shoots in Lloyd and McCown (1981) WPM medium containing 4% sucrose (Serres, 1988).

There are reports that an excessive sugar concentration can inhibit root formation. Green cotyledons of Sinapis alba and Raphanus sativus were found by Lovell et al. (1972) to form roots in 2% sucrose in the dark, but not in light of 5500 lux luminous intensity. In the light, rooting did occur if the explants were kept in water, or (to a lesser extent) if they were treated with DCMU (a chemical inhibitor of photosynthesis) before culture in 2% sucrose. The authors of this paper suggested that sugars were produced within the plant tissues during photosynthesis, which, added to the sucrose absorbed from the medium, provided too great a total sugar concentration for rooting. Rahman and Blake (1988) reached the same conclusion in experiments on Artocarpus heterophyllus. When shoots of this plant were kept on a rooting medium in the dark, the number and weight of roots formed on shoots, increased with the inclusion of up to 80 g/l sucrose. The optimum sucrose concentration was 40 g/l if the shoots were grown in the light.

Root formation on avocado cuttings in 0.3 MS salts [plus Linsmaier and Skoog (1965) vitamins] was satisfactory with 1.5, 3 or 6% sucrose, and only reduced when 9% sucrose was added (Pliego-Alfaro, 1988).

Although 4% (and occasionally 8%) sucrose has been used in media for isolated root culture, 2% has been used in the great majority of cases (Butcher and Street, 1964). In an investigation into the effects of sucrose concentration on the growth of tomato roots, Street and McGregor (1952) found that although sucrose concentrations of between 1.5 and 2.5% caused the same rate of increase of root fresh weight, 1.5% sucrose was optimal. It produced the best rate of growth of the main root axis, and the greatest number and total length of lateral roots.

Somatic embryogenesis. The osmotic potential of a medium can influence whether somatic embryogenesis can occur and can regulate the proper development of embryos. As will be shown below, a low osmotic potential is often favourable, but this is not always the case. For instance immature cotyledons of Glycine max produced somatic embryos on Phillips and Collins (1979) L2 medium containing less than 2% sucrose, but not if the concentration of sugar was increased above this level (Lippmann and Lippmann, 1984).

Placing tissues in solutions with high osmotic potential will cause cells to become plasmolysed, leading to the breaking of cytoplasmic interconnections between adjacent cells (plasmodesmata). Wetherell (1984) has suggested that when cells and cell groups of higher plants are isolated by this process, they become enabled to develop independently, and express their totipotency. He pointed out that the isolation of cells of lower plants induces regeneration, and plasmolysis has long been known to initiate regeneration in multicellular algae, the leaves of mosses, fern prothallia and the gemmae of liverworts (Narayanaswami and LaRue, 1955; Miller, 1968). Carrot cell cultures pre-plasmolysed for 45 min in 0.5-1.0 M sucrose or 1.0 M sorbitol gave rise to many more somatic embryos when incubated in Wetherell (1969) medium with 0.5 mg/l 2,4-D than if they had not been pre-treated in this way. Moreover embryo formation was more closely synchronized. Ikeda-Iwai et al. (2003) found that in Arabidopsis a 6-12 hour treatment with 0.7 M sucrose, sorbitol or mannitol resulted in somatic embryogenesis.

Callus derived from hypocotyls of Albizia richardiana, produced the greatest numbers of adventitious shoots on B5 medium containing 4% sucrose, but somatic embryos grew most readily when 2% sucrose was added. At least 1% sucrose was necessary for any kind of morphogenesis to take place (Tomar and Gupta, 1988). A similar result was obtained by Ćulafč et al. (1987) with callus from axillary buds of Rumex acetosella: adventitious shoots were produced on a medium containing MS.
Adding 10-30 g/l sorbitol to Kumar induce somatic embryogenesis in some other plants.

osmolality as 6% sucrose). Mannitol or sorbitol (which together have the same

was supplemented with 2% sucrose plus 21.3 g/l

MPa, \(\Psi \) = ca. -0.70 MPa at 25°C) or if the medium was supplemented with 2% sucrose plus 21.3 g/l mannitol or sorbitol (which together have the same osmolality as 6% sucrose).

A low (highly negative) osmotic potential helps to induce somatic embryogenesis in some other plants. Adding 10-30 g/l sorbitol to Kumar et al. (1988) L-6 medium (total macronutrient ions 64.26 mM; 20 g/l sucrose), caused there to be a high level of embryogenesis in Vigna aconitifolia suspensions and the capacity for embryogenesis to be retained in long-term cultures. The formation of somatic embryos in ovary callus of Fuchsia hybrida was accelerated by adding 5% sucrose to B5 medium (Dabin and Beguin, 1987), and the induction of embryogenic callus of Euphorbia longan required the culture of young leaflets on B5 medium with 6% sucrose (Litz, 1988).

There are exceptions, particularly with regard to embryo growth. The proportion of Ipomoea batatas somatic embryos forming shoots was greatest when a medium containing MS inorganics contained 1.6%, rather than 3% sucrose (Chèe et al., 1990). Protocorm proliferation of orchids is most rapid when tissue is cultured in high concentrations of sucrose, but for plantlet growth, the level of sucrose must be reduced (Homès and Vanseveran-Van Espen, 1973).

The induction of embryogenic callus from immature seed embryos of Zea mays was best on MS medium with 12% sucrose (Lu et al., 1982), and Ho and Basil (1983) used 6-10% sucrose in MS medium to promote the formation of pro-embryoids from young leaves of Saccharum officinarum. However, in the experiments of Ahloowalia and Maretski (1983), somatic embryo formation from callus of this plant was best on MS medium with 3% sucrose, but growth of the embryos into complete plantlets required that the embryos should be cultured first on MS medium with 6% sucrose and then on MS with 3% sucrose.

Polylethylene glycol 4000 (PEG 4000) improves root and shoot emergence without limiting embryo histodifferentiation in soybean somatic embryos (Walker and Parrott, 2001). Likewise in spruce, it was reported that polylethylene glycol might improve the quality of somatic embryos by promoting normal differentiation of the embryonic shoot and root (e.g. Stasolla et al., 2003). Non-penetrating osmots like polylethylene glycol cannot enter plant cells, but restrict water uptake and provide a simulated drought stress during embryo development. A combination of ABA and an osmoticum prevents precocious germination in white spruce (Attree et al., 1991) and allows embryo development to proceed. Advantageous effects of polyethylene glycol and ABA have been reported in a number of species (Hevea brasiliensis, Linossier et al., 1997; Picia abies, Bozhkov and Von Arnold, 1998; white spruce, Stasolla et al., 2003, Corydalis yanhusuo, Sagare et al., 2000; and Panax ginseng, Langhansová et al., 2004).

When cultured on Sears and Deckard (1982) medium, embryogenesis in callus initiated from immature embryos of ‘Chinese Spring’ and some other varieties of wheat was incomplete, because shoot apices germinated and grew before embryos had properly formed. More typical somatic embryos could be obtained by adding 40 mM sodium or potassium chloride to the medium. The salts had to be removed to allow plantlets to develop normally (Galiba and Yamada, 1988). Transferring somatic embryos to a medium of lower (more negative) water potential is often necessary to ensure their further growth and/or germination. High sucrose levels are often required in media for the culture of zygotic embryos if they are isolated when immature. The use of 50-120 g/l sucrose in media is then reported, the higher concentrations usually being added to very weak salt mixtures. Embryos which are more fully developed when excised, grow satisfactorily in a medium with 10-30 g/l sugar.

Storage organ formation. At high concentration, sucrose promotes the formation of tubers, bulbs and corms (e.g. Xu et al., 1998; Vreugdenhil et al., 1998; Ziv 2005, Gerrits and de Klerk 1992). This promotion might be mediated by ABA since osmotic stress induces ABA synthesis (Riera et al., 2005) and ABA promotes bulb (Kim et al., 1994) and tuber (Xu et al., 1998) formation. The situation is, however, more complex. Suttle and Hultstrand (1994) did not find a reduction of tuber formation in potato by adding fluridone, an ABA-synthesis inhibitor, and Xu et al. (1998) did not observe an increased ABA-level at high sucrose concentration. So in potato, the effect of sucrose is not likely to be mediated by ABA. Exogenous ABA does not promote Gladiolus corm formation (Dantu and Bhojwani, 1995) but bulb formation of lily was completely inhibited by fluridone and restored by simultaneous addition of ABA (Kim et al., 1994). To establish the effect of osmoticum directly, experiments have been carried out with addition of
mannitol instead of sucrose. Mannitol did not promote corm production of *Gladiolus* (De Bruyn and Ferreira, 1992) or bulb production in onion (Kahane and Rancillac, 1996), but data for lily suggested that, although it had a toxic effect, in this plant mannitol did stimulate bulb formation (Gerrits and De Klerk, 1992).

Anther culture. The use of high concentrations of sucrose is commonly reported in papers on anther culture where the addition of 5-20% sucrose to the culture medium is found to assist the development of somatic embryos from pollen microspores. This appears to be due to an osmotic regulation of morphogenesis (Sunderland and Dunwell, 1977), for once embryoid development has commenced, such high levels of sucrose are no longer required, or may be inhibitory. A high concentration of mannitol has been used for pretreatment before the culture of barley anthers (Roberts-Oehlschlager and Dunwell 1990) and pollen (Wei *et al.*, 1986); tobacco anthers (Imamura and Harada 1980) and pollen (Imamura *et al.*, 1982); and before wheat microspore culture (Hu *et al.*, 1995). A high concentration of mannitol has also been used to induce osmotic stress in microspore derived embryos of *Brassica napus* (Huang *et al.*, 1991) and before anther culture of *Brassica campestris* (Hamaoka *et al.*, 1991). Isolated microspores of *Brassica napus* cultured on a high concentration of mannitol and at a low concentration of sucrose (0.08–0.1%) yield no embryos whereas on high polyethylene glycol 4000 the embryo yield is comparable to that of the sucrose control (Ikeda-Iwai, 2003). These results demonstrate that in microspore embryogenesis of *Brassica napus* the level of metabolizable carbohydrate required for microspore embryo induction and formation may be very low and that an appropriate osmoticum (polyethylene glycol 4000 or sucrose) is required.

The temporary presence of high sucrose concentrations is said to prevent the proliferation of callus from diploid cells of the anther that would otherwise swamp the growth of the pollen-derived embryoids. The concentration of macronutrient ions generally used in anther culture media is not especially low. In a sample of reports it was found to be 68.7 mM (George *et al.*, 1987), and so the total osmotic potential, Ψ_s, (salts plus sucrose) of many anther culture media is in the range -0.55 to -1.15 MPa.

4.3.5. **Relative humidity.**

The vapour pressure of water is reduced by dissolving substances in it. This means that the relative humidity of the air within closed culture vessels is dependent on the water potential of the medium according to the equation:

$$\Psi = \frac{1000RT}{W_0} \ln_e \left(\frac{p}{p_0} \right) \left(p - c \frac{dp}{dc} \right)$$

(after Glasstone, 1947)

where: Ψ, R and T are as in the Van’t Hoff equation, W_0 is the molecular weight of water, c is the concentration of the solution in moles per litre, and p_0 and p are respectively the vapour pressures of water and the solution.

If the change in vapour pressure dependent on the density of the solution, $p - c \frac{dp}{dc}$, is treated as unity (legitimate perhaps for very dilute solutions, or when the equation is expressed in molality, rather than molarity), it is possible to estimate relative humidity (100 × p/p_0) above tissue culture media of known water potentials, from:

$$\Psi = \frac{1000RT}{18.016} \ln_e \left(\frac{p}{p_0} \right)$$

(Lang, 1967)

The relative humidity above most plant tissue cultures in closed vessels is thus calculated to be in the range 99.25–99.75% (Table 4.7), the osmolality of some typical media being

- White (1963), liquid, 2% sucrose, 106 mOsm/kg
- MS, agar, 3% sucrose, 230 mOsm/kg
- MS, agar, 6% sucrose, 359 mOsm/kg
- MS, agar, 12% sucrose (unusual), 659 mOsm/kg

(in these cases, 50% hydrolysis of sucrose into monosaccharides is assumed to have taken place during autoclaving)

Relative humidity can be reduced below the levels indicated above by, for example, covering vessels with gas-permeable closures while using non-gelatinous support systems (see Section 6.3.1).
5. pH OF TISSUE CULTURE MEDIA

The relative acidity or alkalinity of a solution is assessed by its pH. This is a measure of the hydrogen ion concentration; the greater the concentration of \(H^+ \) ions (actually \(H_3O^+ \) ions), the more acid the solution. As pH is defined as the negative logarithm of hydrogen ion concentration, acid solutions have low pH values (0-7) and alkaline solutions, high values (7-14). Solutions of pH 4 (the concentration of \(H^+ \) is \(10^{-4} \) mol.l\(^{-1} \)) are therefore more acid than those of pH 5 (where the concentration of \(H^+ \) is \(10^{-5} \) mol.l\(^{-1} \)); solutions of pH 9 are more alkaline than those of pH 8. Pure water, without any dissolved gases such as CO\(_2\), has a neutral pH of 7. To judge the effect of medium pH, it is essential to discriminate between the various sites where the pH might have an effect: (1) in the explant, (2) in the medium and (3) at the interface between explant and medium.

The pH of a culture medium must be such that it does not disrupt the plant tissue. Within the acceptable limits the pH also:
- governs whether salts will remain in a soluble form;
- influences the uptake of medium ingredients and plant growth regulator additives;
- has an effect on chemical reactions (especially those catalysed by enzymes); and
- affects the gelling efficiency of agar.

This means that the effective range of pH for media is restricted. As will be explained, medium pH is altered during culture, but as a rule of thumb, the initial pH is set at 5.5 – 6.0. In culture media, detrimental effects of an adverse pH are generally related to ion availability and nutrient uptake rather than cell damage.

5.1. THE pH OF MEDIA

5.1.1. Buffering

The components of common tissue culture media have only little buffering capacity. Vacin and Went (1949) investigated the effect on pH of each compound in their medium. The chemicals which seemed to be most instrumental in changing pH were FeSO\(_4\).7H\(_2\)O and Ca(NO\(_3\))\(_2\).4H\(_2\)O. Replacing the former with ferric tartrate at a weight which maintained the original molar concentration of iron, and substituting Ca\(_3\)(PO\(_4\))\(_2\) and KNO\(_3\) for Ca(NO\(_3\))\(_2\).4H\(_2\)O, they found that the solution was more effectively buffered. While amino acids also showed promise as buffering agents, KH\(_2\)PO\(_4\) was ineffective unless it was at high concentration. In some early experiments attempts were made to stabilise pH by incorporating a mixture of KH\(_2\)PO\(_4\) and K\(_2\)HPO\(_4\) into a medium (see Kordan, 1959, for example), but Street and Henshaw (1966) found that significant buffering was only achieved by soluble phosphates at levels inhibitory to plant growth. For this reason Sheat et al. (1959) proposed the buffering of plant root culture media with sparingly-soluble calcium phosphates, but unfortunately if these compounds are autoclaved with other medium constituents, they absorb micronutrients which then become unavailable.

A buffer is a compound which can poise the pH level at a selected level: effective buffers should maintain the pH with little change as culture proceeds. As noted before, plant tissue culture media are normally poorly buffered. However, pH is stabilised to a certain extent when tissues are cultured in media containing both nitrate and ammonium ions. Agar and Gelrite gelling agents may have a slight buffering capacity (Scherer, 1988).

Organic acids: Many organic acids can act as buffers in plant culture media. By stabilizing pH at ca. pH 5.5, they can facilitate the uptake of NH\(_4^+\) when this is the only source of nitrogen, and by their own metabolism, assist the conversion of NH\(_4^+\) into amino acids. There can be improvement to growth from adding organic acids to media containing both NH\(_4^+\) and NO\(_3^-\), but this is not always the case. Norstog and Smith (1963) noted that 0.75 mM malic acid...
acid was an effective buffer and appeared to enhance the effect of the glutamine and alanine which they added to their medium. Vyskot and Bezdek (1984) found that the buffering capacity of MS medium was increased by adding either 1.25 mM sodium citrate or 1.97 mM citric acid plus 6.07 mM dibasic sodium phosphate. Citric acid and some other organic acids have been noted to enhance the growth of Citrus callus when added to the medium (presumably that of Murashige and Tucker, 1969) (Erner and Reuveni, 1981). For the propagation of various cacti from axillary buds, Vyskot and Jara (1984) added sodium citrate to MS medium to increase its buffering capacity.

Recognized biological buffers: Unlike organic acids, conventional buffers are not metabolised by the plant, but can poise pH levels very effectively. Compounds which have been used in plant culture media for critical purposes such as protoplast isolation and culture, and culture of cells at very low inoculation densities, include:

- TRIS, Tris(hydroxymethyl)aminomethane;
- Tricine, N-tris(hydroxymethyl)methylglycine;
- MES, 2-(N-morpholino)ethanesulphonic acid;
- HEPES, 4-(2-hydroxyethyl)-1-piperazine(2-ethanesulfonic acid); and
- CAPS, 3-cyclohexylamino-1-propanesulfonic acid.

Such compounds may have biological effects which are unrelated to their buffering capacity. Depending on the plant species, they have been known to kill protoplasts or greatly increase the rate of cell division and/or plant regeneration (Conrad et al., 1981). The ‘biological’ buffers MES and HEPES have been developed for biological research (Good et al., 1966).

MES: MES is one of the few highly effective and commercially available buffers with significant buffering capacity in the pH range 5-6 to which plant culture media are usually adjusted and has only a low capacity to complex with micronutrients. It is not toxic to most plants, although there are some which are sensitive. Ramage and Williams (2002) report that shoot regeneration from tobacco leaf discs was not affected by MES when increasing the concentration up to 100 mM. De Klerk et al (2007), though, observed a decrease of rooting from apple stem slices with increasing MES concentration (see below; Fig. 4.4). This effect of MES was not understood. It only occurred during the first days of the rooting process and was not observed during the outgrowth phase after the meristems had been formed.

During the culture of thin cell layers of Nicotiana, Tiburcio et al. (1989) found that the pH of LS medium could be kept close to 5.8 for 28 days by adding 50 mM MES, whereas without the buffer pH gradually decreased to 5.25. Regulating pH with MES alters the type of morphogenesis which occur in this (and other) tissues (see below).

Parfitt et al. (1988) found 10 mM MES to be an effective buffer in four different media used for tobacco, carrot and tomato callus cultures, and peach and carnation shoot cultures, although stabilizing pH did not result in superior growth. The tobacco, peach and carnation cultures were damaged by 50 mM MES. Tris was toxic at all concentrations tested, although Klein and Manos (1960) had found that the addition of only 0.5 mM Tris effectively increased the fresh weight of callus which could be grown on White (1954) medium when iron was chelated with EDTA.

MES has also been used successfully to buffer many cultures initiated from single protoplasts (Müller et al., 1983) and its inclusion in the culture medium can be essential for the survival of individual cells and their division to form callus colonies (e.g. those of Datura innoxia - Koop et al., 1983). MES was found to be somewhat toxic to single protoplasts of Brassica napus, but ‘Polybuffer 74’ (PB-74, a mixture of polyaminosulphonates), allowed excellent microcolony growth in the pH range 5.5-7.0 (Spangenberg et al., 1986). Used at 1/100 of the commercially available solution, it has a buffering capacity of a 1.3 mM buffer at its pK value (Koop et al., 1983).

Banana homogenate is widely used in orchid micropropagation media. Ernst (1974) noted that it appeared to buffer the medium in which slipper orchid seedlings were being grown.

5.1.2. The uptake of ions and molecules

The pH of the medium has an effect on the availability of many minerals (Scholten and Pierik, 1998). In general, the uptake of negatively charged ions (anions) is favoured at acid pH, while that of cations (positively charged) is best when the pH is increased. As mentioned before, the relative uptake of nutrient cations and anions will alter the pH of the medium. The release of hydroxyl ions from the plant in exchange for nitrate ions results in media becoming more alkaline; when ammonium ions are
taken up in exchange for protons, media become more acid (Table 4.8).

Nitrate and ammonium ions: The uptake of ammonium and nitrate ions is markedly affected by pH. Excised plant roots can be grown with NH$_4^+$ as the sole source of nitrogen providing the pH is maintained within the range 6.8 to 7.2 and iron is available in a chelated form. At pH levels below 6.4 the growth of roots on ammonium alone and have an abnormal appearance (Sheat et al., 1959). This accords with experiments on intact plants where ammonium as the only source of nitrogen is found to be poorly taken up at low pH. It was most effectively utilised in *Asparagus* in a medium buffered at pH 5.5. At low pH (ca. 4 or less) the ability of the roots of most plants to take up ions of any kind may be impaired, there may be a loss of soluble cell constituents and growth of both the main axis and that of laterals is depressed (Asher, 1978).

Nitrate on the other hand, is not readily absorbed by plant cells at neutral pH or above (Martin and Rose, 1976). Growth of tumour callus of *Rumex acetosa* on a nitrate-containing medium was greater at pH 3.5 than pH 5.0 (Nickell and Burkholder, 1950), while Chevre et al. (1983) reported that axillary bud multiplication in shoot cultures of *Castanea* was most satisfactory when the pH of MS was reduced to 4 and the Ca$^{2+}$ and Mg$^{2+}$ concentrations were doubled.

pH Stabilization: One of the chief advantages of having both NO$_3^-$ and NH$_4^+$ ions in the medium is that uptake of one provides a better pH environment for the uptake of the other. The pH of the medium is thereby stabilized. Uptake of nitrate ions by plant cells leads to a drift towards an alkaline pH, while NH$_4^+$ uptake results in a more rapid shift towards acidity (Street, 1969; Behrend and Mateles, 1975; Hyndman et al., 1982). For each equivalent of NO$_3^-$ and NH$_4^+$ which are provided (Gamborg et al., 1968), after 7 days of root culture, White (1943a) medium (containing only nitrate), adjusted to pH 4.8-4.9, had a pH of 5.8-6.0 (Street et al., 1951, 1952), but Sheat et al. (1959) could stabilize the medium at pH 5.8 by having one fiftieth of the total amount of nitrogen as ammonium ion, the rest as nitrate. Changes in the pH of a medium do however vary from one kind of plant to another. Ramage and Williams (2002) observed a decrease in pH when tobacco leaf discs were cultured with only NH$_4^+$ nitrogen whereas no such decrease was observed on medium with both NH$_4^+$ and NO$_3^-$. No organogenesis occurred when the medium with only NH$_4^+$ was unbuffered but the inclusion of MES resulted in the formation of meristems (but no shoots).

Media differing in total nitrogen levels (but all having the same ratio of nitrate to ammonium as MS medium), had a final pH of ca. 4.5 after being used for Stage III root initiation on rose shoots, whereas those containing ammonium alone had a final pH of ca. 4.1 (Hyndman et al., 1982). A similar observation with MS medium itself was made by Delfel and Smith (1980). No matter what the starting value in the range 4.5-8.0, the final pH after culture of *Cephalotaxus* callus was always 4.2. The medium of De Jong et al. (1974) always had a pH of 4.8-5.0 after *Begonia* buds had been cultured, whatever the

<table>
<thead>
<tr>
<th>Rate</th>
<th>Uptake anion (e.g. NH$_4^+$)</th>
<th>Uptake cation (e.g. NO$_3^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence</td>
<td>Protons (H$^+$) extruded by plant</td>
<td>Hydroxyl (OH$^-$) ions extruded by plant</td>
</tr>
<tr>
<td></td>
<td>Medium becomes more ACID</td>
<td>Medium becomes more ALKALINE</td>
</tr>
</tbody>
</table>

Table 4.8 The uptake of ions and its consequences in plant culture media
starting pH in the range 4.0-6.5. This is not to say that the initial pH was unimportant, because there was an optimum for growth and development (see later) (Berghoef and Bruinsma, 1979).

Other Compounds: The availability and uptake of other inorganic ions and organic molecules is also affected by pH. As explained above, the uptake of phosphate is most efficient from acid solutions. Petunia cells took up phosphate most rapidly at pH 4 and its uptake declined as the pH was raised (Chin and Miller, 1982). Vacin and Went (1949) noted the formation of iron phosphate complexes in their medium by pH changes. Insoluble iron phosphates can also be formed in MS medium at pH 6.2 or above unless the proportion of EDTA to iron is increased (Dalton et al., 1983).

The uptake of Cl\(^{-}\) ions into barley roots is favoured by low pH, but Jacobson et al. (1971) noticed that it was only notably less at high pH in solutions strongly stirred by high aeration. They therefore suggested that H\(^+\) ions secreted from plant roots as a result of the uptake of anions, can maintain a zone of reduced pH in the Nerst layer, a stationary film of water immediately adjacent to cultured plant tissue (Nernst, 1904). In plant tissue culture, uptake of ions and molecules may therefore more liable to be affected by adverse pH in agitated liquid media, than in media solidified by agar.

Lysine uptake into tobacco cells was found by Harrington and Henke (1981) to be stimulated by low pH. The effect of pH on uptake is especially relevant for auxins (e.g., Edwards and Goldsmith 1980). Depending on the pH and their pKa, auxins are either present as an undissociated molecule or as an anion. For influx, the undissociated auxin molecule may pass through the membrane by diffusion whereas the anion is taken up by a carrier (Delbarre et al., 1996; Morris 2000). Dissociation depends upon the pH. In the apoplast, the pH is low, ca. 5. When taken up, the auxin enters the cytoplasm with pH 7. At this pH, most auxin is present as anion and cannot diffuse out. Efflux of the anion is brought about by an efflux carrier system. Thus, the net uptake into cells of plant growth regulators which are weak lipophilic acids (such as IAA, NAA, 2,4-D and abscisic acid) will be greater, the more acid the medium and the greater the difference between its pH and that of the cell cytoplasm (Rubery, 1980). Shvetsov and Gamburg (1981) did in fact find that the rate of 2,4-D uptake into cultured corn cells increased as the pH of the medium fell from 5.5 to 4. Increased uptake of auxin at low pH was also found in apple microcuttings, both for IBA (Harbage et al., 1998) and IAA (De Klerk et al., 2007). As previously mentioned, auxins can themselves modify intra- and extra-cellular pH. Adding 2,4-D to a medium increased the uptake of nicotine into culture of *Acer pseudoplatanus* cells (Kurkdjian et al., 1982).

5.1.3. Choosing the pH of culture media: Starting pH

Many plant cells and tissues in *vitro*, will tolerate pH in the range of about 4.0-7.2; those inoculated

Fig. 4.3 Development of pH during tissue culture. The pH was set before autoclaving as is usually done, and measured directly after autoclaving and after 5 days of culture with 1-mm stem-slices cut from apple microshoots. The medium was in Petri dishes with BBL agar and modified MS medium. Per Petri dish, 30 ml of medium was added and 30 slices were cultured. (Data from de Klerk et al., 2007).
into media adjusted to pH 2.5-3.0 or 8.0 will probably die (Butenko et al., 1984). Best results are usually obtained in slightly acid conditions. In a random sample of papers on micropropagation, the average initial pH adopted for several different media was found to be 5.6 (mode 5.7) but adjustments to as low as 3.5 and as high as 7.1 had been made.

The pH for most plant cultures is thus lower than that which is optimum for hydroponic cultures, where intact plants with their roots in aerated solution usually grow most rapidly when the pH of the solution is in the range 6.0-7.3 (De Capite, 1948; Sholto Douglas, 1976; Cooper, 1979).

Suspension cultured cells of Ipomoea, grew satisfactorily in Rose and Martin (1975) P2 medium adjusted initially to pH 5.6 or pH 6.3, but the yield of dry cells was less at two extremes (pH 4.8 and pH 7.1). Martin and Rose (1976) supposed that a low pH (before autoclaving) for the growth of carnation shoot tips on Linsmaier and Skoog (1965) medium, was 5.5-6.5. When the medium was supplemented with 4 mg/l adenine sulphate and 2 g/l casein hydrolysate, the optimum pH was 5, and on media adjusted to 6.0 and 6.5, there was significantly less growth (Davis et al., 1977). Shoot proliferation in Camellia sasanqua shoot cultures was best when the pH of a medium with MS salts was adjusted to 5-5.5. Only in these flasks was the capacity of juvenile explants to produce more shoots than adult ones really pronounced (Torres and Carlisi, 1986).

Norstog and Smith (1963) suggested that the pH of the medium used for the culture of isolated zygotic embryos, should not be greater than 5.2.

5.1.4. pH adjustment

Because there is then no need to take special aseptic precautions, and it is impractical to adjust pH once medium has been dispensed into small lots, the pH of a medium is usually adjusted with acid or alkali before autoclaving. According to Krieg and Gerhardt (1981), agar is partially hydrolysed if autoclaved at pH 6 or less and will not solidify so effectively when cooled. They recommend that agar media for bacteriological purposes should be sterilised at a pH greater than 6 and, if necessary, should be adjusted to acid conditions with sterile acid after autoclaving, when they have cooled to 45-50°C. The degree of hydrolysis in plant culture media autoclaved at pH 5.6-5.7, is presumably small.

The effect of autoclaving: Autoclaving changes the pH of media (Fig. 4.3). In media without sugars, the change is usually small unless the phosphate concentration is low, when more significant fluctuations occur. Media autoclaved with sucrose generally have a slightly lower pH than those autoclaved without it, but if maltose, glucose, or fructose have been added instead of sucrose, the post-autoclave pH is significantly reduced (Owen et al., 1991).

The pH of liquid media containing MS salts [e.g. Linsmaier and Skoog (1965) or Skirvin and Chu (1979) media] containing 3-3.4% sucrose, has been found to fall during autoclaving from an adjusted level of 5.7, to pH 5.17 (Singha, 1982), to pH 5.5 (Owen et al., 1991), or to pH 4.6 (Skirvin et al., 1986). The drop in pH may vary according to the pH to which the medium was initially adjusted. In the experiments of Skirvin et al. (loc. cit.), the pH of a medium adjusted to 5.0, fell to 4.2; one adjusted to 6.4, fell to 5.1; that set at pH 8.5, fell to 8.1.

Most agars cause the pH of media to increase immediately they are dissolved. Knudson (1946) noticed that the pH of his medium shifted from 4.6-4.7 to 5.4-5.5 once agar had been added and dissolved; and Singha (1982) discovered that the unadjusted pH of MS medium rose from pH 4 to pH 5.2, depending on the amount of agar added. However if a medium containing agar was adjusted to pH 5.7, and then autoclaved, the medium became more acid than if agar had not been added, the fall in pH being generally in proportion to the amount of agar present.

The effect of storage. The pH of autoclaved plant media tends to fall if they are stored. Vacin and Went (1949) noted that autoclaving just accelerated a drop in the pH of Knudson (1946) C medium, as solutions left to stand showed similar changes. Sterilisation by filtration (see below) was not a satisfactory alternative, as it too effected pH changes. The compounds particularly responsible were thought to be unchelated ferrous sulphate (when the pH had initially been set between 3 and 6), and calcium nitrate (when the original pH was 6 to 9). Complex iron phosphates, unavailable to plants, were produced from the ferrous sulphate, but if iron was added as
ferric citrate or ferric tartrate (chelates), no significant pH changes resulted from autoclaving, and plants showed no iron-deficiency symptoms.

Skirvin et al. (1986) found that both with and without agar, autoclaved MS medium tended to become more acid after 6 weeks storage, for example:

<table>
<thead>
<tr>
<th>Time</th>
<th>MS medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid</td>
</tr>
<tr>
<td>Starting pH</td>
<td>5.7</td>
</tr>
<tr>
<td>After autoclaving</td>
<td>4.6</td>
</tr>
<tr>
<td>6 weeks later</td>
<td>4.1</td>
</tr>
</tbody>
</table>

To minimise a change in the pH of stored media, it is suggested that they are kept in the dark: Owen et al. (1991) reported that the pH of MS containing 0.1M sucrose or 0.8% Phytagar, remained relatively stable after autoclaving if kept in the dark at 4°C, but fell by up to 0.8 units if stored in the light at 25°C. De Klerk et al. (2007) using BBL agar, also observed a shift of pH, but this was negligible when 10 mM MES was added (Fig. 4.3).

Hydrolysis: Some organic components of culture media are liable to be hydrolysed by autoclaving in acid media. The degree of hydrolysis of different brands of agar may be one factor influencing the incidence of hyperhydricity in plant cultures. Agar media may not solidify satisfactorily when the initial pH has been adjusted to 4-4.5. The reduction in pH which occurs in most media during autoclaving may also cause unsatisfactory gelling of agar which has been added in low concentrations. Part of the sucrose added to plant culture media adjusted to pH 5.5 is also hydrolysed during autoclaving: the proportion degraded increases if the pH of the medium is much less than this. Hydrolysis of sucrose is, however, not necessarily detrimental.

Activated charcoal: The presence of activated charcoal can alter the pH of a medium. As in the production of activated charcoal it is, at one stage washed with HCl, the pH of a medium can be lowered by acid residues (Owen et al., 1995; Wann et al., 1997).

4.1.5. pH changes during culture

Due to the differential uptake of anions and cations into plant tissues, the pH of culture media does not usually stay constant, but changes as ions and compounds are absorbed by the plant. It is usual for media containing nitrate and ammonium ions to decline slowly in pH during a passage, after being adjusted initially to pH 5.4-5.7, Sometimes after a preliminary decrease, the pH may begin to rise and return to a value close to, or even well above that at which the culture was initiated. The pH of White (1954) medium, which contains only NO$_3^-$ nitrogen, drifted from an initial 5.0 to 5.5 towards neutrality as callus was cultured on it (Klein and Manos, 1960).

With some cultures, the initial pH of the medium may have little effect. Cell suspension cultures of Dioscorea deltoides in the medium of Kaul and Staba (1968) [containing MS salts], adjusted to a pH either 3.5, 4.3, 5.8 or 6.3, all had a pH of 4.6-4.7 within 10 h of inoculation. There was a further fall to pH 4.0-4.2 in the next 2-3 days, but during the following 15-17 days the pH was 4.7-5.0, finally rising to pH 6.0-6.3 on about day 19 (Butenko et al., 1984). Similarly, Skirvin et al. (1986) found that MS medium adjusted to pH 3.33, 5.11, 6.63, or 7.98 before autoclaving, and then used for the culture of Cucumis melo callus, had a pH after 48 h in the range 4.6-5.0. Visser (1987) also reported that although the pH of his medium (similar macronutrients to MS but more Ca$^{2+}$ and PO$_4^{3-}$) decreased if it was solidified with agar, but on a 2-phase medium, the final pH was 6.9 ± 0.4 irrespective of whether it was initially 4.8, 5.5 or 6.2.

Despite the above remarks, it should be noted that the nature of the pH drift which occurs in any one medium, differs widely, according to the species of plant grown upon it. The pH of the medium supporting shoot cultures of Disanthus cercidifolius changed from 5.5 to 6.5 over a 6 week period, necessitating frequent subculturing to prevent the onset of senescence, whereas in the medium in which shoots of the calcifuge Lapageria rosea were grown, the pH, initially set to 3.5-5.0, only changed to 3.8-4.1 (Howard and Marks, 1987). Note also that the reversion of media to a homeostatic pH, may be due to the presence of both NO$_3^-$ and NH$_4^+$ ions (Dougall, 1980). Adjustment of media containing only one of these nitrogen sources to a range of pH levels, would be expected to result in a more variable set of final values.

As the pH of media deviate from the original titration level, simple unmonitored cultures may not provide the most favourable pH for different phases of growth and differentiation. In Rosa 'Paul’s Scarlet’ suspensions, the optimum pH for the cell division phase was 5.2-5.4: pH 5.5-6.0 was best for the cell expansion phase (Nesius and Fletcher, 1973). The maximum growth rate of Daucus carota habituated callus on White (1954) medium with iron as Fe-EDTA, occurred at pH 6.0 (Klein and Manos, 1960).
It has been suggested that acidification of media is partly due to the accumulation of carbon dioxide in tightly closed culture flasks (Leva et al., 1984), but the decrease in pH associated with incubating anther cultures with 5% CO₂ was found by Johansson and Eriksson (1984) to be only ca. 0.1 units. Removal of CO₂ from an aerated cell suspension culture of *Poinsettia* resulted in an increase of about 0.2 pH-units (Preil, 1991).

Auxin plant growth regulators promote cell growth by inducing the efflux of H⁺ ions through the cell wall. Hydrogen ion efflux from the cell is accompanied by potassium ion influx. When cultures are incubated in a medium containing an auxin, the medium will therefore become more acid while the pH of the cell sap will rise. The extent of these changes was found by Kurkdjian et al. (1982) to be proportional to auxin (2,4-D) concentration.

5.2. pH CONTROL WITHIN THE PLANT

The various compartments of cells have a different pH and this pH is maintained (Felle, 2001). In the symplasm, the pH of the cytoplasm is ca. 7 and of the vacuole ca. 5. The apoplasm has a pH of ca. 5. Plant cells typically generate an excess of acidic compounds during metabolism which have to be neutralised (Felle, 1998). One of the most important ways by which this is accomplished is for H⁺, or K⁺ to be pumped out of the cell, in exchange for anions (e.g. OH⁻), thereby decreasing the extracellular pH. Plant cells also compensate for an excess of H⁺ by the degradation of organic acids. Synthesis of organic acids, such as malate, from neutral precursors is used to increase H⁺ concentration when the cytoplasmic pH rises, for instance if plants are grown in alkaline soils (Raven and Smith, 1976; Findenegg et al., 1986). In intact plants, there is usually a downwards gradient from the low pH external to the cell, to higher pH levels in more mature parts, and this enables the upwards transport of non-electrolytic compounds such as sugars and amino acids (Böttger and Luthen, 1986).

Alteration of the pH of the external solution surrounding roots or cells can alter the pH of the cell (Smith and Raven, 1979). Because of necessary controls, the pH of the cytoplasm may be only slightly altered, that of vacuoles may show a more marked change. Changing the pH of the medium in which photo-autotrophic *Chenopodium rubrum* suspensions were cultured from 4.5 to 6.3, caused the pH of the cytoplasm to rise from 7.4 to 7.6 and that of the cell vacuoles to increase from 5.3 to 6.6. The increase in cytoplasmic pH caused there to be a marked diversion of carbon metabolism, away from sugar and starch, into the production of lipids, amino acids and proteins (Hüsemann et al., 1990). The maintenance of the pH is also illustrated in an experiment with detached leaves of *Vicia faba* (Felle and Hanstein, 2002). When the leaves were placed in a 10 mM MES-TRIS buffer and transferred to buffer with another pH, changes in the pH of the apoplasm were small: with an initial buffer pH = 4.1 and transfer to buffer pH = 6.8, the apoplastic pH of substomatal cavities increased from 4.71 to 5.13 and in the reverse transfer decreased from 5.13 to 4.70. This indicates that the pH of the apoplasm is not strongly influenced by the medium but stays close to the ‘natural’ pH of ca. 5.0. No exact details are given but in this experiment the distance between the site of the pH measurements and the MES-TRIS solution in which the leaves had been placed was probably large. The symplasm has a much larger capacity to buffer (Felle, 2001) so that its pH will be even less influenced by the medium pH. Thus, within the explant the pH of both apoplasm and symplasm will be affected only little by the medium pH. The situation may be different at the interface between explant and medium. The influence of medium pH will extend towards inner tissues of the explant as the buffering capacity of the medium is increased (and thus overcomes buffering by the tissue). Inside the explant, the pH will also greatly influence movement

<table>
<thead>
<tr>
<th>Initial pH of the medium</th>
<th>Mean number of organs per explant</th>
<th>Mean percentage of explants forming:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Callus</td>
</tr>
<tr>
<td>3.8 4 ± 2</td>
<td>60 ± 10</td>
<td>40 ± 10</td>
</tr>
<tr>
<td>5.0 2 ± 1</td>
<td>90 ± 10</td>
<td>10 ± 10</td>
</tr>
<tr>
<td>6.1 20 ± 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.8 6 ± 2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.9. The influence of the initial pH of Linsmaier Skoog (1965) medium on morphogenesis in thin cell layers of *Nicotiana* (data of Mutaftschiev et al., 1987)
through membranes, i.e. uptake in cells, as this often depends on the dissociation of compounds which is pH dependent.

Changing the pH of the medium can thus have a regulatory role on plant cultures which is similar to that of plant growth regulating chemicals, one of the actions of which is to modify intracellular pH and the quantity of free calcium ions. Auxins can modify cytoplasmic pH by triggering the release of H^+ from cells. In plant tissue culture these ions can acidify the medium (Kurkdjian et al., 1982). Proton release is thought to be the first step in acid-triggered and turgor-triggered growth (Schubert and Matzke, 1985). It should be noted that pH changes themselves may act as a signal (Felle, 2001).

5.3. THE EFFECT OF pH ON CULTURES

5.3.1. Initiating cultures at low pH

Plants of the family Ericaceae which only grow well on acid soils (e.g. rhododendrons and blueberries), have been said to grow best on media such as Anderson (1975), Anderson (1978; 1980) and Lloyd and McCown (1981) WPM, when the pH is first set to ca. 4.5 (Anderson, 1975; Skirvin, 1981), but for highly calcifuge species such as Magnolia soulangiana, a starting pH of 3.5 can result in the highest rate of shoot proliferation in shoot cultures (Howard and Marks, 1987). Chevre et al. (1983) state that chestnut shoot cultures grew and proliferated best at pH 4 provided MS medium was modified by doubling the usual levels of calcium and magnesium.

De Jong et al. (1974), using a specially developed medium, found that a low pH value favoured the growth of floral organs. A similar result was seen by Berghoef and Bruinsma (1979c) with Begonia buds. Growth was greatest when the pH of the medium was initially adjusted to acid, 4.5-5.0 being optimal. At pH 4.0 the buds became glassy.

Before the discovery of effective chelating agents for plant cultures, root cultures were grown on media with a low pH. Tomato roots were, for instance, unable to grow on media similar to those of White (1943a), when the pH rose to 5.2 (Street et al., 1951). Boll and Street (1951) were able to show that the depression of growth at high pH was due to the loss of Fe from the medium and that it could be overcome by adding a chelated form of iron (see chapter 3). Using FeEDTA, Torrey (1956) discovered that isolated pea roots [grown on a medium containing Bonner and Devirian (1939) A macronutrients, which do not contain NH_4^+], grew optimally at pH 6.0-6.4 but were clearly inhibited at pH 7.0 or greater; and Street (1969) reported that growth of tomato roots could be obtained between pH 4.0 and pH 7.2, if EDTA was present in the medium. Because agar does not gel properly when the initial pH of the medium is adjusted to 4, it is necessary to use liquid media for low pH cultures; or employ another gelling agent, or a mechanical support.

![Fig. 4.4](https://example.com/fig44.png)
Fig. 4.4 Effect of medium pH on adventitious rooting from apple stem disks. The pH at the x-axis is the pH as measured at the start of culture after autoclaving (cf. Fig. 4.3). (from de Klerk et al., 2007).
Some other cultures may also be beneficially started at low pH, which may indicate that the tissues have an initial requirement for NO_3^-. Embryogenesis of Pelargonium was induced more effectively if MS, or other media, were adjusted to pH 4.5-5.0 before autoclaving (rather than pH 5.5 and above) (Marsolais et al., 1991).

5.3.2. Differentiation and Morphogenesis

Differentiation and morphogenesis are frequently found to be pH-dependent. Xylogenesis depends on the medium pH (Khan et al., 1986). The growth of callus and the formation of adventitious organs from thin cell layers excised from superficial tissues of the inflorescence rachis of Nicotiana, depended on the initial pH of Linsmaier and Skoog (1965) medium containing 0.5 μM IBA and 3 μM kinetin (Table 4.9) (Mutaftschiev et al., 1987). Pasqua et al. (2002) reported many quantitative effects of pH during regeneration from tobacco thin cell layers. The types of callus produced from the plumes of Hevea seedlings differed according to the pH of the medium devised by Chua (1966). Soft and spongy callus formed at acid (5.4) or alkaline (8.0) pH. A compact callus was obtained between pH 6.2 and 6.8.

5.3.3. Adventitious root formation

There are several reports in the literature which show that the pH of the medium can influence root formation of some plants in vitro. A slightly acid pH seems to be preferred by most species. Zatko and Molnar (1986), who showed a close correlation between the acidity of the medium (pH 7.0 to 3.0) and the rooting of Vitis, Ribes nigrum and Aronia melanocarpa shoots, suggested that this was because acidity is necessary for auxin action.

Sharma et al. (1981) found it advantageous to reduce the pH of the medium to 4.5 to induce rooting of Bougainvillea shoots and a reduction of the pH of MS medium to 4.0 (accompanied by incubation in the dark) was required for reliable root formation of two Santalum species (Barlass et al., 1980) and Correa decumbens and Prostanthera striatifolia (Williams et al., 1984; 1985). Other Australian woody species rooted satisfactorily at pH 5.5 and pH 4 was inhibitory (Williams et al., loc. cit.). Shoots from carnation meristem tips rooted more readily at pH 5.5 than pH 6.0 (Stone, 1963), and rooting of excised potato buds was best at pH 5.7, root formation being inhibited at pH 4.8 and at pH 6.2 or above (Mellor and Stace-Smith, 1969). Direct root formation on Nautilocalyx leaf segments was retarded if a modified MS medium containing IAA was adjusted initially to an acid pH (3.5 or 4.0) or a neutral pH (6.5). Good and rapid root formation occurred when the medium was adjusted to between pH 5.0 to 6.3 (Venverloo, 1976). De Klerk et al. (2007), working with apple stem slices, found only a small effect of pH on rooting (Fig. 4.4): when the pH was set before autoclaving at 4.5 (after autoclaving the pH was 4.54), the number of roots was 4.5, and with the pH set at 8.0 (after autoclaving the pH had dropped to 5.65), the number of roots per slice increased to 7. In medium buffered with MES, the maximum number of roots was formed at pH 4.4 (measured after autoclaving). In these experiments, the dose-response curve for root number did not correspond with the effect of pH on IAA uptake. Such discrepancy between the effects of the pH on uptake and root number, was also reported by Harbage, Stirmart and Auer (1998).

Direct formation of roots from Lilium auratum bulb scales occurred when MS medium was adjusted within the range 4-7 but was optimal at pH 6. The pH range for adventitious bulblet formation in this plant was from 4 to 8, but most bulblets were produced when the initial pH was between 5 and 7 (Takayama and Misawa, 1979).

Substrates which are to acid or too alkaline can adversely affect rooting ex vitro.

5.3.4. Embryogenesis

Smith and Krikorian (1989) discovered that preglobular stage pro-embryos (PGSP) of carrot could be made to proliferate from tissues capable of direct embryo formation, with no auxin, on a medium containing 1-5 mM NH_4^+ (and no nitrate). Somatic embryos were formed when this tissue was moved to MS medium. The pH of the ‘ammonium-nitrogen’ medium fell from 5.5 to 4.0 in each subculture period, and it was later found (Smith and Krikorian, 1990a,b) that culture on a medium of low pH was essential for the maintenance of PGSP cultures. Sustained culture at a pH equal or greater than 5.7, with no auxin, allowed somatic embryo development. A similar observation to that of Smith and Krikorian had been made by (Stuart et al., 1987). Although the pH of a suspension culture of alfalfa ‘Regen-S’ cells in a modified Schenk and Hildebrandt (1972) medium with 15 mM NH_4^+ was adjusted to 5.8, it quickly fell back to pH 4.4-5.0 in a few hours. The pH then gradually increased as somatic embryos were produced, until at day 14 it was 5.0. In certain suspension cultures, the pH was titrated daily to 5.5, but on each occasion soon returned to nearly the same pH as that in flasks which were untouched. Even so,
the pH-adjusted suspensions produced more embryos than the controls.

The ammonium ion has been found to be essential for embryogenesis. Is one of its functions to reduce the pH of the medium through rapid uptake and metabolism, thereby facilitating the uptake of nitrate, upon which embryogenesis is really dependent?

Embryogenesis from leaf explants of *Ostericum koreanaum*, was found to depend strongly on pH (Cho et al. 2003). As the explants were cultured continuously with NAA, it is possible that the observed relationship was caused by differential NAA uptake. This is also suggested by the slower rate of embryo development seen at low pH, because this would be expected where there is a high internal NAA concentration.

6. LIQUID MEDIA AND SUPPORT SYSTEMS

6.1. LIQUID MEDIA

Liquid medium, without supporting structures, is used for the culture of protoplasts, cells or root systems for the production of secondary metabolites, and the propagation of somatic embryos, meristematic nodules, microtubers and shoot clusters. In liquid medium, these cultures often give faster growth rates than on agar-solidified medium. Cultures may be fully or only partially immersed in the medium.

Aeration of liquid medium in stationary Petri dishes is sometimes adequate for the culture of protoplasts and cells because of the shallow depth of the medium, but may still be suboptimal. Anthony et al. (1995) cultured protoplasts of cassava, in liquid medium in Petri dishes with an underlying layer of agarose in which glass rods were embedded vertically. Sustained protoplast division was observed in the cultures with glass rods but not in the controls without glass rods. The authors suggested that the glass rods extended the liquid meniscus, where the cell colonies were clustered thus causing gaseous exchange between the liquid and the atmosphere above to be facilitated.

Anthony et al. (1997) cultured protoplasts of *Passiflora* and *Petunia* in 30 ml glass bottles containing protoplast suspensions in 2 ml aliquots, either alone or in the presence of the oxygen carriers Erythrogen™ or oxygenated Perfluorodecalin. Cell division in each of the two species was stimulated by both oxygen carriers.

Laboratory-scale experimentation on immersed cultures of cells, tissues and organs, may be carried out in 125 ml or 250 ml Erlenmeyer flasks. Large-scale cultures are usually carried out in bioreactors with a capacity of 1 litre or more. The concentration of oxygen in the medium is raised by oxygen in the gas phase above and air bubbles inside the liquid. Increasing the oxygen concentration and circulation of the medium is facilitated in flasks by the use of gyratory shakers and in bioreactors by stirring and/or bubbling air through the medium (Chapter 1).
use of bioreactors often involves the automated adjustment of the culture medium. The design of bioreactors for plant cells and organs was reviewed by Doran (1993) and the use of shake-flasks and bioreactors for the scale-up of embryogenic plant suspension cultures has been reviewed by Tautorus and Dunstan (1995). The importance of oxygen concentration in bioreactors can be illustrated by an investigation into the growth of hairy roots of *Atropa belladonna* (Yu and Doran, 1994). They found that no growth occurred at oxygen tensions of 50% air saturation but between 70% and 100% air saturation, total root length and the number of root tips increased exponentially. Hyperhydricity in liquid cultures may be avoided by adding to the medium osmoregulators, such as mannitol, maltose and sorbitol, and inhibitors of gibberellin biosynthesis including aminocidol and paclobutrazol (Ziv, 1989).

Plantlets and microtubers can be cultured by partial submersion in liquid medium. One method of aerating tissues is by the automated flooding and evacuation of tissues by liquid medium. This method has been used to produce microtubers of potato from single node cuttings (Teisson and Alvard, 1999). An alternative approach to aeration is to apply the liquid medium over the plant tissues as a nutrient mist. For example, Kurata et al. (1991) found that nodes of potato grew better in nutrient mist than on agar-based cultures.

6.2. SUPPORT BY SEMI-SOLID MATRICES

Gelled media provide semi-solid, supporting matrices that are widely used for protoplast, cell, tissue and organ culture. Agar, agarose, gellan gums and various other products have been used as gelling agents.

6.2.1. Agar

Agar is very widely employed for the preparation of semi-solid culture media. It has the advantages that have made it so widely used for the culture of bacteria, namely:

- it forms gels with water that melt at approx. 100°C and solidify at approx. 45°C, and are thus stable at all feasible incubation temperatures;
- gels are not digested by plant enzymes;
- agar does not strongly react with media constituents.

To ensure adequate contact between tissue and medium, a lower concentration of agar is generally used for plant cultures than for the culture of bacteria. Plant media are not firmly gelled, but only rendered semi-solid. Depending on brand, concentrations of between 0.5-1.0% agar are generally used for this purpose. Agar is thought to be composed of a complex mixture of related polysaccharides built up from galactose. These range from an uncharged neutral polymer fraction, agarose, that has the capacity to form strong gels, to highly charged anionic polysaccharides, sometimes called agaropeptins, which give agar its viscosity. Agar is extracted from species of *Gelidium* and other red algae, collected from the sea in several different countries. It varies in nature according to country of origin, the year of collection and the way in which it has been extracted and processed. The proportion of agarose to total polysaccharides can vary from 50 to 90% (Adrian and Assoumani, 1983).

Agars contain small amounts of macro- and micro-elements; particularly calcium, sodium, potassium, and phosphate (Beruto et al., 1995; Debergh, 1983; Scherer et al., 1988), carbohydrates, traces of amino acids and vitamins (Day, 1942) that affect the osmotic and nutrient characteristics of a gel. They also contain phenolic substances (Scherer et al., 1988) and less pure grades may contain long chain fatty acids, inhibitory to the growth of some bacteria.

As agar can be the most expensive component of plant media, there is interest in minimising its concentration. Concentrations of agar can be considered inadequate if they do not support explants or lead to hyperhydricity. Hyperhydricity decreases as the agar concentration is raised but there may be an accompanying reduction in the rate of growth. For example, Debergh et al. (1981) found that shoot cultures of *Cynara scolymus* were hyperhydric on medium containing 0.6% Difco ‘Bacto’ agar. No hyperhydricity occurred on medium containing 1.1% agar but shoot proliferation was reduced. Likewise, Hakkaart and Versluijs (1983) found that shoots of carnation were hyperhydric on medium containing 0.6% agar whereas growth was severely reduced on medium containing 1.2%. During studies to optimise the production of morphogenic callus from leaf discs of sugarbeet, Owens and Wozniak (1991) found large differences in the numbers of somatic embryos and shoots according to the gelling agent employed. They found that water availability, determined by gel matrix potential, was the dominant factor involved. When they adjusted the concentrations of the gelling agents to give media of equal gel matrix potential, somatic embryos and shoots were found in similar numbers on Bacto agar (0.7%), HGT agarose (0.46%), Phytagar (0.62%) and Gelrite (0.12%).
Various brands and grades of agar are available commercially. These differ in the amounts of impurities they contain and their gelling capabilities. The gelling capacity of Difco brands of agar increased with increasing purity i.e. ‘Noble’ > ‘Purified’ > ‘Bacto’ (Debergh, 1983). After impurities of agar were removed by sealing agar in a semi-permeable bags and washing in deionized water, the water potentials of gels of three brands were substantially lower than unwashed gels (Beruto et al., 1995). A ten-fold difference in the regeneration rate of sugar cane was observed by Anders et al. (1988) on media gelled with the best and least effective of seven brands of agar. Scholten and Pierik (1998) investigated the different growth characteristics of seven different agar brands on the growth of axillary shoots, adventitious shoots and adventitious roots of rose, lily and cactus. They concluded that no single bioassay could identify ‘good or bad’ agars for a large group of plant species but Merk 1614, Daishin, MC29, and BD Purified gave the best results in most experiments. ‘Daishin’ showed no batch-to-batch variations. They found no relationship between price and quality of the brands of agar.

Agarose. Agarose is the high gel strength moiety of agar. It consists of β-D(1→3) galactopyranose and 3,6-anhydro-α-L(1→4) galactopyranose polymer chains of 20-160 monosaccharide units alternatively linked to form double helices. There are also several different agaroo-pectin products available, which have been extracted from agar and treated to remove most of the residual sulphate side groupings (Shillito et al., 1983). Because preparation involves additional processes, agarose is much more expensive than agar and its use is only warranted for valuable cultures, including protoplast and anther culture. Brands may differ widely in their suitability for these applications. Concentrations of 0.4-1.0% are used. Agarose derivatives are available which melt and gel at temperatures below 30°C, making them especially suitable for testing media ingredients that are heat-labile, or for embedding protoplasts. Low melting-point agarose is prepared by introducing hydroxyethyl groups into the agarose molecules (Shillito et al., 1983). Another advantage of agarose over agar lies in the removal of toxic components of agar during its preparation. Bolandi et al. (1999) preferred to embed protoplasts in agarose, rather than use liquid medium, because in agarose the semi-solid matrix applies a direct pressure on the plasma membrane of the protoplasts. They mixed protoplasts of sunflower with 0.5% agarose, pipetted 50 µl droplets of the mixture into Petri dishes and covered them with a thin layer of culture medium. A similar method was used to culture protoplasts of *Dioscorea* by Tor et al. (1999). The use of droplets has the advantage that a high plating density can be achieved in the droplets, while exposing the protoplasts to a larger reservoir of culture medium in the liquid phase. Bishoi et al. (2000) initially cultured anthers of Basmati rice on liquid medium, then used 1.0% agarose to culture cali derived from microspores.

6.2.2. Gellan gum

Gellan gum is a widely used gelling agent in plant tissue culture, that is marketed under various trade names including Gelrite, Phytagel and Kelcogel. It is an exopolysaccharide that encapsulates cells of the bacterium *Sphingomonas paucimobilis* (= *Auromonas elodea* = *Pseudomonas elodea*), from which it is obtained by industrial fermentation. The structure, physico-chemical properties and the rheology of solutions of gellan gum and related polysaccharides has been reviewed by Banik et al. (2000). Gellan gum consists of a linear repeating tetrasaccharide of D-glucose, D-glucuronic acid, D-glucose and L-rhamnose. Heating solutions of gellan gum in solutions that contain cations, such as K+, Ca²⁺, Mg²⁺, causes the polysaccharide to form a gel in which the polymers form a half-staggered parallel double helix. The commercial deacetylated and purified polysaccharide forms a firm non-elastic gel. The gel sets rapidly at a temperature, determined by the concentrations of the polysaccharide and the cation, which varies between 35-50 °C (Kang et al., 1982). The commercial product contains significant quantities of potassium, sodium, calcium and magnesium (Pasqualetto et al., 1988a,b; Scherer et al., 1988) but is said to be free of the organic impurities found in agar. It is unclear whether or not these cations remain fully available to plant cultures. Some researchers (Gawel et al., 1986; 1990; Trolinder and Goodin, 1987; Umbeck et al., 1987) add an extra 750 mg 1⁻¹ MgCl₂ to a medium containing MS salts to aid the gelling of 1.6% Gelrite. In most other reports on the use of Gelrite, cations in the medium have been sufficient to produce a gel. Beruto et al. (1995) found that 0.12 % Gelrite and 0.7% Bacto agar have equivalent matric potential and support equivalent adventitious regeneration in leaf discs of sugarbeet. As gellan gum is used in lower concentration than agar, the cost per litre of medium is less. It produces a clear gel in which plant tissues can be more easily seen and microbial
contamination more easily detected than in agar gels. It has proved to be a suitable gelling agent for tissue cultures of many herbaceous plants and there are reports of its successful use for callus culture, the direct and indirect formation of adventitious organs and somatic embryos, shoot culture of herbaceous and semi-woody species and the rooting of plantlets. In most cases the results have been as good as, and sometimes superior to, those obtainable on agar-solidified media. Anders et al. (1988) described the regeneration of greater numbers of plants from of sugar cane on Gelrite than on the most productive brand of agar, and Koetje et al. (1989) obtained more somatic embryos from callus cultures of rice on media solidified with Gelrite than with Bacto-agar. Shoot cultures, particularly of some woody species, are liable to become hyperhydric if Gelrite, like agar, is used at too low a concentration. There are sharp differences in the response of different species to concentration of Gelrite. Turner and Singha (1990) found the highest rate of shoot proliferation in Geum occurred on 0.2% and in Malus on 0.4%. Garin et al. (2000) obtained more mature somatic embryos of Pinus strobus on gellan gum at 1% concentration of than at 0.6%. Pasqualetto et al. (1986a,b) used mixtures of Gelrite (0.1-0.15%) and Sigma @ agar (0.2-0.3%) to prevent the hyperhydricity that occurred in shoot cultures of Malus domestica ‘Gala’ on media solidified with Gelrite alone. Nairn (1988) used a mixture of Gelrite (0.194%) and Difco ‘Bacto’ agar (0.024%) to prevent the hyperhydricity that occurred in shoot cultures of Pinus radiata on medium gelled with 0.2% Gelrite alone.

6.2.3. Alginates

Algicin acid is a binary linear heteropolymer 1,4-β-D-mannuronic acid and 1,4-α-L-guluronic acid (Larkin et al., 1988). It is extracted from various species of brown algae. When the sodium salt is exposed to calcium ions, gelation occurs. Alginates are widely used for protoplast culture and to encapsulate artificial seed. Protoplasts embedded in beads or thin films of alginate can plated densely while yet exposed to a large pool of medium that dilutes inhibitors and toxic substances. Embedded protoplasts can be surrounded by nurse cells, either free in the surrounding medium or separated by filters or membranes. Alginate has the advantages over agarose that protoplasts do not have to be exposed to elevated temperatures when they are mixed with the gelling agent and the gel can be liquefied by adding sodium citrate, releasing protoplasts or cell colonies for transfer to other media. The method of embedding protoplasts in beads as employed by Larkin et al. (1988) involved mixing the protoplast suspensions with an aqueous solution of sodium alginate and dropping it, through a needle, into a solution of calcium chloride. Beads containing the protoplasts were formed when the alginate made contact with the calcium ions. Beads with a final concentration of 1.5% sodium alginate were washed and cultured in liquid medium on an orbital shaker. Protoplasts may also be captured in thin layers of alginate (Dovzhenko et al., 1998).

Synthetic seeds (synseeds, somatic seeds) encapsulated in alginate (Fig. 4.4), can be prepared from somatic embryos (Timbert et al., 1995), shoot tips (Maruyama et al., 1998), apical and axillary buds (Piccioni and Standardi, 1995), single nodes (Piccioni, 1997), and cell aggregates from hairy roots (Repunte et al., 1995). The uses of sythetic seeds include direct planting into soil, storage of tissues and transfer of materials between laboratories under sterile conditions. The methods of encapsulation of somatic embryos of carrot were described by Timbert et al. (1995). Torpedo-shaped embryos were mixed with a 1% sodium alginate solution. The mixture was dropped into a solution 100 mM calcium chloride in 10% sucrose. The beads (3-3.5 mm in diameter) were then rinsed in a 10% sucrose solution.

6.2.4. Starch

Sorvari (1986a,c) found that plantlets formed in higher frequencies in anther cultures of barley on a medium solidified with 5% corn starch or barley starch rather than with agar. Corn starch only formed a weak gel and it was necessary to place a polyester net on its surface to prevent the explants from sinking. Sorvari (1986b) found that it took 5-14 weeks for adventitious shoots to form on potato discs on agar-solidified medium but only 3 weeks on medium containing barley starch. Henderson and Kinnersley (1988) found that embryogenic carrot callus cultures grew slightly better on media gelled with 12% corn starch than on 0.9% Difco ‘Bacto’ agar.

6.2.5. ‘Kappa’-carrageenans

Carrageenan is a product of sea weeds of the genus Euchema and the kappa form has strong gelling properties. Like gellan gum, kappa-carrageenan requires the presence of cations for gelation. In Linsmaier and Skoog (1965) medium at 0.6% w/v, the gel strength was slightly less than that of 0.2% Gelrite or 0.8% of extra pure agar (Ichi et al.,
The Components of Plant Tissue Culture Media II

Chauvin et al. (1999) found that regeneration from cultures of tulip, gladiolus and tobacco shoots was possible in the presence of 200 mg l\(^{-1}\) kanamycin, whereas in several other gelling agents a concentration of 100 mg l\(^{-1}\) inhibited regeneration.

6.2.6. Pectins

A mixture of pectin and agar can be a less expensive substitute for agar. For example, a semi-solid medium consisting of 0.2% agar plus 0.8-1.0% pectin, was employed for shoot culture of strawberry and some other plants (Zimmerman, 1979).

6.2.7. Other gelling agents

Battachary et al. (1994) found sago (from *Metroxylon sagu*) and isubgol (from *Plantago ovata*) were satisfactory substitutes for agar at, respectively, one eighth and one tenth of the cost of Sigma purified agar A7921.

6.3. POROUS SUPPORTS

Aeration of the tissues on a porous substrate is usually better than it would be in agar or static liquid.

Chin et al. (1988) used a buoyant polypropylene membrane floated on top of a liquid medium to culture cells and protoplasts of *Asparagus*. The membrane (Celgard 3500, Questar Corp., Charlotte, N.C.) has a pore size of 0.04 mm and is autoclavable. Conner and Meredith (1984) found that cells grew more rapidly on filter papers laid over polyurethane foam pads saturated with medium than on agar. Young et al. (1991) supported shoots of tomato over liquid culture medium on a floating microporous polypropylene membrane and entrained the growing shoots through polypropylene netting. They reported opportunities for the development of this method for mechanisation by mass handling. Membrane rafts were also used by Teng (1997) and Watan et al. (1995, 1996).

Cheng and Voqui (1977) and Cheng (1978) used polyester fleece to support cultures of Douglas fir that were irrigated with liquid media in Petri dishes. Plantlets that were regenerated from cotyledon explants were cultured on 3 mm-thick fabric. When a protoplast suspension was dispersed over 0.5 mm-thick fabric, numerous colonies were produced in 12 days, whereas in the absence of the support, cell colonies failed to proliferate beyond the 20 cell stage. A major advantage in using this type of fabric support is that media can be changed simply and quickly without disturbing the tissues. The system has also been used for protoplast culture of other plants (e.g. by Russell and McCown, 1986).

Heller and Gautheret (1949) found that tissues could be satisfactorily cultured on pieces of ashless filter paper moistened by contact with liquid medium. Very small explants, such as meristem tips, that might be lost if placed in a rotated or agitated liquid medium, can be successfully cultured if placed on an M-shaped strip of filter paper (sometimes called a ‘Heller’ support). When the folded paper is placed in a tube of liquid medium, the side arms act as wicks (Goodwin, 1966). This method of support ensures excellent tissue aeration but the extra time required for preparation and insertion has meant that paper wicks are only used for special purposes such as the initial cultural stages of single small explants which are otherwise difficult to establish. Whether explants grow best on agar or on filter paper supports, varies from one species of plant to another. Davis et al. (1977) found that carnation shoot tips grew less well on filter paper bridges than on 0.6% agar but axillary bud explants of *Leucospermum* survived on bridges but not on agar.

Paper was also used in the construction of plugs (marketed by Ilacon Ltd, Tonbridge, UK TN9 1NR) known as Sorbarods (Roberts and Smith, 1990). These are cylindrical (20 mm in length and 18 mm in diameter) and consist of cold-crimped cellulose, longitudinally folded, wrapped in cellulose paper. The plug has a porosity (total volume – volume of cellulose) of 94.2% and high capillarity, so that the culture medium is efficiently drawn up into the plug, leaving the sides of the plug in direct contact with air. Roots permeate the plugs and are protected by the cellulose during transfer to soil. Plantlets of chrysanthemum in Sorbarods formed longer stems, larger leaves, more roots, and developed greater fresh mass, dry weights and fresh to dry mass ratios than plantlets in agar-solidified medium (Roberts and Smith, 1990). The greater fresh to dry mass ratio indicates that contact with liquid medium led to greater hydration of tissues. This was subsequently controlled by the inclusion of a growth retardant, paclobutrazol (1 mg l\(^{-1}\)), in the culture medium (Smith et al., 1990a). Other porous materials that have been used to support plant growth include rockwool (Woodward et al., 1991; Tanaka et al., 1991), polyurethane foam (Gutman and Shirayaev, 1980; Scherer et al., 1988), vermiculite (Kirdmane et al., 1995), a mixture of vermiculite and Gelrite (Jay-Allemend et al., 1992).

Afreen-Zobayed et al. (2000) cultured sweet potato, on sugar-free medium in autotrophic conditions, on mixtures of paper pulp and vermiculite in various proportions. Optimal growth was obtained on a mixture containing 70% paper pulp. On this
mixture, the fresh mass of plantlets was greater by a factor of 2.7 than on agar-solidified medium. Mixtures of paper pulp and vermiculite, in unspecified proportions, are prepared in a commercial product known as Florialite (Nisshinbo Industries, Inc., Tokyo). Afreen-Zobayed et al. (1999) found that growth rates of plantlets of sweet potato grown autotrophically on Florialite were greater, in ascending order, on agar, gellan gum, vermiculite, Sorbarods and Florialite (best). The dry mass of leaves and roots were greater by factors of 2.9 and 2.8, respectively, on Florialite than on an agar matrix. These authors observed that roots spread better in Florialite than in Sorbarods. They attributed this to the net-like orientation of fibers in Florialite that contrasted with the vertical orientation of fibers in Sorbarods. Ichimura and Oda (1995) found three substances that stimulated plant growth in extracts of Sorbarods. Ichimura and Oda (1995) found three substances contribute to the superior growth observed on substrates containing paper pulp.

6.3.1. Opportunities for improved ventilation and photoautotrophy

When plantlets are cultured in vessels containing air at a relative humidity (RH) of less than 100%, transpiration occurs which is an important factor in reducing hyperhydricity (Gribble, 1999). Relative humidity in culture vessels can be reduced through ventilation, but gelled substrates are then unsuitable because the absorbance of water by the roots of a transpiring plant is impeded by the gel’s low hydraulic conductivity (Fujiwara and Kozai, 1995) and this increases as the gel dries. Thus a common feature of studies using ventilated vessels has been the use of liquid medium supported by porous materials.

For example, when plantlets of chrysanthemum were grown in Sorbarods in a culture vessel with air at 94% RH, a reduction in the tissue hydration was indicated by a significantly lower fresh to dry mass ratio than at 100% RH (Smith et al., 1990b) and increases in stem length and leaf area. In this investigation, the RH was reduced to 94% by gaseous diffusion through a gas-permeable membrane that covered holes drilled in the lid of the culture vessel. The use of such ventilated culture vessels can significantly improve plant growth by reducing hyperhydration and facilitating the movement of solutes to the leaves in the transpiration stream. It also provides opportunities for photoautotrophic growth in sugar-free media. When plantlets are cultured in closed vessels, carbon dioxide concentrations fall to low levels in the light period, as Kozai and Sekimoto (1988) demonstrated in cultures of strawberry plants. Photosynthesis requires an adequate supply of carbon dioxide and suitable lighting. Adequate concentrations of carbon dioxide for photoautotrophy can be maintained in ventilated culture vessels with (Afreen-Zobayed et al., 1999, 2000) or without (Horan et al., 1995) elevated levels of carbon dioxide in the atmosphere outside the culture vessel. Adequate lighting can be achieved under lights delivering a photosynthetic photon flux of 150 μmol m⁻² s⁻¹ in a culture room (Afreen-Zobayed et al., 1999, 2000) or in day-light in a greenhouse (Horan et al., 1995). The environmental requirements of photoautotrophy in vitro have been reviewed by Jeong et al. (1995) and its advantages have been described by Kozai et al. (1995).

6.4. IMMOBILISED CELLS

Yields of secondary metabolites are usually greater in differentiated, slow-growing cells than in fast growing, undifferentiated cells. By immobilising cells in a suitable matrix, their rate of growth can be slowed and the production of secondary products enhanced. Several ingenious methods of immobilisation have been employed. Examples include immobilization in spirally wound cotton (Choi et al., 1995), glass fibre fabric reinforced with a gelling solution of hybrid SiO₂ precursors (Camposotrini et al., 1996), loofa sponge and polyurethane foam (Liu et al., 1999) and alginate beads (Serp et al., 2000).

REFERENCES

ARR-NE-11.

BARG R. & UMIEL N. 1977 Effects of sugar concentration on growth, greenery and shoot formation in callus cultures of four genetic lines of tobacco. Z. Pflanzenphysiol. 81, 161-166.

BONNER J. 1937 Vitamin B1, a growth factor for higher plants. Science 85, 183-184.

BURSTROM H. 1957 Root surface development, sucrose
BROWN C., BROOKS E.J., PEARSON D. & MATHIAS R.J.
BROWN D.C.W. & THORPE T.A. 1980 Changes in water
BROWN D.C.W. & THORPE T.A. 1982 Mitochondrial activity
BRINK R.A., COOPER D.C. & AUSHERMAN L.E. 1944 A
BRIDSON E.Y. 1978 Diets, culture media and food supplements.

Chapter 4

inversion and free space. Physiol. Plant. 10, 741-751.

152-162.

1989 Control of embryogenesis and organogenesis in immature
wheat embryo callus using increased medium osmolarity and
1989 Effects of gelling agents on in vitro regeneration and
kanamycin efficiency as a selective agent in plant transformation

CHEZEN O., HARTUNG W. & NEUMANN P.M. 1995 The
different effects of PEG 6000 and NaCl on leaf development are
associated with differential inhibition of root water transport.
Plant Cell Environ. 18, 727-735.

CHONG C. & MILLER D. 1982 Some characteristics of the
phosphate uptake by Petunia cells. HorticScience 17, 488.

CHIN C.-K., KONG Y. & PEDERSEN H. 1988 Culture of
droplets containing asparagus cells and protoplasts on polypropy-

CHONG C. & FAN E.-C. 1985 Carbon nutrition of Ottawa 3 apple

CHUNG C.-C., OUYANG T.-W., CHIA H., CHOU S.-M. &
CHING C.-K. 1978 A set of potato media for wheat anther

and their detection based on RFLP analysis. Plant Breeding 117,

BORGES M., MENESES S., VAZQUEZ J., GARCIA M.,
AGUILERA N., INFANTE Z., RODRIGUEZ A. & FONSECA
M. 2003 In vitro conservation of Dioscorea alata L. germlaspms

BORKIGD C. & SINK K.C. 1983 Medium components for shoot
cultures of chlorophyll-deficient mutants of Petunia inflata. Plant

BÖTTGER M. & LUTHEN H. 1986 Possible linkage between
NADH-oxidation and proton secretion in Zea mays L. roots. J.
Exp. Bot. 37, 666-675.

BOZHKOV P.V. & VON ARNOLD S. 1998 Polyethylene glycol
promotes maturation but inhibits further development of Picea

BRETZLOFF C.W. Jr. 1954 The growth and fruiting of Sordaria

BRIDSON E.Y. 1978 Diets, culture media and food supplements.
pp. 91-281 in Reechgil M. Jr. (ed.) CRC Handbook Series in
Nutrition and Food. Section G. Vol.3.

BRINK R.A., COOPER D.C. & AUSHERMAN L.E. 1944 A
hybrid between Hordeum jubatum and Secale cereale. J. Hered.
35, 67-75.

during shoot formation and growth in tobacco callus. Physiol.
Plant. 54, 125-130.

BROWN D.C.W. & THORPE T.A. 1980 Changes in water
potential and its components during shoot formation in tobacco

BROWN D.C.W., LEUNG D.W.M. & THORPE T.A. 1979
Osmotic requirement for shoot formation in tobacco callus.
Physiol. Plant. 46, 36-41.

BROWN C., BROOKS E.J., PEARSON D. & MATHIAS R.J.
1989 Control of embryogenesis and organogenesis in immature
wheat embryo callus using increased medium osmolarity and

BURNET G. & IBRAHIM R.K. 1973 Tissue culture of Citrus peel
and its potential for flavonoid synthesis. Z. Pflanzenphysiol. 69,
152-162.

BURSTROM H. 1957 Root surface development, sucrose
inversion and free space. Physiol. Plant. 10, 741-751.

Rev. 30, 513-586.

BUTENKO R.G., LIPSKY A.K.H., CHERNYAK N.D. & ARYA
H.C. 1984 Changes in culture medium pH by cell suspension

CALLEBAUT A. & MOTTE J.-C. 1988 Growth of cucumber cells
in media with lactose or milk whey as carbon source. Plant Cell
Rep. 7, 162-165.

CAMPOSTRINI R., CARTURAN G., CANIATO R., PIOVAN

CANHOTO J.M. & CRUZ G.S. 1994 Improvement of somatic
embryogenesis in Feijoa sellowiana Berg (Myrtaceae) by
manipulation of culture media composition. In Vitro Cell. Dev. –
Pl. 30, 21-25.

CAPLIN S.M. & STEWARD F.C. 1948 Effects of coconut milk on

CARCELLER M., DAVEY M.R., FOWLER M.W. & STREET
H.E. 1971 The influence of sucrose, 2,4-D and kinetin on the
growth, fine structure and lignin content of cultured sycamore
cells. Protoplasma 73, 367-385.

CARMI F., DE PASQUALE F. & CRESCIMANNO F.G. 1999
Somatic embryogenesis and plant regeneration from pistil thin

CARMI F., DE PASQUALE F. & PUGLIA A.M. 1998 In vitro
rescue of zygotic embryos of sour orange, Citrus aurantium L.,

KORDAN H.A. 1959 Proliferation of excised juice vesicles of *lemon* *in vitro*. Science 129, 779-780.

KOCH J. & BUTTON J. 1974 The stimulation of embryogenesis and embryoid development in habituated ovular callus from the 'Shamouti' orange (*Citrus sinensis*) as affected by tissue age and sucrose concentration. Z. Pflanzenphysiol. 73, 415-421.

KÖRTE G. & BUTTON J. 1974 The stimulation of embryogenesis and embryoid development in habituated ovular callus from the 'Shamouti' orange (*Citrus sinensis*) as affected by tissue age and sucrose concentration. Z. Pflanzenphysiol. 73, 415-421.

LETHAM D.S. 1982 A compound in coconut milk which actively promoted radish cotyledon expansion, but exhibited negligible activity in tissue culture bioassays for cytokinins, was identified as the 6 oxypurine, 2-(3-methylbut-2-enylamino)-purin-6-one. Plant Cell Rep. 7, 517-520.
The Components of Plant Tissue Culture Media II

NORGAARD J.V. 1997 Somatic embryo maturation and plant re-

RUBLEY P.H. 1980 The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the

The Components of Plant Tissue Culture Media II

168

SADASIVAN V. 1951 The phosphatases in coconut (Cocos nucifera). Arch. Biochem. 30, 159-164.

WELANDER T. 1977 In vitro organogenesis in explants from different cultivars of Begonia hiemalis. Physiol. Plant. 41, 142-145.

WHITE P.R. 1943b Nutrient deficiency studies and an improved inorganic nutrient for cultivation of excised tomato roots. Growth 7, 53-65.
Chapter 5
Plant Growth Regulators I:
Introduction; Auxins, their Analogues and Inhibitors

1. HORMONES, GROWTH SUBSTANCES AND GROWTH REGULATORS

Some chemicals occurring naturally within plant tissues (i.e. endogenously), have a regulatory, rather than a nutritional role in growth and development. These compounds, which are generally active at very low concentrations, are known as plant hormones (or plant growth substances). Synthetic chemicals with similar physiological activities to plant growth substances, or compounds having an ability to modify plant growth by some other means, for example polyamines, are usually termed plant growth regulators. Some of the natural growth substances are prepared synthetically or through fermentation processes and can be purchased from chemical suppliers. When these chemicals have been added to plant tissue culture media, they are termed plant growth regulators in this book, to indicate the fact that they have been applied from outside the tissues (i.e. exogenously).

There are several recognised classes of plant growth substance. Until relatively recently only five groups were recognised namely:

- auxins
- cytokinins
- gibberellins
- ethylene
- abscisic acid

Auxins and cytokinins are by far the most important for regulating growth and morphogenesis in plant tissue and organ cultures; in these classes, synthetic regulators have been discovered with a biological activity, which equals or exceeds that of the equivalent natural growth substances.

No chemical alternatives to the natural gibberellins or abscisic acid are available, but some natural gibberellins are extracted from cultured fungi and are available for use as exogenous regulators. However, several classes of chemicals, which are highly effective in blocking the synthesis of gibberellins within the plant, are very effective growth regulators. They are usually termed anti-gibberellins (or growth retardants). These however, can also affect the synthesis of other classes of hormone or growth regulator such as abscisic acid, sterols or brassinosteroids.

Exogenous ethylene can be used as a growth regulator, but being a gas, it is difficult to administer and to control the available concentration, except in tightly sealed vessels, this is also true of other alkynes and alkenes which mimic ethylene action such as acetylene and propylene. However, some chemicals have been invented which are capable of releasing ethylene; effective compounds are taken up into plants as intact molecules, but then break down to release ethylene within the tissue of a plant. One of these ethylene-releasing chemicals – ‘ethephon’ (2-chloroethane phosphonic acid) is used as a growth regulator for tissue cultures. There are now also some very specific inhibitors both of ethylene biosynthesis and of its action.

In the last decade it has become clear that there are not only five classes of plant hormones but significantly more. Some of these, such as brassinosteroids, jasmonic acid, oligosaccharins and systemin are already relatively well characterised while others - which are known to exist - such as the natural analogues of fusicoccin and the phytotropins - still remain to be identified.

In addition, it has become clear that elicitors and lipochito-oligosaccharides derived from micro-organisms must be considered as plant growth regulators and indeed, it appears that plants possess specific receptor proteins for such substances.

Furthermore, it is now clear that sugars, such as glucose – generally thought of only in terms of their nutritional/energy providing roles – do interact with hormones and/or their transduction chains (see below).

2. AUXINS

Auxins are very widely used in plant tissue culture and usually form an integral part of nutrient media. Auxins promote, mainly in combination with cytokinins, the growth of calli, cell suspensions and organs, and also regulate the direction of morphogenesis. The word auxin has a Greek origin: auxein means to enlarge or to grow. At the cellular level, auxins control basic processes such as cell
division and cell elongation. Since they are capable of initiating cell division they are involved in the formation of meristems giving rise to either unorganised tissue, or defined organs. In organised tissues, auxins are involved in the establishment and maintenance of polarity and in whole plants their most marked effect is the maintenance of apical dominance and mediation of tropisms (summarised in Friml, 2003).

The choice of auxins and the concentration administered depends on:

- the type of growth and/or development required;
- the rate of uptake and of transport of the applied auxin to the target tissue;
- the inactivation (oxidation and/or conjugation) of auxin in the medium and within the explant;
- the natural levels and the endogenous synthesis within the explant;
- the sensitivity of the plant tissue to auxin (and other hormones as well);
- the interaction, if any, between applied auxins and the natural endogenous substances.

2.1. NATURALLY OCCURRING AND SYNTHETIC AUXINS

The most commonly detected natural auxin is IAA (indole-3-acetic acid) (1); but endogenous occurrence of 4-chloro-IAA (2) (Engvild, 1985) and of indole-3-butyric acid (IBA) (3) (Ludwig-Müller and Epstein, 1991) have also been demonstrated. Furthermore, the weak auxin phenylacetic acid (PAA) (4) occurs naturally in plants (Okamoto et al., 1967) and there are precursors and metabolites of IAA present in plant tissues, like indole-3-pyruvic acid, tryptamine (Cooney and Nonhebel, 1991) or tryptophol (Rayle and Purves, 1967; Percival et al., 1973).

In addition, the intermediate of agrobacterial IAA biosynthesis, indole-3-acetamide (5), has been detected in plant tissues (Saotome et al., 1993).

Most of the IAA produced within plants is conjugated to other compounds to form esters, amides or glycosyl esters. The most commonly occurring IAA-conjugates are indole-3-acetylaspartic acid (IAAsp) (6) and a range of IAA glucose esters (IAAGlu) (7). Conjugation seems to be a mechanism for storing IAA in cells, stabilising the level of free auxin in the plant, and metabolising its excess (Ljung et al., 2002; Normanly et al., 2004). Auxin in conjugated molecules is protected from oxidative breakdown and may be released again through the action of enzymes (see Section 2.2).

IAA may be used as an auxin in plant tissue culture media, but it tends to be oxidised in culture media and is rapidly metabolised within plant tissues. However, this characteristic can be useful, because in some plants, callus induced by IAA (together with cytokinins) frequently gives rise to shoots or embryos as its effective concentration becomes diminished. IAA has also been used with other regulants to induce direct morphogenesis (including the rooting of microcuttings), and for meristem and shoot cultures (e.g., of Bougainvillea, Chaturvedi et al., 1978; Sharma et al., 1981; Citrullus, Barnes, 1979; and...
In general, the metabolism of auxin, as well as the metabolism of any other hormone, consists of both biosynthetic and hormone-molecule modifying reactions. Auxin biosynthesis is usually thought to be more intensive in meristematic regions and young growing organs such as rapidly growing leaves, apical buds, root tips, and developing inflorescences.

3.1. NATURAL LEVELS OF IAA

In intact plants, the highest level of IAA occurs predominantly in or near the apex and IAA is transported basipetally; thus, we can observe a decreasing IAA concentration from the top to the bottom. The above is especially true for monocotyledons, whereas in dicotyledons the highest concentration of IAA occurs in the subapical zone, which also grows most rapidly (Law and Davies, 1990). Auxin is also abundant in young leaves, floral organs and developing fruits and seeds. IAA concentrations are high in young, fast growing organs and decline with age and are affected by external factors, e.g. by light (wavelength, intensity and photoperiod). The level is not constant during the day: daily oscillations in IAA concentration in Chenopodium rubrum plants have been described. There are no significant changes in constant light, but an endogenous rhythm has been observed in constant darkness. Various diurnal fluctuations were observed in different photoperiodic regimes (Fig 5.1) (Pavlová and Krekule, 1984).

Levels of naturally occurring auxin in explanted tissues are found to depend on the motherplant from which the explants are taken. The age of the motherplant, the conditions under which it has been
growing and the season of the year at which explants are taken, can all be influential (Cassells, 1979). As stated above, the time of the day may also be important. The presence of an associated organised meristem can cause callus to grow more vigorously, or to be capable of organogenesis (Fakhrai et al., 1989). This suggests that meristematic cells are particularly active sites for the biosynthesis and/or the release of natural growth factors favouring cell growth (Clare and Collin, 1974).

3.2. AUXIN BIOSYNTHESIS

Traditionally, the indole amino acid, tryptophan (Trp), which is formed as well as the other aromatic compounds by the shikimic acid pathway, has been thought to be a precursor of the most important native auxin in plants, IAA. However, as described below, Trp-independent pathways have also been considered.

There are several possibilities as to how plants may convert Trp into IAA: via indole-3-pyruvic acid (the so called “indolepyruvate pathway”), via indole-3-acetaldoxime (the “indole-3-acetaldoxime pathway”) and via tryptamine (the “tryptamine pathway”; Fig 5.2). The most common IAA-biosynthetic pathway in plants appears to be the indolepyruvate one; it begins by the transamination of Trp catalysed by the enzyme tryptophan transaminase (or tryptophan amino transferase) (Forest and Wightman, 1972). Indolepyruvate is then converted into indole-3-acetaldehyde (Gibson et al., 1972; Purves and Brown, 1978). IAA can originate from this aldehyde either by dehydrogenation (NAD-dependent indoleacetaldehyde dehydrogenase) or by oxidation (indoleacetaldehyde oxidase) (Wightman and Cohen, 1968; Miyata et al., 1981).

The indole-3-acetaldoxime pathway starts by formation of indole-3-acetaldoxime followed by its conversion to indole-3-acetonitrile and final hydrolysis (nitrilase) to IAA (Thimann and Mahadevan, 1964; Normanly et al., 1997). This pathway is typical for, e.g., Brassicaceae and Resedaceae. The tryptamine pathway was reported mainly in Poaceae and involves decarboxylation of Trp into tryptamine (tryptophan decarboxylase) followed by its conversion to indole-3-acetaldehyde. At this point this pathway joins with the indolepyruvate pathway. Since one of the enzymes converting indole-3-acetaldehyde into IAA, i.e., indoleacetaldehyde oxidase, shows sigmoidal
kinetics, its regulatory role for both these pathways has been proposed (Kutacek, 1985).

There is one more IAA biosynthetic pathway starting from Trp: it takes place in some plant pathogenic bacteria and consequently also in plants transformed by Agrobacterium. The first step in this pathway is the formation of indole-3-acetamide (Trp monooxygenase) and its subsequent hydrolysis to IAA (indole-3-acetamide hydrolase) (see Klee et al., 1987 for review).

The fact that in labelling experiments the percentage of label in IAA is low in comparison with labelled Trp applied, and that some plants can synthesise IAA even if they are not able to produce Trp (to survive they have to be fed with Trp), led to the recent discovery that IAA can be formed by the non-tryptophan pathway (summarised in Slovin et al., 1999). The probable branch point for IAA and Trp “sub-pathways” lies still in the shikimic acid pathway, and is located upstream from Trp, either at the level of indole-3-glycerol phosphate or indole (Normanly et al., 1993). However, Eckardt in her review summarized evidence suggesting that the Trp-independent pathway might be an artifact (Eckardt 2001).

Hence, all the above mentioned pathways exist in plants, some of them may function in parallel or in some proportion and/or sequence depending on the existing physiological conditions.

3.3. AUXIN CONJUGATION AND DEGRADATION

Usually, the bulk of auxin molecules present in plants are in conjugated forms. Conjugates are compounds in which hormone molecules are bound in a covalent manner with other low-molecular substances, and therefore lose their physiological activity. Hormone-conjugation reactions are mostly reversible and thus may provide a very flexible tool for regulation of endogenous hormone levels.

Auxin is known to form two main classes of conjugates: amides (peptides) and glycosyl esters. Amides originate via formation of peptide bonds between auxins (both native and synthetic) and amino acids, namely aspartate, glutamate, alanine, glycine, and valine. Glycosyl esters of IAA involve compounds such as various isomers of o-indole-3-acetyl-β-D-glucopyranose and indole-3-acetyl-myoinositol, indole-3-acetylglucosyl-rhamnose, etc. (summarised in Cohen and Bandurski, 1982; Slovin et al., 1999, Ljung et al., 2002, Normanly et al., 2004). Some of the auxin conjugates may also serve as transport forms of auxin.

In contrast to conjugation reactions, auxin degradation is an irreversible process. There are two main ways of IAA degradation: oxidative decarboxylation and oxidation without decarboxylation. The oxidative decarboxylation may be catalysed by a non-specific activity traditionally called “IAA-oxidase/peroxidase” and leads to the subsequent formation of degradation products such as indole-3-methanol, indole-3-aldehyde, methylene oxindole and indole-3-carboxylic acid (Himman and Lang, 1965; reviewed by Reinecke and Bandurski, 1987; Bandurski et al., 1995; Slovin et al., 1999).

Oxidation without decarboxylation involves complex pathways resulting in the formation of oxindole-3-acetic and dioxindole-3-acetic acids and their derivatives. Similar pathways are functional also for degradation of some conjugates, e.g., indole-3-aspartate (see Slovin et al., 1999, for review).

The knowledge on the whole complex of auxin metabolism (including biosynthesis) has been recently summarised in Ljung et al., (2002), Zazimalova and Napier (2003), and Normanly et al., (2004).

The synthetic auxins, 2,4-D and NAA are often converted, after uptake into plant tissues, to conjugates, mainly glucosyl esters (Barendse et al., 1987, Klems et al., 1998). This reversible conjugation may regulate levels of free active substances.

3.4. EFFECT OF SYNTHETIC AUXINS ON IAA LEVELS

The synthetic auxins, which are added exogenously to control the growth and organisation of cultured tissues, may affect endogenous IAA levels. This can be caused by inhibition of IAA oxidase. Callus cultures of Arabidopsis thaliana can be initiated and maintained on a medium containing 2,4-D, but progressively lose their morphogenic capacity the longer they are maintained on it, until after 6-8 months there is no regeneration at all. The loss in regenerative ability was found by Negrutiu et al., (1979) to be closely paralleled by a progressive decline in the activity of peroxidase enzymes through successive transfers of the callus. The decline was reversed each time the callus was removed from the presence of 2,4-D and grown on a shoot-inducing medium. Reduction in peroxidase levels would be expected to result in higher endogenous IAA concentrations, but the decrease in peroxidase enzymes appears in this case to have been associated with a decrease in natural auxin biosynthesis. Nakamura et al., (1998) found a correlation between
decreased rhizogenic activity and the activity of a root-specific peroxidase in tobacco callus. On the other hand, in carrot cell culture, 2,4-D promoted accumulation of tryptophan-derived IAA (Michalczuk et al., 1992).

Table 5.1 Table of synthetic auxins used in tissue cultures

<table>
<thead>
<tr>
<th>SYNTHETIC AUXINS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBA</td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
</tr>
<tr>
<td></td>
<td>NAA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOA</td>
</tr>
<tr>
<td></td>
<td>4-CPA</td>
</tr>
<tr>
<td></td>
<td>PCPA</td>
</tr>
<tr>
<td></td>
<td>MCPA</td>
</tr>
<tr>
<td></td>
<td>2,4,5-T</td>
</tr>
<tr>
<td></td>
<td>Dicamba</td>
</tr>
<tr>
<td></td>
<td>Picloram</td>
</tr>
<tr>
<td></td>
<td>2,4-dichlorophenylseleno-acetic acid</td>
</tr>
<tr>
<td></td>
<td>3-(benzo[b]iselenenyl) acetic acid</td>
</tr>
</tbody>
</table>
Chapter 5

In cultures of wild cherry, endogenous levels of IAA are also considerably reduced by the presence of 2,4-D, although the availability of tryptophan (the precursor of IAA biosynthesis) was increased (Sung, 1979). This suggests that 2,4-D interfered directly with IAA synthesis or hastened IAA conjugation/degradation. 2,4-D inhibition of IAA synthesis has been noted in sycamore suspension cultures (Elliott et al., 1978). Conversely, reducing the external 2,4-D and NAA concentration resulted in a significant increase in internal free IAA concentration in the auxin-dependent and cytokinin-autonomous tobacco cell strain VBI-0 (Zažímalová et al., 1995). Maeda and Thorpe (1979) suggested that indole-based synthetic auxins might protect IAA from natural destruction by competing with it for IAA oxidase enzymes.

In carrot hypocotyl explants, neither 2,4-D nor NAA, both of which induced callus formation, had any effect on endogenous IAA concentration. This shows that in this case synthetic auxins induced morphogenesis themselves (Ribnicky et al., 1996). Inhibition of somatic embryos in the globular stage was observed during co-cultivation in growth-regulator-free medium of carrot and Arabidopsis somatic embryo cultures. This was probably due to the high intracellular content of 2,4-D in Arabidopsis cultures created during preceding cultivation in 2,4-D-containing medium and its release following transfer to growth-regulator-free medium (Meijer et al., 1999).

![Fig. 5.2 Pathways of IAA biosynthesis.](image-url)
3.5. STABILITY IN CULTURE MEDIA

IAA and to some extent also IBA are heat labile and decompose during autoclaving. IAA is also unstable in culture media at room temperature. In the dark, there can be more than a ten-fold decrease in concentration over a four-week period in the absence of inocula (Campbell and Sutter, 1986; Nissen and Sutter, 1988). The rate of decrease of IAA is even more rapid in the light and is accelerated by the presence of MS salts (Dunlap et al., 1986). In liquid MS medium incubated at 25°C in a normal 16 h photoperiod, 10 μM (1.75 mg/l) IAA was reduced to less than the limit of detection (0.05 mg/l) in 14 days.

4. TRANSPORT OF AUXINS

Auxins seem to be the only group of plant hormones exhibiting - on the level of the whole plant or its parts - active transport in a polar manner in addition to long-distance movement via vascular tissues (Hopkins, 1995). Auxins appear to be transported long distances extensively through the phloem (but probably not the xylem) of higher plants. The free IAA present in the phloem sap is probably synthesised and exported from the mature leaves. This would accord with Sheldrake’s hypothesis (Sheldrake, 1973) that the meristems are net importers rather than synthesers of IAA in higher plants (reviewed by Baker, 2000) and seems to be in contradiction to the widely accepted idea that meristems are the sites of auxin biosynthesis.

The phenomenon of polar auxin transport was demonstrated first in the late 1920s (Went, 1928). In contrast to the movement of auxin via vascular tissues, polar cell-to-cell auxin transport is localised predominantly in parenchyma cells in the sheath surrounding differentiated vascular tissue. The polarity of auxin transport was explained (Rubery and Sheldrake, 1974; Raven, 1975) by the different permeability of opposite parts of cells for dissociated and undissociated molecules of indole-3-acetic acid (IAA− and IAAH, respectively), and by an asymmetric localisation (basal in the stem cells) of a so-called auxin efflux carrier (translocating the IAA− anion outside the cell). This idea was summarised by Goldsmith (1977) and named the “chemiosmotic polar diffusion theory”. Now, it is believed - on the basis of biochemical, physiological and molecular biological data - that at the level of the individual cell, both passive diffusion and an auxin-uptake (influx) carrier drive auxin translocation into the cell while an auxin efflux carrier drives auxin transport out of the cell. The activity of both carriers, to different extents, can be inhibited by several synthetic compounds, mainly of the phytotropin type, e.g. 1-naphthylphthalamic acid (NPA) (8) (reviews by Lomax et al., 1995; Bennett et al., 1998; Morris, 2000). Now several genes are known, coding for both putative carriers and for the NPA-binding site. Typical representatives of these genes, AUX1 (coding for the putative auxin uptake carrier), PIN gene family (coding for the putative auxin efflux carriers, expressed in different tissues and organs) and others have been identified in Arabidopsis thaliana (summarised in Galweiler et al., 1998; Morris, 2000; Friml and Palme, 2002; Morris et al., 2004). The effects of potential auxin transport inhibitors on tissue and organ culture are described below.

Delbarre et al., (1996) have studied auxin accumulation at the cell level in detail. Using various radiolabelled auxins, the biochemical properties (kinetic characteristics and specificity) of both carriers (for uptake and efflux) were determined including data on interactions of carriers with potential inhibitors. On the basis of different behaviour of both auxin uptake and efflux carriers towards NAA and 2,4-D, Delbarre et al., (1996) proposed a simple method for measurement of the activity of these carriers: NAA can be used for determination of the efflux carrier, while 2,4-D can serve as a marker of uptake carrier activity. This approach has been used for identification of new auxin transport inhibitors of aryl and aryloxyalkylcarboxylic acid type (Imhoff et al., 2000). Based on studies of auxin transport inhibitors, the hypothesis arose that, unlike the auxin uptake carrier, the auxin efflux carrier has a rather complex structure. It seems to consist of at least two, probably...
three components: the carrier itself, the NPA-binding protein and a rapidly turned-over regulatory protein (Morris et al., 1991). Little is known about the mechanisms resulting in proposed asymmetric distribution of this multi-component system. There is some evidence that cytoskeleton (microfilaments in particular) and/or Golgi-mediated protein traffic may be involved in establishment and maintenance of this distribution (reviews by Morris 2000; Friml and Palme, 2002; Morris et al., 2004).

5. MODE OF ACTION OF AUXIN

Plants - like other higher organisms - have to possess intraorganismal communication system(s) working over relatively long distances. As no nervous system is present, the main signalling systems are hormone-dependent (Libbenga and Mennes, 1995). Auxins are a component of such systems. Auxins and cytokinins impact at several levels in many different processes of plant development. At the level of isolated plant cells (grown in cell suspension culture) one can distinguish two main processes apparently controlled by auxins in collaboration with cytokinins, i.e., cell cycle and cell division on one hand, and cell elongation on the other. The auxin:cytokinin ratio represents an important signal in the formation of cell phenotype and also in the onset and maintenance of the process of cell division (Stickens et al., 1996; See chapter 10). The ability of auxins (together with cytokinins) to manage key events in plant morphogenesis was documented, among others, by Skoog and Miller's (1957) discovery of the regulation of organogenesis in vitro by means of the auxin:cytokinin ratio in culture media (cf. Chapter 6). It has been further supported by recent investigations on the relationships between auxin and cytokinin levels and the morphogenetic response of various plants (e.g., Li et al., 1994; Leyser et al., 1996; Centeno et al., 1996). However, despite many reports on the physiological action of both individual phytohormones, the molecular mechanisms of their effect(s) on cell expansion, cell division, differentiation, organogenesis, and the mechanisms of their interactions have not yet been elucidated. Nevertheless, the main steps in auxin- (as well as other hormone-) signalling can be generally described as:

1. initial perception of the hormone signal,
2. the signal transduction cascade, and
3. the final physiological response.

5.1. AUXIN SIGNAL PERCEPTION

By analogy to animal systems each target plant cell is presumed to possess receptors, which are able to detect hormonal signals and then to initiate the chain of molecular events leading to the final physiological response. Receptor-like auxin-binding proteins have been identified and characterised by various techniques (traditional ligand-binding studies, photoaffinity labelling and genetic approaches) as recently reviewed by Napier et al., (2002), Zazimalova and Napier (2003), Hagen et al., (2004). There are some candidates for true auxin receptors, especially ZmABP1, i.e. Zea mays Auxin-Binding Protein 1, the major auxin-binding protein from maize membranes. This protein exists in the form of a dimer of 22-kDa subunits. It has been purified by several methods and its primary structure was deduced from cDNA clones. Additionally, several other genes encoding this auxin-binding protein (ABP1) have been sequenced from other plants (Arabidopsis thaliana and other dicots including tobacco (reviewed in Napier et al., 2002). All homologues share a common primary amino acid sequence containing an N-terminal signal peptide for transit into the endoplasmic reticulum, one glycosylation site and the C-terminal KDEL (Lys-Asp-Glu-Leu) sequence for retention in the lumen of endoplasmic reticulum. The crystal structure of ABP1 and its interaction with auxin was described by Woo et al., (2002). Another membrane-associated ABP, showing specificity very similar to that of the maize ABP1, was detected in tobacco cells cultured in vitro (Vreughdenhil et al., 1981 and references therein, Zazimalova et al., 1995). Nevertheless, Jones’s (1994) statement: “There is not enough information to label any single ABP as the auxin receptor...” is still valid and the auxin-binding protein story seems to be “curiouser and curiouser” (Timpke, 2001).

5.2. AUXIN SIGNAL TRANSDUCTION PATHWAY(S)

There are several perception/transduction mechanisms known in animal and plant cells (Libbenga and Mennes, 1995; Walden and Lubenow, 1996). There is some indication that transduction of the auxin signal might be mediated by mechanisms based on a plasma membrane-located receptor, a heterotrimeric G protein and phospholipase A_2- or C-catalysed hydrolysis of specific membrane lipids (recent reviews by Millner, 2001; Fujisawa et al.,
However, convincing evidence is still missing.

Recent findings suggested the involvement of targeted protein degradation in auxin signalling. This mechanism is based on the regulation of the ubiquitin-conjugating pathway by auxin (Estelle, 1999). Ubiquitin is a small and highly-conserved protein which facilitates protein degradation. It seems to be a rather unexpected way to explain the mode of auxin action. On the other hand, if auxin controls the ubiquitin-mediated degradation of those proteins, which are unique for particular phases of the developmental programme (Fig 5.3) this may be well in agreement with a multifunctional regulatory role of auxin in plant development (Buchanan et al., 2000; Leyser, 2001; Kepinski and Leyser, 2002; Hellman and Estelle, 2002; Dharmasiri and Estelle, 2004).

5.3. AUXIN-REGULATED GENE EXPRESSION

Most auxin-controlled developmental processes involve modulation of gene expression in both positive (up-regulation) and negative (down-regulation) manners (Theologis, 1986). Numerous auxin-responsive genes have been identified (Takahashi et al., 1995; Guilfoyle, 1999). Several families of genes have been identified in a variety of different plants and organs that were rapidly induced after auxin treatment, namely Aux/IAA, GST (glutathione-S-transferase), SAUR (small-auxin-upregulated RNAs), ACC (aminocyclopropane carboxylic acid) synthase, GH3 genes and many others (summarised in Guilfoyle, 1999).

Fewer auxin-responsive down-regulated genes have been described and these were mostly identified in soybean hypocotyls (Baulcombe and Key, 1980). The main players in the control of transcription by auxin are two families of transcription factors: ARFs (auxin response factors), which can bind to the auxin-response elements within auxin-responsive genes, and Aux/IAA proteins, repressors, the expression of which are auxin-regulated. ARFs can form mixed dimers with Aux/IAAs and in this form they cannot activate expression of relevant genes. At higher auxin concentrations, the ARF-Aux/IAA complexes dissociate and Aux/IAAs are ubiquitinated; ARFs then activate transcription (Ward and Estelle, 2001; Guilfoyle and Hagen, 2001; Kepinski and Leyser, 2002; Tiwari et al., 2004).

Fig. 5.3 The tentative scheme of auxin-regulated cell development (example: formation of tracheid). Auxin controls ubiquitin-mediated degradation of hypothetical proteins (E1-E5, i.e. enzymes, repressors, transcription factors, etc.) involved in promotion of particular developmental phases. Degradation of the proteins necessary for one stage results in the commencement of the next one. In this way auxin keeps the development progressing. (Buchanan et al., 2000 – reproduced with permission).
6. PHYSIOLOGICAL EFFECTS OF AUXINS

In most auxin effects, a bell-shaped concentration/activity curve can be observed. At low concentrations (0.1 - 10 µM) the effect usually increases with concentration, but concentrations higher than 10 µM are often inhibitory. This inhibitory effect is usually due to an increase in ethylene production at higher auxin concentrations (see Chapter 7).

6.1. AT THE CELLULAR LEVEL

A stimulatory effect on cell elongation can be demonstrated in segments of coleoptiles or stems at physiologically significant IAA concentrations. Auxin is in most cases active in the concentration range 0.1 – 10 µM. Activation of cell elongation by auxin is mediated by increased proton efflux (‘acid-growth theory’, Rayle and Cleland, 1992, Hager et al., 1971) and/or changes in gene expression (see above). Both these theories were later combined into ‘dual-sites’ hypothesis (Vanderhoef, 1980). This hypothesis can explain the time-course of a typical biphasic auxin-induced elongation curve consisting of short-term (acid growth) and long-term (gene expression) responses (see also Cleland, 2004 for recent review). In nature, an increase in cell division is most obvious in the spring in trees, when young buds produce auxin, which stimulates cell division in the cambium (Sundberg et al., 1991, Funada et al., 2001).

Auxin, together with cytokinins, is also involved in bud initiation and growth. Cell division seems to be regulated by the joint action of auxins and cytokinins (see Chapter 10), each of which appears to influence different phases of the cell cycle. Auxins exert an effect on DNA replication, while cytokinins seem to exert some control over the events leading to mitosis (Jouanneau, 1971, cf Chapter 6). Normal cell divisions require synchrony between the S phase and cell division, suggesting that auxin and cytokinin levels in cultures need to be carefully matched. Auxin starvation resulted in G2-arrest in tobacco cell suspension (Koens et al., 1995). Activation of cell division is also coupled with activation of cdc2, the main cell cycle regulating kinase (John et al., 1993). Cells are thought not to enter mitosis unless cytokinin is present.

6.2. AT THE TISSUE AND WHOLE PLANT LEVELS

Auxins stimulate differentiation of vascular bundles and, as already discussed, they take part in differentiation of buds and roots (Aloni, 2004). Auxin is gradually canalised by a positive feedback mechanism where increasing conductivity of auxin conducting cells leads to canals of cells efficiently transporting auxin (Sachs, 2000). Polar transport of auxin (see above) is fundamental for the establishment and maintenance of polarity of the plant and its organs. Inhibition of polar auxin transport leads to many abnormalities and in embryos it can lead to death (Liu et al., 1993).

Auxins are known for their ability to promote adventitious root formation. This action is definitely also coupled with stimulation of cell division – increased expression of cyclin B1 and cdc2 was observed well before the first cell division (Hemerly et al., 1993). Early stages of lateral root formation are also regulated by polar auxin transport (Casimiro et al., 2001). IBA is by far the most commonly used auxin to obtain root initiation in conventional cuttings. It has been shown that IBA is readily converted to IAA, but it probably also has an effect on its own (van der Krieken et al., 1992).

Polar transport of auxin is the decisive force of apical dominance (Cline, 1994). Removal of the tip, the main auxin source, or inhibition of auxin transport leads to the outgrowth of axillary buds. Also dominance of fruits is mediated by auxin transport. Uneven distribution of auxin is considered to cause differential growth rates in different sides (upper/lower or irradiated/shaded) of coleoptile or root and their bending in gravitropic or phototropic reactions (Friml, 2003).

7. AUXIN EFFECTS IN TISSUE CULTURE

In tissue culture, depending on other hormones present in the medium, changes in auxin concentrations may change the type of growth, e.g., stimulation of root formation may switch to callus induction etc. In this respect, each tissue culture system is unique, and the effects of different concentrations of auxins and other hormones must be tested for each case individually and only to some extent can the results be transferred to other cultures.
7.1. INDUCTION OF CALLUS GROWTH

An auxin is generally required for the induction of callus from explants. Applied auxins seem to be capable of fundamentally altering the genetically programmed physiology of whole plant tissues, which had previously determined their differentiated state. Cells, which respond to auxin, revert to a dedifferentiated state and begin to divide. How auxin brings about this reprogramming is understood only to a very limited extent. Lo Schiavo et al., (1989) found that auxins cause DNA to become more methylated than usual and suggested that this might be necessary for the re-programming of differentiated cells. Thus, tissue-specific programmes specifically associated with differentiation would be eradicated by hypermethylation, with perhaps a small fraction of the cells reaching an ultimate state of dedifferentiation in which they become capable of morphogenesis, or embryogenesis (Terzi and Lo Schiavo, 1990). A high rate of DNA methylation was found in the early somatic embryo stage in cultures of Cucurbita pepo L (Leljak-Levanic et al., 2004).

Irvine et al., (1983) reported having tested 79 potential regulants for their ability to initiate callus from immature sugarcane leaf tissue. From the effective compounds, 96% had structures known to be associated with auxin activity. The auxin most frequently employed to initiate callus cultures is 2,4-D. However, since cultures maintained on 2,4-D may become genetically variable, some investigators prefer NAA or IAA, or a transfer of callus to a medium containing one of these alternative compounds once it has been initiated by 2,4-D.

For callus induction from broadleaved trees, 2,4-D is generally used at levels between 5 - 15 µM. To induce callus growth from explants of dicotyledonous plants, a cytokinin is usually added to the medium in addition to an auxin. The presence of a cytokinin may not be necessary to obtain callus from explants of monocotyledons and in these plants a somewhat higher auxin concentration, for example 2,4-D in the range 10 - 50 µM, is typically used. The combined use of auxin and cytokinin in tissue cultures is considered separately in a later section.

Auxins promote cell dispersion in suspension cultures while cytokinins tend to cause cell aggregation. The relatively high levels of auxin added to liquid media to obtain dispersion will prevent morphogenesis, but might induce embryogenesis if the cells are still competent. Whereas cytokinins tend to promote the formation of chlorophyll in callus and suspension cultures, auxins can be inhibitory. Some reduction of chlorophyll formation in the presence of 2,4-D was noted in callus cultures of pea, tomato and potato by Hildebrandt et al., (1963) and Oxalis dispar callus was found to turn green only when the auxin content in the medium was reduced to one tenth of that normally used to promote callus growth (i.e., 2,4-D reduced from 5 to 0.5 µM, or NAA from 50 to 5 µM). Compared to callus subcultured to media entirely free of auxin, even a low level of auxin delayed the appearance of chlorophyll and shortened the period over which it accumulated (Sunderland and Wells, 1968). Other workers have made similar observations. Increasing the concentration of IAA led to a progressive reduction in chloroplast development within chicory callus (Wozny et al., 1973), but in other tests IAA or NAA have been reckoned to be less inhibitory to chlorophyll formation than 2,4-D (Davey et al., 1971).

7.2. ORGAN CULTURES

An auxin is almost invariably required to promote the initial growth of meristem and shoot tip explants. A low concentration of auxin is often beneficial in conjunction with high levels of cytokinin at Stage II when shoot multiplication is required, although in some cases cytokinin alone is sufficient. It is important to choose an auxin at a concentration that will promote growth without inducing callus formation.

The induction of rhizogenesis usually requires an adjustment in the levels of auxins and cytokinins. Rhizogenesis is usually achieved by treatment with auxin alone. Also, development of lateral roots is stimulated by auxin as was demonstrated in Panax ginseng, where IBA was shown to be more effective than NAA (Kim et al., 2003). Exogenous cytokinins are commonly inhibitory (Reid and Howell, 1995). Auxin-induced root formation is thought to require, or induce, the promotion of polyamine synthesis (Friedman et al., 1985).

Sometimes tissues, organs or strains of cells arise that are able to grow without the addition of any auxin to the medium. They are said to be auxin autonomous or auxin habituated (see Section on habituation below).

7.3. EMBRYOGENESIS

The process of somatic embryogenesis is often initiated in media containing high levels of auxins (especially 2,4-D), but embryos usually do not develop further until the auxin concentration is reduced. Sharp et al., (1980) proposed that auxin...
induces an embryogenic determination in a proportion of the cells in callus or suspension cultures but at the same time causes these induced cells to cease further development into embryos. It was suggested that division of the pro-embryogenic cells and their development into embryos is only resumed at lower auxin concentrations. There are, however, many recorded exceptions to this general observation, where somatic embryos are induced even in cultures grown on media devoid of auxins. It is possible that in these instances, embryogenesis has been induced by endogenous auxin, the concentration of which has then been subsequently reduced by metabolism to permit embryo formation. In alfalfa, low 2,4-D concentration gives rise to callus from leaf explants, while higher 2,4-D levels induce formation of embryo-like structures (Fehér et al., 2002). Withdrawal of auxin from the inducing medium is associated with cell death and extracellular acidification in cultures of Norway spruce (Bozhkov et al., 2002).

The discovery that embryo formation in carrot can be regulated by pH (see Chapter 4) may imply that at least some of the regulatory effects of auxins on the formation and maintenance of embryogenic cultures can be ascribed to their capacity to reduce intracellular pH. Embryo formation coincides with the withdrawal of auxin and a rise in cellular pH. Formation of cellular pH gradients may be important in the formation of embryogenic cells in alfalfa (Pasternak et al., 2002). However, somatic embryogenesis in carrot has also been found to be induced by an excess of hypochlorite ions (Kiyosue et al., 1989), subjecting tissues to high osmotic potential (0.7 mM sucrose or 0.6 M mannitol in Ishikawa et al., 1988; or 0.3 M NaCl in Kiyosue et al., 1989), and by exposure to heavy metal ions, especially by 0.5-1.0 mM Cd\(^{2+}\), Ni\(^{2+}\) and Co\(^{2+}\) (Kiyosue et al., 1990). Thus it cannot be assumed that pH is the only controlling factor: a common physiological mechanism by which such different stimuli can induce embryogenesis has yet to be demonstrated. In the induction of somatic embryogenesis from immature cotyledons of *Glycine max*, Lazzeri et al., (1988) discovered a highly significant interaction between the concentration of auxin and sucrose in the medium. The number of embryos obtained was reduced if the concentration ratio of auxin: sucrose was high, or vice versa. In the study of somatic embryogenesis in *Phaseolus vulgaris* induced by 2,4-D, it was shown that there was an inverse relationship between 2,4-D concentration in the medium and endogenous IAA level in the globular structures (Dobrev et al., 2001). Using an immunocytochemical approach to visualize IAA it was shown in sunflower somatic embryos that an endogenous auxin pulse induced by the application of exogenous auxin is needed as one of the first signals inducing embryogenesis (Thomas et al., 2002).

7.4. Examples of the Use of Different Synthetic Auxins in Tissue Cultures

Together with cytokinins, 2,4-D is used primarily for callus induction and the formation and maintenance of suspension cultures, being replaced by NAA and IBA when morphogenesis is required. NAA and IBA are favoured auxins for shoot culture. 2,4,5-trichlorophenoxyacetic acid (2,4,5-T; Table 5.1) is used only rarely in tissue cultures, and then almost exclusively for the induction of callus and indirect embryogenesis in monocotyledons such as *Avena*, *Oryza*, and *Panicum*. Heyser et al., (1983) found that in *Triticum aestivum*, some varieties produced embryogenic callus with 2,4-D, while others responded only to 2,4,5-T. 3,6-dichloroanisic acid (dicamba; Table 5.1) is often effective in inducing the formation of embryogenic callus in monocotyledons, for example *Dactylis glomerata* (40 µM) (Gray and Conger, 1985); *Musa* (90.5 µM) (Jarret et al., 1985b); and rice (4.5-18.1 µM) (Zimny and Lörz, 1986). The use of 9.1 µM dicamba permitted the formation of wheat scutellar callus, which produced more somatic embryos in conjunction with 2.6-4.7 µM kinetin, than that induced by the optimum rate of 2,4-D (3.6 µM) (Carman et al., 1988). This is probably because dicamba is metabolised quickly in wheat (Chang and Van den Born, 1971), possibly more quickly than 2,4-D. 4-amino-3,5,6-trichloropicolinic acid (picloram; Table 5.1) is sometimes used to induce and/or maintain callus or suspension cultures of broadleaved trees, or to induce the formation of embryogenic callus, where it may be more effective than 2,4-D (Beyl and Sharma, 1983). The concentration required (e.g., 0.06-4.0 µM) is generally less than that necessary for other auxins. Mok and Mok (1977) found that the growth rate and yield of callus from different species and varieties of *Phaseolus*, were greater in the presence of picloram than with 2,4-D. Picloram was active at lower concentrations and over a wider range of genotypes. In only a very few instances has this auxin been used for meristem or single node culture and then at very low concentrations (e.g., 0.012-0.4 µM) in combination with a cytokinin.
A comparison of the effectiveness of various synthetic auxins was performed on regeneration of wheat, barley and triticale and it was shown that in barley, dicamba or dicamba + 2,4-D were most effective; in triticale, picloram; and in wheat, dicamba or picloram + 2,4-D (Przetakiewicz et al., 2003). Also seleniated auxins, i.e. the newly described 2,4-dichlorophenylselenoacetic acid (Table 5.1) (Tadino et al., 2003) as well as 3-(benzo[β]selenyl)acetic acid (BSSA; Table 5.1) induce somatic embryogenesis in Panax ginseng (Kevers et al., 2002).

At high concentrations most synthetic auxins are phytotoxic to field-grown broad-leaved plants. 2,4-D, 2,4,5-T, MCPA, dicamba and picloram have been used commercially as selective herbicides. This detrimental effect was reported also for high levels of IAA and is probably due to a dramatic increase in ethylene production. There are many other chemicals with auxin-like activity besides the ones we have listed, which have seldom been used in plant tissue cultures. An unusual auxin 2-chloro-3(2,3-dichlorophenyl) propionitrile (CDPPN) (9), which is related to orthonil (PRB-8) (10), was found by Nemeth (1981) to produce up to 90% more shoots in apple shoot cultures than the same concentration of IBA (5 μM).

As might also be expected, L-tryptophan can also act as an auxin replacement in some plants. In these cases it may stimulate growth or induce morphogenesis (e.g., callus growth of Nicotiana glauca x N. langsdorfi hybrids - Cheng, 1972; the formation of embryogenic callus in some rice cultivars - Siriwardana and Nabors, 1983).

7.5. MIXTURES OF AUXINS

Some investigators have employed mixtures of many different auxins (e.g., Blackmon et al., 1981b), but as the effect of individual compounds can vary in different genotypes, most researchers prefer to use only one, or at most two compounds. However, a mixture of more than one auxin can be particularly effective for root induction and a mixture of a synthetic auxin and IAA has been found by many workers to be more effective than the synthetic compound on its own. A mixture of 2,4-D (or 2,4,5-T) and either IAA or L-tryptophan was found to promote embryogenic callus formation in wheat, pearl millet and some varieties of rice (Nabors et al., 1983). This observation was confirmed by Carman et al., (1988), who found that adding 0.2 mM L-tryptophan to 3.62 μM 2,4-D, consistently enhanced the formation of somatic embryos from scutellum callus of wheat genotypes. There was a decrease in embryo formation when tryptophan was combined with dicamba. As mentioned above, mixtures of auxins are also more effective in inducing regeneration of wheat, barley and triticale (Przetakiewicz et al., 2003).

7.6. AUXIN UPTAKE AND METABOLISM IN TISSUE CULTURES

It is not quite correct to talk about uptake, because what we can measure, is in fact accumulation, i.e., the amount of a regulator in a tissue, which was taken up from the medium and not yet metabolized. IAA and synthetic auxins such as NAA and 2,4-D are rapidly taken up into cultured tissues from media with a pH less than 5-6. The compounds are subsequently absorbed into cells as whole molecules (via uptake carrier or diffusion, see above), but dissociation then causes them to be retained within the cell, because the plasmalemma is impermeable to auxin anions (Norris and Bukovak, 1972; Raven, 1979; Edwards and Goldsmith, 1980; Minocha and Nissen, 1985; Minocha, 1987). IAA and NAA anions can be exported only by the efflux carrier (see above). Besides uptake through the tissue surface, in cultures using segments, diffusion through the cut surface
must be taken into account. In apple microcuttings, applied auxin is taken up predominantly via the cut surface and not via the epidermis (Guan and De Klerk, 2000). The rate of uptake of NAA into tobacco pedicel explants was proportional to the concentration in the medium and its presence is necessary for 4 d only (Smulders et al., 1988).

Total 2,4-D uptake (14C-labelled) was found to be higher in easy-to-root juvenile clones of *Sequoiadendron giganteum* than in difficult-to-root mature stem cuttings (Berthon et al., 1991). An unequal distribution of free 2,4-D between apical and basal ends of cuttings was found in both types of shoots; the accumulation was higher in the basal parts. The rate of metabolic conjugation of 2,4-D was higher in the basal part and in the mature clone. 2,4-D uptake and metabolism have also been studied in embryogenic and non-embryogenic maize lines. During the first 24h, uptake was very active in both lines, while after 5 days the embryogenic line contained less 2,4-D. The embryogenic line also metabolised 2,4-D more actively than the non-embryogenic one (Bronsema et al., 1996). Another comparison of 2,4-D uptake, distribution and metabolism was performed with explants of cucumber (*Cucumis sativus* L.) hypocotyls and cotyledons. Cotyledon explants take up more 2,4-D, have a more pronounced basipetal gradient of 2,4-D level and conjugate 2,4-D more actively than hypocotyl explants (Fig. 5.4; Klemš et al., 1998).

7.7. EFFECT OF AUXIN TRANSPORT INHIBITORS ON SHOOT CULTURES

Polar transport of auxin can be inhibited by NPA (8) or 2,3,5-triiodobenzoic acid (TIBA) (11). In the literature, these compounds are often referred to as ‘anti-auxins’, but it is more appropriate to use this term only for compounds that compete with auxin for the auxin receptors. 2,4,6-Trichlorophenoxyacetic acid (2,4,6-T) (12) and *p*-chlorophenoxyisobutyric acid (PCIB) (13) are probably genuine anti-auxins. Other compounds with anti-auxin effects are β-NAA, phenylpropionic acid (14), and 2-(*o*-chlorophenoxy)-2-methylpropionic acid (15).

Application of two drops of a 2μM solution of TIBA to the apices of cultured rose shoots had the same effect as manually tipping the shoots, and increased the number of axillary shoots subsequently produced. Adding 6 μM TIBA to the medium for *Rosa hybrida* shoot cultures increased lateral shoot formation during the first two passages (Voyiatzi and Voyiatzi, 1988). TIBA or β-NAA improved adventitious shoot regeneration in sugar beet as well (Zhang et al., 2004).

7.8. EFFECTS OF ANTI-AUXINS AND AUXIN TRANSPORT INHIBITORS IN ADVENTIOUS ORGAN FORMATION

Anti-auxins have been reported to promote or modify morphogenesis and in many instances they do appear to have negated the effect of exogenous or endogenous auxin. NPA prevented the growth of tobacco callus when incorporated into the medium at 200 μM, but 2 - 20 μM promoted growth in conjunction with IAA. The compound seemed to reduce auxin activity or enhance that of cytokinin, because callus cultured with 200 μM naptalam plus 12 μM IAA and 2.5 μM kinetin (see Chapter 6)
initiated buds only when NPA was present (Feng and Linck, 1970). TIBA alone improved callus formation and quality in cultures of pepper (Kaparakis and Alderson, 2003).

![Fig. 5.4](image)

PCIB (13) counteracted the inhibitory effect of 2,4-D on adventitious bud formation on sections of *Chondrilla juncea* roots (Kefford and Caso, 1972) and, together with the cytokinin benzyladenine, it promoted the formation of adventitious shoots from *Solanum melongena* callus, when combinations of IAA and BAP were ineffective. Fiola et al., (1978) thought this might be because PCIB overcame excessive endogenous IAA in the tissue. Similar effects were shown by de Klerk et al., on rooting of apple microcuttings (Fig. 5.5). The work of Cassells (1979) and Cassells et al., (1982) similarly suggested that explants of some species may have a too high level of endogenous auxin for shoot buds to be produced either directly or from associated callus. Placing explants of tomato stems on a medium containing 12 μM cytokinin, zeatin, and 0.5 - 5 μM TIBA but no auxin, caused a marked increase in shoot bud formation, probably because the TIBA prevented endogenous auxin moving to sites of potential shoot bud formation. In *Pelargonium*, callus that formed on MS medium plus zeatin, gave rise to numerous green xylem-containing nodules. These could be induced to develop into shoot buds when TIBA was added to the medium. In the absence of TIBA, the microscopic bud initials of *Pelargonium* seemed to release natural auxin in sufficient concentration to prevent further shoot development.

Callus of *Colocasia esculenta* produced normal shoots when 50 μM TIBA was added to the medium whereas shoots produced with combinations of auxin and cytokinin had an abnormal morphology (Nyman and Arditti, 1984). However, although barley callus developed adventitious shoots on a medium with 2,4,5-T, it produced roots on a medium containing TIBA (Jelaska et al., 1984).

Also, rooting induced by auxins may be influenced by antiauxins and auxin transport inhibitors. Regeneration of roots on tomato hypocotyl cuttings is suppressed by TIBA (Tyburski and Tretyn, 2004). Similarly, NPA inhibited root formation and growth in cultures of oak shoot segments (Vidal et al., 2003).

7.9. EFFECTS OF ANTI-AUXINS AND AUXIN TRANSPORT INHIBITORS ON EMBRYOGENESIS

The effect of auxin transport inhibitors and antiauxins on somatic embryogenesis or embryo growth has been equivocal. In another cultures of *Hordeum* (Clapham, 1973) and *Zea mays* (Genovesi and Collins, 1982), TIBA was more effective than normal auxins in inducing callus formation and embryogenesis. 2,4,6-trichlorophenoxyacetic acid (2,4,6-T) (12) has also been reported to enhance somatic embryo formation in callus cultures (Newcomb and Wetherell, 1970; Smith and Street, 1974), but Stange (1979) found that PCIB (13) inhibited meristematic activity, and Fujimura and Komamine (1979) discovered that 2,4,6-T and PCIB inhibited embryogenesis in carrot suspensions. They took particular care to wash residual auxin from cell clusters and thought that the stimulatory effects of anti-auxins noted by others, were due to their failure to take this precaution. PCIB is able to inhibit cell proliferation in embryogenic culture of Nordmanns fir and to promote development of embryos (Find et al., 2002).
whereas in culture of *Elutherococcus senticosus*, TIBA suppressed embryo formation while cell division was not affected (Choi *et al.*, 2001).

Auxin polar transport was reported to be essential for bilateral symmetry during early plant embryogenesis. Three transport inhibitors (TIBA, *trans*-cinnamic acid (Table 5.2) and 9-hydroxyfluorene-9-carboxylic acid (16) induced formation of fused cotyledons in *in vitro* culture of early globular embryos of Indian mustard (Liu *et al.*, 1993). Also the symmetry of zygotic embryos is affected by auxin polar transport. Application of TIBA to wheat zygotic embryos cultivated *in vitro* caused abnormal symmetry, i.e. malformed embryos. The relative position of the shoot apical meristem was anomalous and no root meristem differentiated (Fischer and Neuhaus, 1996). In contrast, PCIB, which is considered to compete with auxin for the auxin receptor but to have no effect on auxin transport, did not affect embryo symmetry. 8-NAA, phenylpropionic acid, and 2-(o-chlorophenoxy)-2-methylpropionic acid, together with TIBA, prevented the re-callusing of indirectly formed *Sapindus trifoliatus* embryos, but did not permit embryo germination. Germination only occurred when 5-methyl-tryptophan (17) was added to the medium. The compound seemed to act as an anti-auxin (Desai *et al.*, 1986).
8. THE GROWTH REGULATORY EFFECTS OF PHENOLS

Compounds that carry one or more hydroxyl groups on an aromatic ring are termed phenolic compounds (for examples see Table 5.2). There are many papers on the growth regulating properties of phenolic compounds in tissue cultures. The documented effects of adding phenols to culture media are mainly an enhancement of callus growth, more effective adventitious shoot formation, the improved rooting of shoots, and a greater rate of shoot proliferation in certain shoot cultures. Most plant responses have involved a synergism with auxins, particularly IAA, so that a mode of action that is dependent on the regulation of internal IAA levels has seemed probable. Many mono-, di- and tri-hydroxyphenols and their more complex derivatives found naturally in plant cells are strong reducing agents and can serve as substrates for oxidative enzymes. This has led to two hypotheses as to their growth regulatory activity:

1. When added exogenously, hydroxyphenols act as alternative substrates for oxidative enzymes, and may protect auxin from oxidative breakdown (Stonier, 1971; Stonier et al., 1970; James and Thurbon, 1981b. Lee and Skoog (1965) and Grambow and Langenbeck-Schwich (1983) reported that the substitution pattern of phenols affects the rate of IAA oxidation. Some monophenolics increase the rate, while some 3-substituted phenols depress it. Phenols were found to react with hydrogen peroxide produced during IAA degradation, thereby protecting the cell from its toxic effects. Relatively large amounts of natural inhibitors of IAA oxidase have been reported to be present in meristematic and juvenile tissues, but not in normal mature differentiated cells until they are wounded (Stonier and Yoneda, 1967; Stonier, 1969). The normal process of auxin (IAA) inactivation has also been reported to be inhibited in the callus produced following crown-gall infection, which is capable of autonomous growth in culture (Lipetz and Galston, 1959; Platt, 1954; Stonier, 1969; Bouillenne and Gaspar, 1970), and in auxin-habituated callus (Weis, 1967). Growing tobacco cells on media that favour the induction of auxin habituation (see Syono and Furuya, 1974) caused an increase in an inhibitor of auxin destruction (Syono, 1979). But some workers (e.g., Basu et al., 1969; Hammerschlag, 1982) have questioned whether the stimulatory effect of phenols in promoting rooting is not due to some other function than that of preventing IAA destruction. Shoots of a non-rooting mutant of tobacco, rac, contain high levels of auxin protectors, namely chlorogenic acid and total soluble phenols (Faiivre-Rampant et al., 2000). Lee (1980) found that, in maize, some phenolic compounds can alter the relative proportions of free and bound IAA. On the other hand, enhancement of quercetin (Table 5.2) glucosylation by 2,4-D was described in Vitis cell cultures (Kokubo et al., 2001).

2. Morphogenic activity is induced by the products formed when compounds such as phloroglucinol (18) and phloridzin (19) (see below) are oxidised. Gur et al., (1988) advanced this hypothesis when they found that phloroglucinol only promoted rooting in apple clones with sufficient polyphenol oxidase activity to cause significant oxidation of the compound. Of significance to this proposal is the fact that phloroglucinol and phloridzin can inhibit vitrification, apparently by serving as precursors of lignin synthesis.

It should be noted however that phenols may have other, unexpected roles. Thus, some phenolic compounds such as, or similar to, quercitin may act as true plant regulators – the phytotropins. Similarly, salicylic acid (Table 5.2) is now emerging as an important component of plant responses to biotic stress (see Chapter 7, Section 8).
Table 5.2 Structures of Phenolic Compounds in Plants

<table>
<thead>
<tr>
<th>Compound</th>
<th>Substitutions</th>
<th>Basic structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-hydroxybenzoic acid</td>
<td>R1=R2=H</td>
<td></td>
</tr>
<tr>
<td>protocatechuic acid</td>
<td>R1=H, R2=OH</td>
<td></td>
</tr>
<tr>
<td>vanillic acid</td>
<td>R1=H, R2=OCH₃</td>
<td></td>
</tr>
<tr>
<td>salicylic acid</td>
<td>R=H</td>
<td></td>
</tr>
<tr>
<td>genistic acid</td>
<td>R=OH</td>
<td></td>
</tr>
<tr>
<td>Cinnamic acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cinnamic acid</td>
<td>R1=R2=R3=H</td>
<td></td>
</tr>
<tr>
<td>p-coumaric acid</td>
<td>R1=R2=H, R3=OH</td>
<td></td>
</tr>
<tr>
<td>caffeic acid</td>
<td>R1=H, R2=R3=OH</td>
<td></td>
</tr>
<tr>
<td>ferulic acid</td>
<td>R1=H, R2=OCH₃, R3=OH</td>
<td></td>
</tr>
<tr>
<td>Dihydroxy phenols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>catechol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorogenic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumarins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coumarin</td>
<td>R1=R2=H</td>
<td></td>
</tr>
<tr>
<td>ascorbic acid</td>
<td>R1=OH, R2=OH</td>
<td></td>
</tr>
<tr>
<td>scopoletin</td>
<td>R1=OH, R2=OCH₃</td>
<td></td>
</tr>
<tr>
<td>Anthocyanidins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pelargonidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kaempferol</td>
<td>R=H</td>
<td></td>
</tr>
<tr>
<td>quercitin</td>
<td>R=OH</td>
<td></td>
</tr>
<tr>
<td>Isoflavonols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>genistein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apigenin</td>
<td>R=H</td>
<td></td>
</tr>
<tr>
<td>luteolin</td>
<td>R=OH</td>
<td></td>
</tr>
</tbody>
</table>
8.1. CORRELATIONS WITH ENDOGENOUS LEVELS

The natural rate of formation of some phenolic compounds has been observed to depend on the rate of growth of cultured tissues (Barz, 1977) and on auxin/cytokinin levels in the medium (Sargent and Skoog, 1960; Skoog and Montaldi, 1961). Their presence has frequently been correlated with the morphogenetic capacity of tissues (Tryon, 1956; Hackett, 1970; Kefeli and Kadyrov, 1971). A rise in the content of endogenous phenolics, including monoferuloyl, monocaffeoyl and mono-p-cumaroyl tartaric acids, was observed during root formation in Vitis vinifera in vitro (Mato et al., 1988). A correlation between flavonoid accumulation and root formation was also described in Eucalyptus gunii (Curir et al., 1990). Additionally, a correlation between level of endogenous derivatives of cinnamic and benzoic acids with embryogenesis was reported in Medicago falcata (Cvikrová et al., 1994).

Rawal and Mehta (1982) found that shoot formation from haploid tobacco callus occurred as the content of natural phenolic substances declined, while cellular differentiation occurred with increasing phenolic accumulation. Juvenile tissues naturally have high levels of auxin protectors (Stonier, 1971; 1972). Also, the level of aromatic amines, like tyramine or phenethylamine, seems to be correlated to morphogenetic events (Martin-Tanguy and Carre, 1993, Cvikrová et al., 1996). On the other hand, a decreased content of phenolic acids (mainly derivatives of cinnamic acid (Table 5.2) found in alfalfa (Medicago falcata L.) cell suspension culture after treatment with an inhibitor of phenylalanine ammonia lyase (PAL), 2-aminoindan-2-phosphonic acid (AIP) (20), was connected with a decreased level of IAA, lower IAA-oxidase activity in later stages of the culture and with slower growth of the culture (Hrubcová et al., 2000). In embryonic cultures of sessile oak, inhibiton of phenylpropanoid synthesis by AIP led to increased number of well developed somatic embryos (Cvikrová et al., 2003).

8.2. ROOT FORMATION

Some observations on natural levels of auxin protectors might suggest that their low levels are coupled with root initiation, but high levels with root growth. For example, shoots of apple grown in vitro were found to have low phenol contents at the root induction phase, but high contents as roots were growing (Druart et al., 1982). In Sequoiadendron giganteum, phenolic compounds were found to decrease in concentration when shoots were moved to a root induction medium. The activity of peroxidases in the induction medium increased during 7-11 days and then decreased, roots appearing as phenols were decreasing (Monteuuis et al., 1987). In each of these plants, peroxidase activity was inversely correlated with phenol content.

In chestnut, rhizogenesis occurred during an increase in the level of auxin protectors, whose basipetal transport was inhibited by applied IBA (Mato and Vicitez, 1986). The best time to explant shoot tips from adult chestnut material to a root-inducing medium, was during one of the first two peaks of growth of shoots, which coincided with the occurrence of maximum quantities of natural phenolics (Chevre and Salesses, 1987). 4-chlororesorcinol (21), a polyphenol oxidase inhibitor (i.e.inhibiting the conversion of monophenols and dihydric phenols to polyphenols) has been found to improve the rooting and subsequent growth of cuttings (Gad et al., 1988). In shoot cuttings of Cedrus deodara adventitious rooting was stimulated both by IBA and by coumarin (Table 5.2) (Nandi et al., 2002).
8.3. EFFECT OF PHLOROGLUCINOL

Workers at East Malling Research Station discovered that in the genera *Malus* and *Prunus*, 1 mM phloroglucinol added to culture media containing growth substances, was able to enhance growth and the rate of axillary shoot production from shoot cultures (Jones, 1976; Jones, 1979). James and Wakerell (1982) found that the compound was without effect on the apple variety ‘M26’, but promotory on ‘M9’, while Whiteley and Abbott (1977) reported that the growth of shoot cultures of *Malus* ‘Golden Delicious’, ‘Egremont Russet’ and ‘Bramley’ was completely inhibited by 0.1-10 mM phloroglucinol. Hutchinson (1985) found that 1 mM phloroglucinol more than doubled the number of shoots produced by the apple cultivar ‘Northern Spy’ during the first two subcultures: there was no increase in shoot number by the fourth subculture.

Phloroglucinol and its analogues have proved to be effective in other plants of the Rosaceae. For example, added to the medium at 500 μM, phloroglucinol (and catechol – see below) increased adventitious shoot formation from *Rubus* callus (Compton and Preece, 1988). However stimulatory effects have also been reported on plants of some other families (e.g., on shoot growth and shoot proliferation of *Cinchona* (Rubiaceae) (Hunter, 1979; Krikorian et al., 1982) and *Ficus carica* (Moraceae) (Pontikis and Melas, 1986). Vitrification is prevented by phloro-glucinol in an even wider range of plants. Adding phloridzin (19) and phloroglucinol to the medium, increased the number of somatic embryos produced from embryogenic callus of oil palm (Hanower and Hanower, 1984).

Rooting may be stimulated by phloroglucinol when added to rooting media together with auxin. This effect has been especially noted in several apple cultivars (Jones et al., 1977, 1979; James and Thurbon, 1979, 1981 a,b; Jones and Hatfield, 1976; Zimmerman and Broome, 1981; Zimmerman, 1984). Welander and Huntrieser (1981) found that IBA plus 0.1 mM phloroglucinol promoted the rooting of adult shoots: 4.9 mM IBA plus 1 mM phloroglucinol induced the best rooting of juvenile shoots. Phloroglucinol and its analogues (see below) have been shown to promote rooting of *Prunus* (Chancel et al., 1980), strawberry and *Rubus* genotypes in conjunction with IBA (but not NAA) (James, 1979; Sobczykiewicz, 1987). A promotive effect of phloroglucinol on rooting was also described in plantlet regeneration of *Ficus carica* from leaves (Yakushiji et al., 2003), in micro-shoots of *Decalepis hamiltonii* (Reddy et al., 2001) and in nodular callus of mangosteen (Te-chato and Lim, 1999). Interestingly, phloroglucinol is able to suppress accumulation of phenolic substances in the callus of water chestnut, enabling plant regeneration from the callus (Hoque and Arima, 2002).

The structurally-related glycoside, phloridzin (19), has the same effect as phloroglucinol (Jones, 1976) but it is heat labile and more expensive (Krikorian et al., 1982). Phloridzin is metabolised into phloroglucinol and phloretic acid (22). Phloretic acid was also found by Jones and Hatfield (1976) to increase the proportion of apple shoots that could be rooted, but it was less active than phloroglucinol. Phloroglucinol had occasional inhibitory effects, e.g., on the rooting of sour cherry shoots grown in vitro (Snir, 1983) and in sentag shoots (Kooi et al., 1999). It has been suggested that phloroglucinol acts as a bactericide, increasing shoot regeneration only in shoot cultures carrying concealed bacterial infections. The stimulatory effect of the compound is, however, now thought to be largely independent of this effect (Jones and Hopgood, 1979; Jones and James, 1979). Most probably, the compound and its homologues act as auxin synergists (Hess, 1969), or auxin protectors (see above).

8.4. THE EFFECT OF CATECHOL

Catechol (Table 5.2) is another strong reducing agent that has been reported to regulate the rate of IAA oxidation in plant tissues. Hackett (1970) found that although apices of juvenile *Hedera* shoots would root in an irradiance of 53 - 70 μmol.m⁻².s⁻¹ when treated with 25-50 μM NAA, IAA had very little effect.

However, 60 μM IAA together with 50 μM catechol resulted in a rooting response that was almost equal to that produced by the optimum NAA level, suggesting that catechol protected IAA from light-induced degradation At low irradiance (7 μmol.m⁻².s⁻¹), IAA alone produced almost as many roots as IAA + catechol in high lighting. The rooting response of adult shoot tips in low light was very similar to that of juvenile tips in high light.

Catechol (and phloroglucinol, 500 μM), increased the number of adventitious shoots formed from leaf callus of tobacco (Compton and Preece, 1988). Catechol was much less effective than phloroglucinol in promoting the rooting of apple shoots (Jones and Hatfield, 1976) but promoted the rooting of etiolated *Populus robusta* cuttings in conjunction with IAA and sucrose (Pal and Nanda, 1981). This last test was not conducted under sterile conditions so that
catechol could have acted as an antiseptic. Poor rooting is a feature of contaminated cultures (Lang and Schwartz, 1981).

8.5. OTHER PHENOLIC COMPOUNDS

Like catechol, chlorogenic acid (Table 5.2) is a natural constituent of plants. It is a strong reducing agent, which has been noted to stimulate callus growth of *Prunus avium* stem segments (Feucht and Johal, 1977; Feucht and Schmid, 1980) and to promote the growth of olive callus (Lavee and Avidan, 1982). Together with 10 - 100 μM p-coumaric acid (Table 5.2), chlorogenic acid has been added routinely to media containing NAA and IBA to promote rooting of *Beta vulgaris* (Margara, 1977) and *Brassica* (Margara and Leydecker, 1978) shoots in vitro. Hammerschlag (1982) was able to root 100% of *Prunus cerasifera* shoots in the light when chlorogenic acid and IAA were present in the medium, but only 30% formed roots in response to IAA alone. Shoots kept in darkness all rooted in response to IAA alone.

Many natural coumarins are found in plants, but their biochemical or physiological roles are not well understood. Compounds of this kind have been found to affect a wide variety of processes, low levels sometimes exerting a stimulatory role, but higher levels are often inhibitory. This is particularly noticeable in the effect of coumarins on the activity of many classes of enzymes. Scopoletin (Table 5.2) has been reported to either increase or decrease IAA oxidase activity, according to concentration (Imbert and Wilson, 1970) and in tobacco callus it can inhibit IAA degradation (Skoog and Montaldi, 1961), perhaps by acting as a substrate for peroxidase enzymes.

Coumarin and related compounds, have been found to both stimulate and decrease protein synthesis, respiration and photophosphorylation and decrease carbohydrate metabolism (Brown, 1981), but increased growth in conjunction with IAA has been reported (Neumann, 1960). Adding 90-150 μM coumarin (and no other regulant) to Murashige and Tucker (1969) medium induced the formation of roots and shoots from stem sections of *Citrus 'Swingle Citrumelo'* seedlings (Grosser and Chandler, 1986).

Tobacco pith callus grown on the medium of Linsmaier and Skoog (1965) with 12 μM IAA and 12 μM kinetin is wholly unorganised, but if grown on the same medium supplemented with 600 μM L-tyrosine (23), 80 μM adenine sulphate and 2.7 mM NaH₂PO₄·H₂O, adventitious shoots are formed (Thorpe and Murashige, 1968; 1970: Murashige, 1961). Tyrosine is a substrate for the enzyme phenylalanine ammonia lyase which converts it to p-coumaric acid. Perhaps the stimulation of adventitious shoot formation by tyrosine is therefore related to its conversion to phenolic acids that then protect, or interact with, auxin? Auxin requiring callus of tobacco has been found to accumulate more p-coumaric and p-ferulic acid (Table 5.2) than callus, which is auxin-habituated (i.e., auxin autotrophic) (Zador et al., 1985).

Other compounds, which have been suspected to be naturally-occurring inhibitors of IAA oxidase, may increase callus growth in certain circumstances. They include the quinone, juglone (Compton and Preece, 1988), some diphenolic flavonoids with antioxidant properties such as naringenin (Phillips, 1961, 1962), quercitin and its glycoside quercitrin (Furuya et al., 1962; Thimmann, 1963; Feucht and Nachit, 1978), catechin and flavandiols (Feucht and Nachit, 1977; Feucht and Schmid, 1980) and chemicals of the `β-inhibitor complex’ (Bennett-Clark and Kefford, 1953). Examples of the latter are coumarin (see above), scoptoletin (and its glucoside scopolin) (Schaeffer et al., 1967), and various phenolic acids such as caffeic acid (Table 5.2), chlorogenic acid (see above), and sinapic acid (Thimmann, 1963).

The phenolic vitamin riboflavin might be also of importance for plant development. It was shown to participate in the mechanism of colonization of alfalfa roots by *Sinorhizobium meliloti* (Yang et al., 2002), to promote induction of embryogenic callus in *Zoysia japonica* (Asano et al., 1996) and to protect auxin from oxidation (Brennan, 1996).
9. AUXIN –ETHYLENE INTERACTIONS

Higher auxin concentrations almost invariably increase ethylene production (see review by Kende, 1993). Ethylene accumulated in the tissue culture vessels may then inhibit the growth and development of many tissue culture grown plants (see Chapter 7). Conversely, ethylene may effect auxin transport and metabolism.

REFERENCES

BARZ W. 1977 Catabolism of endogenous and exogenous compounds by plant cell cultures. pp. 153-171 in Barz et al. (eds.) 1977 (q.v.).

CAMPBELL A.D. & SUTTER E.G. 1986 Changes in IAA concentration in agar during tobacco callus rooting. p. 297 in Somers et al. (eds.) 1986 (q.v.).

CASSELS A.C. 1979 The effects of 2,3,5-triiodobenzoic acid on caulogenesis in callus cultures of tomato and Pelargonium. Physiol. Plant. 46, 159-164.

DELBARRE A., MULLER P., IMHOFF V. & GUERN J. 1996 Comparison of the mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxyacetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198, 532-541.

DRUARD Ph., KEVERS Cl., BOXUS Ph. & GASPAR Th. 1982 In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z. Pflanzenphysiol. 108, 429-436.

HOLZFORSCHUNG 55, 128-134.

HUTCHINSON J.F. 1985 Effect of explant type on shoot proliferation and physical support on root initiation for a range of horticultural species. pp. 327-328 in Henke et al. (eds.) 1985 (q.v.).

LAW D.M. & DAVIES P.J. 1990 Comparative indole-3-acetic acid levels in the slender pea and other pea phenotypes. Plant Physiol. 93, 1539-1543.

MINOCHA S.C. & NISSEN P. 1985 Uptake of 2,4-dichlorophenoxyacetic acid and indole acetic acid in tuber slices of Jerusalem artichoke and potato. J. Plant Physiol. 120, 351-362.

Chapter 6
Plant Growth Regulators II:
Cytokinins, their Analogue and Antagonists

1. BIOLOGICAL EFFECTS

Hormones in plants differ from most of those in animals by having pleiotropic effects; that is, they are involved in the control of a wide range of developmental processes. At the same time the effect of a hormone on any developmental process depends on the species. For example, ethylene inhibits growth in dicotyledons and most monocotyledons but is promotory in deepwater rice and other hydrophytes. Moreover, two or more hormones can interact synergistically or antagonistically in many circumstances. Equally, any given hormone may affect the biosynthesis or metabolism of another, thus affecting endogenous levels. The issue is further complicated by the fact that environmental factors - e.g. light, water status, wounding, pathogens - may modify responses and indeed hormone levels themselves. The reason for this appears to be that hormones (and growth regulators) and environmental factors share many components in their transduction chains (i.e. the very early events which occur after the signal - abiotic or biotic - is perceived by the plant tissue). These transduction chains interact to produce an integrated response.

Unsurprisingly therefore, it is difficult to predict how any hormone (or growth regulator or inhibitor) will affect any given plant system.

2. PROPERTIES AND DISCOVERY OF CYTOKININS

2.1. BIOLOGICAL ACTIVITY

Cytokinins comprise a separate class of growth substances and growth regulators. They produce various effects when applied to intact plants. They particularly stimulate protein synthesis and participate in cell cycle control. It is perhaps for this reason that they can promote the maturation of chloroplasts and delay the senescence of detached leaves. Cytokinin application to a single site in the plant (e.g. to one leaf) causes the treated organ to become an active sink for amino acids, which then migrate to the organ from surrounding sites. The effect of cytokinins is most noticeable in tissue cultures where they are used, often together with auxins, to stimulate cell division and control morphogenesis. Added to shoot culture media, these compounds overcome apical dominance and release lateral buds from dormancy.

2.2. DISCOVERY

As in the case of auxins, there are both naturally-occurring compounds and their synthetic analogues. The first cytokinin to be discovered, kinetin (1), was isolated in Professor Skoog's laboratory at the University of Wisconsin, following experiments to promote continuing growth of the callus which formed on tobacco stem sections on nutrient media. Cells of the explants initially proliferated quickly but although the addition of IAA increased the amount of callus produced, growth soon stopped and was not resumed even if pieces of the newly-formed tissue were subcultured onto a fresh medium. Cell division and callus growth did continue however, if either coconut milk or yeast extract were added to the medium and so attempts were made to isolate the active principle.

As chromatography of ethanol - soluble fractions of yeast extract indicated that the substance was a purine, other sources of naturally-occurring purines were examined for their ability to promote continued callus growth. Extracts from aged herring sperm DNA yielded a compound with the same adsorption peak and chemical behaviour as the one discovered from the yeast extract. It was also isolated in a crystalline form from samples of DNA autoclaved under acidic conditions. The new growth factor was named 'kinetin' because it stimulated cell division in...
cells that otherwise might have become multinuclear (Miller et al., 1955a,b; Miller, 1961a,b). It was identified as 6-furfuryl aminopurine. The general term cytokinin was later proposed to cover all compounds having a similar activity (Skoog et al., 1965).

3. NATURALLY-OCcurring CYTOKININS

Although kinetin is not yet accepted as a naturally-occurring cytokinin, and thought to have arisen in the original isolates by structural rearrangement (Hecht, 1980), many natural cytokinins that are structurally-related to kinetin have been identified, either as free bases, as glucosides, ribosides, or nucleotides (Entsch et al., 1980). Such compounds used in plant tissue work are: trans-zeatin (2) (4-hydroxy-3-methyl-trans-2-butenylaminopurine), iP (3) (N\text{6} - \Delta^{2}\text{iso-pentenyladenine}) and dihydrozeatin (4) (6-(4-hydroxy-3-methyl-trans-2-buteryl)aminopurine).

![Chemical structures of naturally occurring cytokinins](image)

Because of the presence of a double bond in the side chain, the zeatin molecule has two configurations: the form which occurs predominantly in nature is the trans-isomer. Large amounts of cis-zeatin (5) were, however, identified in Cicer seeds (Emery et al., 1998). Seaweed preparations are today widely used to modify plant growth both in the field and under in vitro situations. Recent work has shown that seaweeds are rich sources of natural cis-zeatin (Stirk et al., 2003). These results indicate that the cis-isomer is of much wider occurrence and significance than originally thought. Synthetic preparations of zeatin often consist of mixed cis- and trans-isomers but the cis-form has much lower cytokinin activity (Van Staden and Drewes, 1991). This low activity of zeatin-cis-isomers can be explained in terms of the existence of cis-trans-isomerase (Mok et al., 1992; Bassil et al., 1993) having high affinity to convert cis-zeatin to the highly active trans-isomer. Besides occurring as a free base, zeatin also occurs naturally as glucosidic conjugates. Dihydrozeatin, a natural metabolite of zeatin, has cytokinin activity; it is resistant to oxidation due to its saturated side chain, and is sometimes considered as a storage form of zeatin. Zeatin riboside (6) is highly active as a cytokinin, and has been used in some experimental
tobacco calluses, were able to grow indefinitely in White’s basic medium without growth substances, shoot buds were incapable of continued growth unless they developed either directly from roots, or from callus immediately adjoining the origin of the adventitious roots. Similar observations have been made by Koda and Okazawa (1980) with asparagus, and by Bollmark et al. (1988) with pea cuttings.

CK biosynthesis has been dogged by unproven assumptions and mis-conceptions since these compounds were first discovered in plants. As a result of the circumstances that led to their discovery and because of their impact on both cell division and protein synthesis, CKs were always thought to be closely associated with nucleic acids. For over a decade efforts focussed solely on the possibility that CKs were derived from t-RNA and it was only in the late 1970s that a direct route of CK biosynthesis, independent of t-RNA, was proposed. However, many of the original ideas concerning CK biosynthesis continued to plague this branch of CK research. Whilst significant advances have been made in the last three years, there is still much to be learnt, particularly concerning the nature of the substrates for the key enzyme for CK biosynthesis, i.e. isopentenyl transferase (IPT) (see Fig. 6.1).

The continued use of genomics integrated with traditional biochemical and genetic approaches should allow the elucidation of the ‘elusive’ isoprenoid CK biosynthetic pathway. However, it must be emphasised that the use of any of these techniques alone will be insufficient and result in an incomplete picture of CK biosynthesis. It is of prime importance to establish the universality of the IPT gene in plants, which should become increasingly easier as more plant genomes are mapped, and by applying techniques similar to those used by Zubko et al. (2002) and Sun et al., (2003). Of equal importance is the determination of the origin of the side chain and the nature of the reaction products. By utilising the methods of Åstot et al. (2000) in plants where native genes are overexpressed, together with an inhibitor of the methylerythritol phosphate (MEP) pathway for formation of dimethylallyl diphosphate (DMAPP), one of the substrates for IPT, this area of uncertainty should be resolved. The recently discovered predominance of zeatin cis-isomers in certain plant species also requires explanation and relates to the possibility that these cis-isomers may be synthesised via a direct route, independent of t-RNA degradation. Finally, the most ignored area of CK biosynthesis deserves some attention, i.e. the

3.1 BIOSYNTHESIS

Cytokinins occur as free molecules in plants, but are also found in the t-RNAs of the cytoplasm and chloroplast. In whole plants, roots appear to be major sites of natural cytokinin biosynthesis, but some production does take place in other actively growing tissues, (Van Staden and Davey, 1979; Chen et al., 1985). The root apex, and particularly the cells of its ‘quiescent centre’, could be important sites of synthesis (Short and Torrey, 1972a; Torrey and Skoog, 1973). Zeatin and zeatin riboside have been obtained from monocotyledonous callus grown in the absence of either auxin or cytokinin (Kemp and Stoltz, 1979). Presumably in tissues that are able to grow without cytokinin being added to the medium, the cells can produce sufficient natural cytokinin for cell division to proceed.

Despite the occurrence of endogenous cytokinins in whole plants, many tissues and small organs isolated in vitro are unable to synthesize sufficient of these substances to sustain growth. This is particularly the case with dicotyledonous tissues where a low level of cytokinin is frequently required to be added to the culture medium. The dependence of some callus cultures on cytokinin for cell division has been used as the basis of a sensitive bio-assay for cytokinins (Miller, 1963; Linsmaier and Skoog, 1965; Letham, 1967). However, cytokinin-independent callus and cell strains of broad-leafed plants are commonly found, and from some of them, zeatin and iP have been isolated (Dyson and Hall, 1972; Einset and Skoog, 1973). Zeatin and zeatin riboside have been obtained from monocotyledonous callus grown in the absence of either auxin or cytokinin (Kemp and Stoltz, 1979). Presumably in tissues that are able to grow without cytokinin being added to the medium, the cells can produce sufficient natural cytokinin for cell division to proceed.

The isolation of cytokinin synthesis sites from tobacco culture work. The riboside of iP [N6-(A2- isopentenyl)adenosine], or its 2-methylthio-analogue, can occur in t-RNAs (see below). In Actinidia cultures, iP is converted to zeatin (Eiset, 1986a,b).

Chapter 6
biosynthesis of the aromatic CKs. These derivatives presumably play an important role in many plant species, yet research into this species of CK is minimal at the most. A starting point would be to examine the incorporation of label from previously proposed side chain precursors in cell free extracts, as was achieved with isoprenoid CKs, and possibly to identify mutants in which aromatic CKs are over-produced (Taylor et al., 2003).

One way in which the origin of the side chain could be resolved would be to over-express key genes involved in the MEP and acetate/mevalonate (MVA) pathways in callus tissue and then to assess whether shoot formation occurs in the absence of exogenously applied CK as achieved by Kakimoto (2001) and Sun et al. (2003), and then to determine the CK profile by GC-MS (Taylor et al., 2003). A similar strategy has been employed in Arabidopsis to ascertain if GA biosynthesis is plastid-localised (Estévez et al., 2001). Alternatively, chloroplasts could be isolated and fed labelled pyruvate or GA-3-P and CKs analysed to assess if any have incorporated label. This could be confirmed by feeding label in the presence of fos-midomycin, an inhibitor of the plastid biosynthetic pathway, which should result in a decrease in incorporation into CKs. Of utmost importance is the unequivocal demonstration of incorporation of label from the MEP or acetate/MVA pathways into CKs.

Cytokinins produced in roots of plants are normally transported in the xylem to other regions. The bleeding sap of plants is rich in cytokinins and has been shown to promote growth in vitro (Skene, 1972b; Zimmer and Pieper, 1975; 1976). The cytokinin produced by shoot tissues is only a small proportion of that formed by root apices. That synthesised in shoot apices is insufficient to sustain their prolonged growth in vitro.

Cytokinin nucleotides (compounds composed of D-ribose, phosphoric acid, and N6-substituted adenine) are characteristic of natural cytokinins. They are found in suspension cultured cells, but whether they arise from the degradation of t-RNA or from de novo

Fig. 6.1 Scheme of cytokinin biosynthesis in plants (according to Buchanan et al., 2000, and Haberer and Kieber, 2002, modified). MEP, methylenetetrahydro phosphate; MVA, mevalonic acid; DMAPP, dimethylallyl diphosphate; iPDP, N6-(Δ2-isopentenyl)adenosine-5'-diphosphate; iPPT, N6-(Δ2-isopentenyl)adenosine-5'-triphosphate; iPMP, N6-(Δ2-isopentenyl)adenosine-5'-monophosphate; iP, N6-(Δ2-isopentenyl)adenine; Z, zeatin; ZDP, zeatin riboside-5'-diphosphate; ZTP, zeatin riboside-5'-triphosphate; ZMP, zeatin riboside-5'-monophosphate; ZR, zeatin riboside; cis-Z, cis-zeatin; DHZDP, dihydrozeatin riboside-5'-diphosphate; DHZTP, dihydrozeatin riboside-5'-triphosphate; DHZMP, dihydrozeatin riboside-5'-monophosphate; DHZR, dihydrozeatin riboside; DHZ, dihydrozeatin.
synthesis, is not clear. That they might be a source of cytokinins in cultures is suggested by the finding that their maximum concentration in Pimpinella anisum suspensions coincided with the peak occurrence of isopentenyladenine, and iso-pentenyladenosine in the cells (Ernst and Oesterholt, 1985).

4. SYNTHETIC CYTOKININ ANALOUGES

4.1. SUBSTITUTED PURINES

Although used in research, the natural cytokinins iP and zeatin are not used by commercial laboratories routinely, because of their cost. Fortunately, several chemical analogues of natural cytokinins apart from kinetin have been prepared which are found to be highly active as cytokinins. Although they are chiefly N^6-substituted adenine derivatives, some other slightly less structurally-related compounds also possess cytokinin activity, for example 4-alkylaminopteridines (Iwamura et al., 1980), and 6-benzylxoxypurines. Some of these analogues are reported to be more active than kinetin or benzyladenine (BA), and are particularly effective in promoting morphogenesis (Wilcox et al., 1978, 1981). The 1-deaza analogue of zeatin riboside (Rogozinska et al., 1973; Rodaway and Lutz, 1985; Kaminek et al., 1987) also has cytokinin activity. Today it is widely accepted that derivatives of BA (7a), such as the topolins (7b,c) are aromatic, naturally occurring cytokinins. It is essential that they be treated as such in tissue culture research and experimental design.

Only a few of these compounds are available in chemical catalogues. They are expensive and therefore only of interest for research purposes. Synthetic cytokinins most commonly used in micropropagation work are the compounds kinetin (1) and benzylaminopurine (BA) (7a).

It is now accepted that BA-derivatives e.g 2-hydroxy benzyladenosine (8) are naturally occurring (Horgan et al., 1973; Ernst et al., 1983). The synthetic cytokinin PBA (or SD8339) (9) 6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine, which is a product of Shell Research Ltd., has high physiological activity, but seems only to have been used experimentally, and not in commercial micropropagation.

Several compounds with cytokinin or anticytokinin activity have fungicidal properties (Hecht, 1980). The fungicide benomyl (10), which has a structure broadly similar to adenine-based cytokinins, has the ability to stimulate the growth of soybean and radish callus cultures (Skene, 1972a). In both species it was much less efficient than kinetin. Benomyl can be damaging to cultures. It was phytotoxic to orchid protocorms at 0.2 mg/l in an agar medium, but stimulated growth at lower levels (Gupta and Hadley, 1977).
4.2. THE PHENYLUREAS

A common way of adding a natural cytokinin to media is by the use of organic supplements such as yeast extract or coconut milk. Coconut milk contains several physiologically-active substances (see Chapter 4); amongst which have been found the natural cytokinin zeatin, and 1,3-diphenylurea (11) (Shantz and Steward, 1955). The latter compound, and many other substituted ureas, have cytokinin activity and can promote the growth of dormant buds (Kefford et al., 1966), and induce cell division in cytokinin-dependent callus tissues (Bruce et al. 1965; Bruce and Zwar, 1966). Diphenylureas are not commonly used in tissue cultures, but there are a few reports. Butenko et al. (1972) found 2 mg/l 1,3-diphenylurea facilitated organogenesis in sugar beet callus cultures. Some N-pyridyl-N′-phenylureas are more active than N6-substituted purines such as BA and zeatin in promoting callus growth and morphogenesis in tobacco and several other kinds of plants (Okamoto et al., 1978; Takahashi et al., 1978; Kamada and Harada, 1979; Ohyama and Oka, 1982). Two of the most active of the compounds in this series are 2Cl-4PU (12) (or CPPU) N-(2-chloro-4-pyridyl)-N′-phenylurea, and 2,6Cl-4PU (13) (N-(2,6-dichloro-4-pyridyl)-N′-phenylurea). The thidiazole-substituted phenylurea: thidiazuron (TDZ) (14) (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) which was registered as a cotton defoliant (Arndt et al., 1976) and given the product name ‘Dropp’, has high cytokinin activity (Mok et al., 1982). In some plants, it is more effective than adenine-based compounds for inducing adventitious shoot regeneration (e.g. indirectly in Vitis vinifera cvs. - Reisch and Martens, 1988; and directly in Rhododendron - Imel and Preece, 1988, and Malus - Elobeidy and Korban, 1988). TDZ can also be highly effective for inducing axillary shoot formation in shoot cultures (e.g. in Rorippa - Gilby and Wainwright, 1989; Rhododendron - Fellman et al., 1987; and Malus domestica - Fasolo et al, 1988a, b). Although many shoots can be formed, they may not elongate sufficiently.

5. MODE OF ACTION

Cytokinins play multiple roles in the control of plant development; however, the mode of their action at the molecular level is uncertain. Some are present in t-RNA molecules, but it is not yet clear whether incorporation into t-RNA is necessary before typical cytokinin effects can become apparent. In some circumstances, cytokinins activate RNA synthesis, stimulate protein synthesis and the activities of some enzymes (Kulaeva, 1980). Cytokinin treatment also results in an increase of the polyribosome content in
Chapter 6

cultured soybean cells (Tepfer and Fosket, 1978). Although some workers have recorded a low level of incorporation of a synthetic cytokinin analogue into t-RNA (Burrows et al., 1971; Peaud-Lenoel and Jouanneau, 1980), this could not be correlated with the observed physiological action of the compound.

Although some workers have recorded a low level of incorporation of a synthetic cytokinin analogue into t-RNA (Burrows et al., 1971; Peaud-Lenoel and Jouanneau, 1980), this could not be correlated with the observed physiological action of the compound.

The action of cytokinins is light-dependent. In blue, far-red and white light, the proliferation of shoots of Prunus by BA was strongly dependent on the rate of photon fluence, but the rate of fluence of a red light source was not critical. Baraldi et al. (1988) suggested that shoot proliferation by this cytokinin was promoted by a low energy phytochrome response. In conditions which do not induce shoot proliferation, viz. dark, or low fluence far-red light, BA inhibits shoot elongation. Promotion of axillary shoot growth by BA, and its inhibition of shoot elongation, therefore seem to be two independent processes.

Cytokinins, together with auxins, take part in the regulation of the cell cycle in plant cells. They probably induce D-type cyclin CycD3 and thus stimulate the cell cycle progression from the G1 to the S phase, and possibly also G2/M transition via induction of expression of the gene CDC2 for histone-H1-kinase and stimulation of its dephosphorylation by Cdc25 (reviews by John et al., 1993, Frank and Schmülling, 1999, Pasternak et al., 2000; den Boer and Murray, 2000). Interestingly, C-, N-, and N-trisubstituted derivatives of cytokinins (olomoucine (15), roscovitine (16) and bohemine (17) are able to inhibit cyclin-dependent kinases of type 1 and 2 in both human and plant cells and consequently are able to block the cell cycle in the G1/S and G2/M transitions (Vesely et al., 1994; De Azevedo et al., 1997; Havlicek et al., 1997; Binarova et al., 1998; Planchais et al., 2000).

Recently, some histidine kinases, homologous to bacterial two-component sensor kinases, have been identified as candidates for cytokinin receptors. This finding implies that the downstream signalling cascade is similar to the phosphorelay mechanism seen with ethylene receptors (see Chapter 7). The main representatives of possible CK receptors are CKI1 (Kakimoto, 1996) and CRE1/AHK4/WOL (Mähonen et al., 2000; Inoue et al., 2001; Suzuki et al., 2001). After perception of the cytokinin signal the downstream cascade begins by the phosphotransfer between histidine and aspartate residues within the kinase, resulting then in the phosphorylation of AHP proteins. These activated AHPs are translocated from the cytosol into the nucleus where they activate so-called B-type ARR proteins, leading to derepression of target genes involved in regulation of cell division, shoot formation and delay of senescence. Activated B-type ARR proteins also increase the transcription of A-type ARRs which provide a feed-back control of the whole system (reviewed by Hwang and Sheen, 2001; Deruere and Kieber, 2002; Haberer and Kieber, 2002; Schmülling, 2002). The recent discoveries of candidate CK receptors of the histidine kinase type and downstream elements of a CK signalling pathway represent a real breakthrough in our understanding of the molecular mechanism of cytokinin signalling. However, the final output of the signalling cascade, starting at the plasma membrane and leading to regulation of gene expression, is still unclear.

5.1. ANTI-AUXIN EFFECT

Some aminopurines with cytokinin properties act as reductants in a photochemical reaction with riboflavin, and are oxidised thereby to adenine (Rothwell and Wright, 1967). Part of the biological effects produced by cytokinins could be due to their inhibition of the oxidation of IAA. Kinetin (0.04-1 mg/l) alters the activity, distribution, and composition of IAA oxidase isoenzymes within tobacco callus cells (Lee, 1974).

Noting that callus which was induced to form shoots by the addition of cytokinin was more compact than non-shoot-forming callus, Kirkham and Holder (1981) investigated the effect of kinetin on callus water potential; the cytokinin made cell walls

![Diagram of Cytokinin Molecules](image)
more rigid, so that the turgor potential of cells was increased. The water potential of the cells was therefore increased (made less negative), and they became less liable to take up water from the surrounding medium. This was directly opposite to the effect of the auxin PCPA.

5.2. CARBOHYDRATE METABOLISM

Apart from a possible effect on levels of endogenous auxin, cytokinins appear to be implicated in sugar metabolism. Both decreases and increases in the specific activity of enzymes of the glycolytic and oxidative pentose phosphate pathways have been reported. A medium containing adenine sulphate in addition to kinetin, which is conducive to shoot formation in *Nicotiana tabacum*, was noted by Scott et al. (1964) to cause a marked increase in the activities of two enzymes of the oxidative pentose phosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), compared to their activities in a non-shoot-forming medium. Conditions favouring bud formation, including the availability of cytokinins, seem to enhance starch metabolism in tobacco callus (Thorpe and Meier, 1972). Callus, which produces shoots had high specific activities of enzymes involved in both starch accumulation and breakdown (Thorpe and Meier, 1974). Cytokinins reduce the oxygen uptake of cells (Neumann, 1968) and inhibit the alternative cyanide-resistant respiration pathway, which exists in many plants (Miller, 1979; 1980; 1982: Musgrave and Siedow, 1985).

5.3. THE PHENYLUREA COMPOUNDS

It is generally assumed that phenyl urea compounds with cytokinin activity act at the same sites as the purine-based cytokinins, i.e. that they are active in their own right. This hypothesis was put forward by Kurosaki et al. (1981), who suggested that there were structural similarities between the two classes of compound. It was further supported by computer modelling of possible interactions between active cytokinins and putative cytokinin receptor molecules (Fox, 1992). An alternative hypothesis is that the phenylureas may stimulate the accumulation, or biosynthesis, of natural purine-based cytokinins, or alter the metabolism of these compounds (see below). The phenylureas are potent inhibitors of cytokinin oxidase (Horgan, 1987a).

The activity of thidiazuron as a defoliant seems to be associated with its capacity to induce ethylene production in treated leaves (Suttle, 1984). Thidiazuron-induced leaf drop can be inhibited by AVG (see Chapter 7), which prevents ethylene biosynthesis (Elstner et al., 1983), or treatments which prevent ethylene action (Suttle, 1985). How this relates to the marked cytokinin activity of the compound is unclear but may relate to the effects of cytokinins on ethylene biosynthesis (See Chapter 7).

6. UPTAKE AND METABOLISM

The uptake of cytokinins into cultured tissues is rapid (Marino, 1986; Mariano, 1988). The metabolism of cytokinins is rather complex and generally consists of conversions among cytokinin bases, ribosides and ribotides, and conjugation and degradation reactions (Van Staden and Crouch, 1996; Zazimalová et al., 1999).

A naturally-occurring enzyme, cytokinin oxidase, degrades cytokinins such as zeatin and isopentenyladenine which have a Δ2-double bond, by cleaving the side chain (Fig. 6.2) (Horgan, 1987a; Chatfield and Armstrong, 1988); cytokinins with saturated (dihydrozeatin) and/or bulky (aromatic cytokinins, o-glucosides) side-chains, as well as cytokinin nucleotides, are not substrates for this enzyme. Rapid degradation of zeatin and iP by the enzyme could explain the ineffectiveness of these compounds on plants, such as *Gerbera*. In several different kinds of plant tissue, the activity of cytokinin oxidase is enhanced by exogenous application of cytokinins (Palmer and Palni, 1987; Motyka and Kaminek, 1990) suggesting that treating plants with synthetic cytokinins could decrease the level of the natural endogenous compounds. In some other reports treating plant tissues with synthetic homologues caused at least a temporary increase in levels of natural zeatin, and zeatin riboside (Thomas and Katterman, 1986; Hansen et al., 1987; Vankova et al., 1992). In *ipt* gene-transformed tobacco plants (coding for isopentenyltransferase - the ‘front’ enzyme of cytokinin biosynthesis in *Agrobacterium*) the derepression of the gene leads to an increase of endogenous cytokinins, which is immediately followed by an increase in cytokinin oxidase activity (Motyka et al., 1996). This finding supports the hypothesis that cytokinin oxidase is a substrate-inducible enzyme, which plays an important role in maintenance of cytokinin homeostasis in plant cells.
In some plants, an enzyme other than cytokinin oxidase is thought to be responsible for the degradation of kinetin and benzyladenine to adenine (Forsyth and Van Staden, 1987); a considerable amount of side chain cleavage was found in the shoots from Gerbera shoot cultures (Blakesley and Lenton, 1987). In other plants BA is not broken down in this way. In Gerbera callus virtually no side chain cleavage was detected after 90 h of culture with BA (Blakesley and Lenton, loc. cit.), and adenine or adenosine were not produced from BA in soybean callus (Van Staden and Mooney, 1988). In Prunus domestica shoot cultures, at least some of the applied BA is broken down to CO₂ over 21 days (Mariano, 1988).

Fig. 6.2 Cytokinin degradation.

In Gerbera callus, free zeatin becomes conjugated with ribose or ribose phosphate within 10 h to produce the physiologically-active compounds, zeatin-9-riboside and zeatin-9-ribotide, but these conjugates then disappear during the next 30h and adenosine and other products of side-chain cleavage accumulate (Blakesley and Lenton, 1987).

In various plants, BA is initially converted to several metabolites, which are probably, mono-, di- and tri-ribotides, the 3-, 7- and 9-glucosides, a 9-riboside, a 9-ribotide, and a 9-riboside-glucose (Blakesley and Lenton, 1987; Horgan, 1987b; Van der Krieken et al., 1988). The formation of these conjugates does not necessarily mean that BA is inactivated, as one or more of the conjugates may still have cytokinin activity (Van der Krieken et al., 1988; Van Staden and Drewes, 1992), or may act as storage products.

7. EFFECTS IN TISSUE CULTURES AND PLANT ORGANS

7.1. STIMULATION OF CELL DIVISION

In tissue cultures (as well as in intact plants and plant organs), cytokinins appear to be necessary for plant cell division (cf. ‘Mode of Action’ above). In their absence, metaphase, but not prophase of mitosis, is considerably protracted, and it has been suggested that cytokinins might be required to regulate the synthesis of proteins involved in the formation and function of the mitotic spindle apparatus (Jouanneau, 1970, 1975). In cultures where cytokinin is limiting, division of cell nuclei becomes arrested at one stage of the cell cycle. Subculture of the tissue onto a medium containing a cytokinin can then cause the cells to divide synchronously after a lag period (Jouanneau, 1971). Callus tissues in which cell division proceeds without the addition of cytokinin to the culture medium (e.g. Oxalis dispar - Sunderland and Wells, 1968), are thought to be able to produce their own natural growth substances. Three natural cytokinins could be isolated, for example, from a cytokinin-independent strain of tobacco callus (Skoog et al., 1973). In semi-synchronous cytokinin-independent tobacco cell suspension culture the individual onset of cell division during the exponential growth phase correlated with peaks of endogenous iP, zeatin and their ribosides (Zazimalová et al., 1996). In synchronised BY-2 tobacco cell suspension the maximum of endogenous cytokinins (largely zeatin) preceded G2/M transition (Redig et al., 1996, Laureys et al., 1998)

Callus proliferation from the tissues of most dicotyledonous plants is usually thought to require the presence of both an auxin and a cytokinin in the growth medium, but Nitsch and Bui-Dang-Ha (1967) found that proliferation of tobacco pith explants would take place if a synthetic cytokinin and an auxin were supplied sequentially in that order. Thus, when grown for one day on a basal medium containing 0.2 mg/l kinetin, before being transferred for 20 days to the same basal medium but with 1.8 mg/l IAA, more callus was produced than when the same quantities of auxin and cytokinin were available together. By
contrast, there was practically no growth at all if IAA was provided for only one day, and kinetin for the rest of the time. The sequential promotion of growth was not apparent however, when natural cytokinins were employed. Nitsch (1968) interpreted these results to indicate that cytokinins act during the pre-treatment phase at the DNA level (even though no cell divisions occur during this period) and that natural cytokinins were degraded too rapidly to be effective, except when present in the medium continuously. Direct mutual regulatory effects between auxin and cytokinin was observed at Nicotiana plumbaginifolia at the gene level (Dominov et al., 1992).

Dicotyledonous callus, or suspension cultures requiring auxin (e.g. 1 mg/l IAA) but not cytokinin for growth, can be cultured for long periods without auxin when a high concentration of cytokinin (e.g. 0.1-1 mg/l kinetin) is added to the medium. At this level the cytokinin appears to increase the natural auxin content of the tissues but not to cause auxin-habitation, because after a prolonged period of culture, removal of the cytokinin again causes the cells to become auxin-dependent (Syono and Furuya, 1972). In transformed tissue the expression of the gene coding for iso-pentenyltransferase resulted in an increase of endogenous cytokinins and a parallel decrease of endogenous IAA (Akiyoshi et al., 1983); similarly, the application of synthetic auxin NAA led to a decrease of endogenous iP and zeatin in tobacco cells (Vanková et al. 1992). In contrast to this, reduction of the auxin concentration in the cultivation medium resulted in a very significant increase of endogenous cytokinins, namely iP and zeatin (Zazimalová et al., 1996). It is apparent that not only auxins and cytokinin act per se, but the levels of both hormones and particularly the proportion of one to the other (cf. Skoog-Miller model of plant morphogenesis, 1957, see auxin-cytokinin interaction, below) are determinants for cell cycle, cell division and differentiation control.

7.2. ADVENTITIOUS SHOOT FORMATION

Cytokinins are very effective in promoting direct or indirect shoot initiation. As mentioned in the previous section, they are used for this purpose in combination with auxins. A balance between auxin and cytokinin normally gives the most effective organogenesis.

Leaf segments of Crassula argentea form callus in response to wounding, which then gives rise to roots and later, shoots. Paterson and Rost (1981) found that if cytokinin was added to the medium, shoots were formed from a superficial meristem, and roots were afterwards produced from inside the callus. The normal sequence of organogenesis was therefore reversed.

7.3. EMBRYOGENESIS

A low concentration of cytokinin (typically 0.5-2.5 μM) is often added to media for the induction of embryogenic callus, especially in broad-leafed plants (see Chapter 10). There is, however, some evidence to suggest that cytokinins may inhibit embryogenesis in monocotyledons: 0.001 μM exogenous cytokinin was sufficient to prevent it in Dactylis glomerata. The presence of endogenous cytokinin may also be responsible for the inability to obtain embryogenesis in some genotypes. Leaf sections of non-embryogenic strains of this grass contained less natural cytokinin than those which were capable of producing embryogenic callus (Wenck et al., 1988). Carman and Campbell (1988) were able to induce embryogenesis in a non-responsive strain of wheat by detaching wheat spikes from the plant some while before culturing immature embryo explants. This was thought to decrease the supply of natural cytokinins from the roots. If zeatin was added to the medium, embryogenesis was suppressed.

7.4. USE IN SHOOT CULTURES

7.4.1. Axillary shoot proliferation

To encourage the growth of axillary buds, and reduce apical dominance in shoot cultures of broad-leafed plants, one or more cytokinins are usually incorporated into the medium at Stage II. A successful treatment induces the growth of several small shoots from each explant over a 4-6 week period. Levels of cytokinin, which are too high, cause many small shoots to be produced, which typically fail to elongate; they may also cause the leaves of some species to have an unusual shape, and/or induce shoots to become hyperhydric.

7.4.2. Adventitious shoot bud formation

The formation of adventitious shoots, whether directly from explanted tissues, or indirectly from callus, is regulated by an interaction between auxins and cytokinins.

7.4.3. Inhibition of root formation

High concentrations of cytokinin (0.5-10 mg/l) generally inhibit or delay root formation (Schraudolf and Reinert, 1959; Harris and Hart, 1964; Ben-Jaacov et al., 1991) and also prevent root growth and the promotive effects of auxins on root initiation.
(Humphries, 1960). For this reason cytokinins are usually omitted from shoot culture media at Stage III when shoots are to be rooted to provide plantlets (see Chapter 2). Sometimes more than one subculture to a cytokinin-free medium may be required until the level of cytokinin within the tissues has been sufficiently reduced.

Despite these observations, there are reports that cytokinins can sometimes induce or promote root growth (Fries, 1960), or adventitious root formation, in the absence of auxins (Nemeth, 1979). In nearly all cases only low rates of cytokinin have been effective, for example, shoots of sugar beet were rooted on MS medium containing 0.5 mg/l kinetin and no auxin (Konwar and Coutts, 1990). Boxus and Terzi (1988) advocated the addition of 0.5 mg/l kinetin and auxin to the rooting medium for strawberries and several woody plants, finding that at this concentration, the cytokinin had a bacteriostatic effect and rooting was not impaired. *Rosa hybrida* ‘White Dream’ required the addition of 1 mg/l BA to IBA for root induction and development.

7.5. SPECIFICITY OF ACTION

The effect of cytokinins on tissue or organ cultures can vary according to the particular compound used, the type of culture, the variety of plant from which it was derived and whether the explant is derived from juvenile or mature tissues. In *Corylus avellana*, 5 mg/l BA gave the best rate of shoot multiplication from juvenile explants, but 10 mg/l zeatin was required for nodal sections of plants in the adult phase (Messeguer and Mel, 1987).

A requirement for a particular cytokinin is sometimes noted for the induction of embryogenesis (e.g. Fujimura and Komamine, 1975), and for the promotion of direct or indirect adventitious shoot formation; for example, cultures of *Browallia viscosa* required iP for the initiation of adventitious shoots. Kinetin, BA and zeatin were ineffective (Welsh and Sink, 1981).

7.6. CYTOKININ SPECIFICITY IN SHOOT CULTURES

Most demonstrations of a requirement for a particular cytokinin, have been made with shoot cultures; they are dispersed over many species. BA promoted axillary bud proliferation of *Castanea* in the experiments of Vieitez and Vieitez (1980b), whereas kinetin was without effect. Zeatin tended to promote the growth of main shoots and gave only a slight increase in the proportion of lateral buds sprouting. Similarly iP and kinetin produced only single shoots from *Prunus* shoot cultures: to obtain multiple shoots, it was necessary to use BA (Martinelli, 1985).

Elliott (1970) found kinetin to be incapable of promoting the growth of rose shoot tips. On the other hand, only 0.5-5 mg/l kinetin (together with gibberelllic acid) induced the proliferation of potato shoots, and BA and iP were not effective. In some cultures, cytokinins tend to produce short rosetted shoots, or shoots which grow only slowly after formation: BA and kinetin gave shoot rosettes in *Brassica campestris* shoot cultures, whereas axillary shoots induced by iP elongated satisfactorily (Paek et al., 1987): iP and BA produced many shoots of *Elaeagnus angustifolia*, but unlike those produced on 5 μM kinetin, they failed to grow afterwards (Bertrand and Lalonde, 1985). BA gives a high rate of shoot proliferation in *Gerbera*, but the best shoot quality is obtained using 5-10 mg/l kinetin (Pierik et al., 1982; Hempel et al., 1985).

Fonnesbech et al. (1979) discovered that the natural cytokinins iP and zeatin were better able to promote the growth and survival of shoot cultures of *Asparagus plumosus* than kinetin or BA, although best results were obtained with PBA. A similar situation is found in plants of the family Ericaceae, where the natural compounds, zeatin and iP, are more effective than other cytokinins for shoot proliferation. iP is most commonly selected because of its lower cost, but in some species, mixtures of the two compounds may give better results than either compound alone (Eccher and Noe, 1989).

In shoot cultures of *Gynura sarmentosa*, BA, kinetin and iP promoted the formation of buds when used separately, but each in turn produced some abnormality in the shoots obtained. Much faster growth of healthy shoots was obtained by adding all three compounds simultaneously (Cailloux, 1978). A mixture of more than one cytokinin has also been found to give more effective shoot multiplication in some other species (e.g. *Corylus avellana*, Anderson, 1984; *Cucumis melo*, Kathal et al., 1988). Plant abnormalities associated with cytokinin use are mentioned in Chapter 13.

7.7. PHENYLUREAS

In some tests, phenylureas are much more effective cytokinins than the adenine-based compounds. 4PU-Cl was, for example, 100 times more active than BA in the tobacco callus assay (Read et al., 1986) and produced more shoots in azalea shoot cultures than zeatin or iP. In many azalea (*Rhododendron*) cultivars, thidiazuron
produced many shoots but these were of poor quality because they were stunted and hyperhydric. Better results were obtained with a mixture of iP and thidiazuron, but there was a tendency for adventitious shoots to be produced, which is not desirable during micropropagation (Briggs et al., 1988). Thidiazuron was adopted for the micropropagation of woody plants in the family Oleaceae (Einset and Alexander, 1985).

7.8. THE EFFECT OF TEMPERATURE

Maintaining in vitro cultures at abnormally high temperatures is reported to reduce the efficacy of cytokinins, but may enhance auxin activity. Heide (1965) observed that the ability of cytokinin-dips to either promote direct bud formation or inhibit direct root formation, was less when Begonia leaf cuttings were kept at 27°C after treatment, rather than at 15°C. On a modified MS medium containing kinetin, growth and axillary shoot proliferation of Asparagus plumosus shoot tips was initially rapid at 24°C but stopped after four weeks. The shoot tips grew more slowly at 17°C but their growth was continuous. There was almost no growth at all at either 9°C or 30°C (Fonnesbech et al., 1977). The most effective cytokinin for A. plumosus was subsequently found to be PBA. The requirement for this cytokinin increased with temperature. At 17°C, the optimum dose was 0.2 mg/l, at 21°C the optimum was between 0.2 and 2 mg/l, but at 24°C it was 2 mg/l. The best temperature for survival, growth and development was 21°C (Fonnesbech et al., 1979).

8. ADENINE

A possible growth regulatory effect caused by adenine (18) was first noted by Bonner and Haagen-Smit (1939) and Bonner et al. (1939), who found that the compound promoted an expansion in the area of leaf discs floated on sugar solutions. Other regulatory properties of the compound were later demonstrated by Skoog and Tsui (1948), Jacquiot (1951) and Miller and Skoog (1953), who discovered that it could induce bud formation in both tobacco stem segments and elm and tobacco callus in vitro. The activity of adenine is much less than that of the true cytokinins, and 25-100 times the concentration (e.g. 600 mM vs. 20 mM kinetin - Khanna and Chopra, 1977) may be required to produce similar results.

Despite the subsequent discovery of cytokinin activity in adenine derivatives, adenine itself is still often used in cultures from which plant regeneration is required. It seems sometimes to improve growth (Nwankwo and Krikorian, 1983), or to bring about or reinforce responses normally attributed to cytokinin action. It is not active in the soybean callus bioassay. Benefits are often only noticed when adenine is administered together with a cytokinin such as kinetin, or BA. Adenosine and adenyllic acid can sometimes act in the same way as adenine (Skoog and Tsui, 1948; Nitsch et al., 1967) but they are generally even less effective. Adenine is known as Vitamin B4. In some papers on tissue culture it is listed amongst the vitamin components of a medium.

8.1. EMBRYOGENESIS AND CAULOGENESIS

Halperin and Wetherell (1964) noted that 2 mg/l adenine or 0.2 mg/l kinetin could be used instead of coconut milk in various media for stimulating embryogenesis in carrot callus. Since then, adenine has been added to media in amounts ranging from 2 to 405 mg/l (but more usually 40-80 mg/l) to promote somatic embryo formation in other callus cultures (Nag and Johri, 1969; Danilina, 1972; Pareek and Chandra, 1978b; Phillips and Collins, 1980; Reynolds et al., 1980). In the presence of other recognised cytokinins, adenine frequently promotes adventitious shoot formation, indirectly from callus (Plummer and Leopold, 1957; Earle and Torrey, 1965; Thorpe and Murashige, 1968; Beach and Smith, 1979; Xiang-can et al., 1989), or directly from explants (Ziv et al., 1970; Start and Cumming, 1976; Seabrook et al., 1976; Nickerson, 1978; Rao and Bapat, 1978). It inhibits root initiation (Doerschug and Miller, 1967) but has been reported to stimulate the growth of preformed roots of Citrus embryoids (Kochba et al., 1974) and lupin seedlings (Fries, 1960) in a similar fashion to low levels of cytokinin.

8.2. SHOOT CULTURES

Adenine has been used only to a limited extent in meristem or shoot cultures, but has been employed occasionally to enhance the growth of isolated meristem tips (Kassanis, 1957; Elliott, 1970) and as an aid (or occasionally as an essential component) to induce the proliferation of axillary shoots in shoot
cultures (Anderson, 1975; Hennen and Sheehan, 1978; Harris and Stevenson, 1979; Pyott and Converse, 1981; Huang, 1984). Whether improved shoot multiplication will result from adding adenine to the medium can be unpredictable. In peach shoot cultures, a benefit depended on the cultivar being cultured and the nature and rate of the cytokinin used. A stimulation occurred with some rates of BA, but with others its addition resulted in a decreased rate of propagation (Chiariotti and Antonelli, 1988).

Although the rate of *Brassica campestris* shoot multiplication was not increased, adding 326-434 μM adenine sulphate to a medium containing kinetin and IBA, caused shoot weight to be increased. Leaves were dark green and the cultures more healthy than previously (Pack et al., 1987).

8.3. MODE OF ACTION

The mode of action of adenine has not been fully explained. Beneficial effects from adenine addition are found in media containing both ammonium nitrate and cytokinins (Ziv et al., 1970; Elliott, 1970; Seabrook et al., 1976; Nickerson, 1978; Pyott and Converse, 1981). Adenine is therefore unlikely to be simply acting as an alternative source of reduced nitrogen, and if it enhances natural cytokinin biosynthesis, the compounds produced must be more effective in causing the required physiological response than cytokinins added to the growth medium. Such a situation was described by Beach and Smith (1979) with callus of red and crimson clover. On Gamborg et al. (1968) B5 medium, plant regeneration was most effectively achieved when 20 mg/l thiamine, 2.0 mg/l NAA and 2 mg/l adenine were included. Kinetin, iP and BA were all tested as cytokinins and failed to produce shoot buds. However, in many cultures, adenine acts more as a synergist of cytokinins such as kinetin and zeatin (Nitsch et al., 1967). A typical result is that of Start and Cumming (1976), who found that when 125 mg/l adenine was added to a medium in conjunction with 5 mg/l BA and 0.1 mg/l NAA, it regularly increased direct shoot initiation from African violet leaf sections, whereas in the basal medium with only adenine sulphate, shoot formation was delayed and roots alone were formed.

Both natural and synthetic purine-based cytokinins are degraded in plant tissues to adenine and related nucleotides (Terrine et al., 1972; Entsch et al., 1980; Biondi et al., 1984; McGaw et al., 1984; Forsyth and Van Staden, 1987). Thus one possible method whereby adenine may enhance the growth of cultured plants, could be that an excess of the compound retards the degradation of cytokinins by feedback inhibition, or by competing for the enzyme systems involved in cytokinin metabolism. Another hypothesis is that, even though adenine is itself a product of cytokinin metabolism, it may act as a substrate for the synthesis of natural cytokinin growth substances. It has been shown that adenine can serve as a precursor for zeatin synthesis, but the rate of incorporation is low (McGaw et al., 1984; Dickinson et al., 1986).

8.4. INHIBITORY EFFECTS

The addition of adenine does not always lead to beneficial results; for instance, adenine sulphate in the concentration range 30-300 mg/l was inhibitory for the formation of shoots from cultured tuber discs of potato (Jarret et al., 1980). The addition of adenine sulphate to shoot cultures of carnation caused axillary shoot formation to be inconsistent; as a smaller number of shoots was produced from each shoot tip, and the main shoots often grew well, Davis et al. (1977) thought that the compound tended to enhance apical dominance. Where adenine is promotory, an excess can have the same consequences as an excess of cytokinin; Nickerson (1978) found that 80 mg/l adenine, enhanced adventitious bud formation in cotyledons and hypocotyl sections of lowbush blueberry, but needed to be withdrawn to promote shoot elongation.
9. CYTOKININ ANTAGONISTS

Certain chemical analogues of RNA bases can antagonise the action of cytokinins. Blaydes (1966) found that 2,6-diaminopurine (19), 8-azaguanine (20) and 8-azaadenine (21) inhibited the growth of kinetin-requiring soybean callus. Compounds which reversibly inhibit the growth of cytokinin-dependent and cytokinin-requiring callus cultures were described by Hecht et al. (1971), Skoog et al. (1973, 1975) and Gregorini and Laloue (1980). These authors found that the growth inhibitory effects of compounds such as 7-((3-methylbutylamino)-3-methyl-H-pyrazolo[4,3-d]-pyrimidine (22) and 4-cyclohexylamino)-2-methylthio-H-pyrrolo[2,3-d]pyrimidine (23) were reversed by BA. Cell death by cytotoxicity was expressed only when the tobacco cells divided. Non-dividing cells in stationary phase were insensitive to either compound which suggests that a specific biochemical event in the cell cycle was affected. Cytokinin-autonomous callus is rendered cytokinin-requiring by these chemicals.

Other highly active antagonists of cytokinin-promoted cell division are 4-(cyclobutylamino)-2-methylpyrrolo[2,3-d]pyrimidine (24) (Iwamura et al., 1979) and its 2-methylthio analogue (25) (Hecht, 1980), and 4-cyclopentylaminopteridine (26) (Iwamura et al., 1980). Although the compounds mentioned above inhibit cytokinin-promoted cell division, they have not, in all cases, been shown to antagonise other physiological processes normally promoted by cytokinin (such as the stimulation of lateral bud growth, or the initiation of shoot buds in callus tissues). However, Tanimoto and Harada (1982) used a cytokinin antagonist (4-cyclopentylamino-2-methylpyrrolo[2,3-d]pyrimidine), to overcome the stimulation of adventitious bud formation in Torenia stem segments by both BA and the phenylurea, 2Cl-4PU. Some compounds which act as anticytokinins in preventing growth of tobacco callus, have been found to promote bud formation in
conjunction with an auxin (Skoog et al., 1975; Iwamura et al., 1979). This has led to speculation that there may be separate receptor sites for individual cytokinin-dependent functions (Hecht, 1980).

Anticytokinin activity also exists in compounds structurally related to octopamine (27), such as tyramine (28) and dopamine (29) (Christou and Barton, 1989).

10. AUXIN-CYTOKININ INTERACTION

Skoog and Miller (1957) found that shoot formation could be induced predictably from tobacco callus using relatively low levels of auxin and a high level of cytokinin in the growth medium. Since this discovery, many aspects of cellular differentiation and organogenesis in tissue and organ cultures have been found to be controlled by an interaction between cytokinin and auxin concentrations. The balance between the two sorts of regulant that is usually required to initiate growth or differentiation in tissue cultures, is illustrated in Fig. 6.3.

Relative proportions of auxins and cytokinins do not always produce the typical results shown in the figure. For example:
- axillary shoot proliferation in some species may be promoted by the presence of an auxin together with cytokinin;
- tissues from monocotyledons can often be induced to form callus by culture in high levels of auxin alone, and cytokinins may be non-essential or unimportant;
- organogenesis in monocotyledons is often promoted by transferring the culture to a medium without auxin, by reducing the concentrations of a highly active auxin such as 2,4-D, or replacing 2,4-D with another auxin (e.g. IAA or NAA).

A balance between auxin and cytokinin growth regulators is most often required for the formation of adventitious shoot and root meristems. The requisite concentration of each type of regulant differs greatly according to the kind of plant being cultured, the cultural conditions and the compounds used; interactions between the two classes of regulant are often complex, and more than one combination of substances is likely to produce optimum results.

10.1. CONTOUR DIAGRAMS

Results of growth regulator interactions can be difficult to express graphically without resorting to three dimensional graphs. Two dimensional alternatives are island diagrams (Negrutiu et al., 1978), or contour diagrams (Frett and Smagula, 1983). The latter are a particularly effective means of presentation and can be used to summarize the results of experiments in which several different concentrations of an auxin and a cytokinin (or other combinations of regulants) have been combined. The position of contour lines can be estimated from results, but are most accurately plotted using equations derived from multiple regression. For such statistical analysis to be possible, a properly designed experiment must have been conducted (Beretta and Eccher, 1987). Fig. 6.4, drawn from results of Saunders and Bingham (1975), shows how combinations of kinetin and 2,4-D (in conjunction with a constant rate of NAA), influenced the percentage of Medicago sativa calluses producing adventitious shoots. A further example of a contour diagram is given in Chapter 7.

10.2. PRETREATMENTS

Similar effects to those produced by having auxin and cytokinin together in the medium, can often be produced by pretreatment with one regulant, followed by transfer to a second medium containing another. For example, preculturing peach leaf pieces on a medium containing 2,4-D, increased the callus production obtained when explants were placed on a medium with NAA and BA. If preculture with 2,4-D was followed by subculture to a medium with BA alone, callus was produced which gave rise to roots (Hammerschlag, 1988).

Despite the frequent need for both an auxin and a cytokinin in tissues cultures, the nature of the interactions between the two types of regulant is seldom commented upon and there is much still to be learned. Although both auxin and cytokinin are usually required for growth or morphogenesis, auxin can inhibit cytokinin accumulation (Hansen et al., 1985) while cytokinins can inhibit at least some of the action of auxin (see above).
10.3 GROWTH REGULATORS AND THE CELL CYCLE

Cell division seems to be regulated by the joint action of auxins and cytokinins, each of which appears to influence different phases of the cell cycle. Auxins exert an effect on DNA replication, while cytokinins seem to exert some control over the events leading to mitosis (Jouanneau, 1971; John et al., 1993; Pasternak et al., 2000, cf. Mode of action, above). Therefore auxins might be considered as ‘inducers’ of the cell cycle while cytokinins might behave more as its ‘promoters’ (Wood et al., 1990). Normal cell divisions require synchrony between the S phase and cell division, suggesting that auxin and cytokinin levels in cultures need to be carefully matched. Late replication of DNA in cell cultures has been advanced as one cause of chromosome rearrangement (Lee and Phillips, 1988). Cells are thought not to enter mitosis unless cytokinin is present. Where callus or suspension cultures are initiated on media which only contain an auxin, reliance is presumably being placed on endogenous cytokinins for completion of the cell cycle?

Fig. 6.3 The relative concentrations of auxin and cytokinin typically required for growth and morphogenesis.

Fig. 6.4 A contour diagram drawn from the results of Saunders and Bingham (1975). The diagram shows the percentage of alfalfa calluses producing adventitious shoots when incubated on media containing various combinations of auxin and cytokinin.
FONNESBECH A., FONNESBECH M. & BREDMOSE N. 1979

222

ELLIS R.F. 1970 Axenic culture of meristem tips of

EINSET J.W. 1986b Role of cytokinin in shoot cultures of woody

EINSET J.W. 1986b Role of cytokinin in shoot cultures of woody species. p. 298 in Somers et al. (eds.) 1986 (q.v.)

EINSET J.W. 1986b Role of cytokinin in shoot cultures of woody species. p. 298 in Somers et al. (eds.) 1986 (q.v.).
Chapter 6

HORGAN R. 1987a Plant growth regulators and the control of growth and differentiation in plant tissue cultures. pp. 135-149 in Green et al. (eds.) 1987 (q.v.).

KULAEVA O.N. 1980 Cytokinin action on enzyme activities in plants. pp. 119-128 in Nijkamp et al. (eds.) 1990 (q.v.).

KAKIMOTO T. 2001. Identification of plant cytokinin bio-

synthetic enzymes as dimethylallyl diposphate: ATP/ADP isopentenyl transferase. Plant Cell Physiol. 42, 677-685

MÁHONEN A.P., BONKE M., KAUPINNEN L., RIJKONEN M., BENFEY P.N. & HELARIUTTA Y. 2000 A novel two-

MOTYKA V. & KAMINEK M. 1990 Regulation of cytokinin catabolism in tobacco callus cultures. pp. 492-497 in Nijkamp et al. (eds.) 1990 (q.v.).

VAN STADEN J. & CROUCH N.R. 1996 Benzyladenine and derivatives - their significance and interconversion in plants. Plant Growth Regul. 19, 153-175
Chapter 7
Plant Growth Regulators III:
Gibberellins, Ethylene, Abscisic Acid, their Analogues and Inhibitors; Miscellaneous Compounds

1. GIBBERELLINS

1.1. NATURAL OCCURRENCE AND PHYSIOLOGICAL ACTIVITY

More than 100 members of this group of plant hormones are now known. They all share gibbane ring structures and are either dicarboxylic (C_{20}) or monocarboxylic (C_{19}), they have all been assigned ‘gibberellin numbers’ (GA$_x$) and are usually referred to by these rather than by conventional chemical nomenclature. No plant appears to possess all of the gibberellins, some have only been found in fungi and some only in higher plants; nor are the various gibberellins equally active, some are precursors and some catabolites of active gibberellins. GA$_1$ (1) is the most active gibberellin in the promotion of cell elongation. Very few gibberellins are available commercially and GA$_3$ (2) or a mixture of GA$_4$ (3) and GA$_7$ (4) have been used most frequently in plant culture.

Gibberellins are involved in a wide range of developmental responses. These include promotion of elongation in stems and grass leaves, due in part to activation of the intercalary meristem. Another important role of gibberellins is the induction of hydrolytic enzymes such as α-amylase and protease in the seeds of grasses and cereals, hence facilitating endosperm mobilisation. Other roles in some plants include the promotion of seed germination, bolting of rosette plants, sex determination, fruit development and the control of juvenility.

1.1.1. Biosynthesis and mode of action

The biosynthetic pathway(s) for gibberellins are very complex (Fig. 7.1). All start from isopentenyl diphosphate which in response to soluble cyclases produces ent-kaurene (in plastids). Membrane monooxygenases then convert this to the common precursor GA$_3$; aldehyde which - in a series of steps involving hydroxylases and oxidases - yields the active gibberellins (see Hedden, 1999). Very little is known about the early steps in gibberellin signal transduction. It is clear however that later steps involve selective gene transcription and de novo protein synthesis.

1.1.2. Inhibitors of biosynthesis and action

Because very little is known about the mode of action of gibberellins it is doubtful that the action of any of the substances known to affect developmental responses involving these growth regulators is due to effects early in signal transduction. On the other hand, much is known about a wide range of synthetic
Fig. 7.1 Pathways of gibberellin biosynthesis
substances, often called 'antigibberellins', which act by blocking biosynthetic pathways.

These were in general developed to achieve desirable agricultural outcomes - for example dwarfing of cereals to prevent lodging. These substances fall into four categories (see Rademacher, 2000). A number of quaternary ammonium, phosphonium and sulphonium salts act by inhibiting the cyclisation process. Examples of this type are chlormequat chloride (CCC) (5) and AMO 1618 (6). Certain heterocyclic nitrogen-containing compounds such as ancymidol (7), paclobutrazol (8), uniconazole-P (9) and tetcyclasis (10) appear to act by inhibiting \textit{ent}-kaurene oxidase.

A further group of inhibitors are the acyclclohexanedione derivatives, for example prohexadione (11) and daminozide (12), which affect the later steps of gibberellin biosynthesis involving hydroxylases. While the inhibitors may be useful tools, it should be noted that none are absolutely specific and may affect other biosynthetic pathways such as those for sterols and abscisic acid. Lastly, the inhibitor, 16,17-dihydro GA$_3$ (13) and related structures appear to act by mimicking the natural substrates.

1.2. EFFECTS OF GIBBERELLINS ON TISSUE CULTURES

Plant tissue cultures can generally be induced to grow and differentiate without gibberellins, although GA$_3$ acid may become an essential ingredient of media for culturing cells at low densities (Stuart and Street, 1971). When GA$_3$ is added to culture media, it often produces effects, which are of a similar nature to those of auxins. High concentrations of GA$_3$ (e.g. greater than ca. 5 μM; 1-8 mg/l) induce the growth of undifferentiated callus cells (Schroeder and Spector, 1957; Murashige, 1964; Mehra and Mehra, 1972; Altman and Goren, 1974; Beasley, 1977; Gautam \textit{et al.}, 1983), and can promote the growth of callus in combination with auxin and low concentrations of cytokinin (Engelke \textit{et al.}, 1973). Growth of \textit{Solanum xanthocarpum} callus was, however, reported to be inhibited by 2 mg/l GA$_3$ (Rao and Narayanawamy, 1968). GA$_3$ can also enhance the growth of cells in suspension cultures [e.g. cotton, (Davidonis, 1990)].

A growth factor, which is probably a gibberellin, is produced by the germinating embryos of some plant species and must be transmitted to the
endosperm before this tissue will proliferate to form callus in culture (Brown et al., 1970; Johri and Bhojwani, 1977). Where the presence of both auxin and cytokinin in a growth medium leads to rapid callusing of the cut surfaces of an explant, the further addition of a small amount of GA$_3$ (e.g. 0.1 mg/l), or the replacement of auxin by GA$_3$, usually inhibits callus growth (Sangwan et al., 1976; Kartha et al., 1977).

1.2.1. Morphogenesis

When GA$_3$ is added to plant tissue culture media, it often diminishes or prevents the formation of adventitious roots, shoots or somatic embryos. Thus, the prior treatment of callus (Murashige, 1964; Sankhla et al., 1994) or explants (Heide, 1969) with GA$_3$, or the addition of GA$_3$ to the medium together with auxin and cytokinin at concentrations which would normally promote morphogenesis, is usually inhibitory [e.g. to shoot formation from callus (Murashige, 1961; Rublau et al., 1984) or embryogenesis (see later)].

1.2.2. Adventitious shoot formation

In tobacco callus, GA$_3$ was particularly inhibitory to shoot formation if present at the time of meristemoid formation, and more repressive during dark incubation than in the light (Thorpe and Meier, 1973). The inhibition has been shown not to be irreversible, but to persist through at least two subcultures on a GA$_3$-free medium. Gibberellins other than GA$_3$ had the same effect (Murashige, 1964). However, the addition of 1.5-3.0 μM GA$_3$ to the medium (which also contained 2-iP and IBA) supporting Apios americana internode explants, increased the number of shoots formed from primary callus on each explant, but the number of explants which produced shoots was less (Wickremesinhe et al., 1990).

In some plants, GA$_3$ alone can induce adventitious shoot formation, e.g. from Rumunculus scleratus callus (Konar and Konar, 1973). The compound can also act as a replacement for auxin in the induction of shoot formation (Sekioka and Tanaka, 1981); a precise gibberellin/cytokinin ratio (instead of auxin/cytokinin) may then be required (Pillai and Hildebrandt, 1969; Engelke et al., 1973). Alternatively, gibberellin may simply increase the number of organs formed; shoot regeneration from Rosa hybrida callus could be induced by 1-5 mg/l BAP (depending on cv.), but adding 0.3-1 mg/l GA$_3$ increased the number of shoots produced (Valles and Boxus, 1987 a,b). Adding 5-50 μM GA$_3$ to the medium (in conjuction with IBA and BAP) enhanced the formation of vegetative shoots from inflorescence segments of sugarbeet (Coumans-Gilles et al., 1981; Coumans et al., 1982).

The combination of GA$_3$ and cytokinin is generally less satisfactory for the induction of shoots than that of auxin and cytokinin, and tissues may have to be transferred to a medium lacking GA$_3$ for further bud development to occur (Kartha et al., 1974a). Shoots formed in the presence of GA$_3$ may be pale and abnormal (see Chapter 13).

GA$_3$ can also prevent direct shoot regeneration, for example in:

- Begonia leaf discs (Schraudolf and Reinert, 1959; Schott and Schraudolf, 1967; Bigot and Nitsch, 1968; Heide, 1969; Chlyah, 1972)
- Heloniopsis leaf segments (Kato and Hongo, 1974)
- Sugarbeet floral axillary buds (Coumans-Gilles et al., 1981)

Some of the differences in the inhibition or promotion of adventitious shoot formation by GA$_3$ might be due to the fact that the compound inhibits meristemoid initiation, but is required for shoot development once meristemoids are formed (Jarret and Hasegawa, 1981). The timing and duration of treatments will therefore strongly influence the results observed.

Many more established plants could be obtained if petiole explants of Begonia hiemalis were placed into liquid culture after adventitious shoots had been initiated on an agar medium. The further addition of 30-60 μM (10-20 mg/l) GA$_3$ increased the number of suitable shoots per explant, but a smaller proportion of the shoots rooted, and their establishment ex vitro was not satisfactory (Simmonds and Werry, 1987).

1.2.3. Rhizogenesis

Normally GA$_3$ inhibits root formation, and the local application of relatively high concentrations (1-10 mg/l) of the compound to the base of cuttings prevents root formation (Brian, 1959), especially if auxins are applied at the same time. Varga and Humphries (1974) showed that although root formation from the base of the petioles of detached Phaseolus leaves was inhibited by topical application, it was promoted when GA$_3$ was applied to leaf laminae. Promotion was especially pronounced when tryptophan (a biochemical precursor of IAA) was placed on the leaf surface at the same time as the GA$_3$. This, and other evidence, led to their suggesting that promotion of root formation was in
this case due to the gibberellin causing the leaf to produce increased natural auxin, which was transported to the base of the petiole. GA3 can slightly stimulate root initiation from tomato leaf discs kept in darkness, and Coleman and Greyson (1977a, b) concluded that this is because natural auxin biosynthesis is increased.

Nanda et al., (1972) found that root formation on cuttings of Ipomoea fistula was stimulated if they were dipped into GA3 before being placed in compost. Anand et al., (1972) obtained similar results, but found that pre-treatment with IBA was more effective. GA3 also improved the rooting of shoots from Coffea arabica shoot cultures if a 25-50 mg/l solution was applied directly to shoots at the time they were excised for rooting (Sondahl et al., 1985).

The inhibition of rooting caused by GA3 is generally magnified in the presence of auxin, and Coleman and Greyson (1977b) proposed that this might be due to an excessive total auxin concentration. This view is supported by results of Rücker (1982) who found that GA3 was also able to promote direct root formation on leaf fragments of Digitalis when applied with low levels of IAA, but was inhibitory when the concentration of IAA was increased.

In some plants however, pre-treating plant material with GA3 enhances root formation when cuttings are afterwards placed on a root-inducing medium. Rooting can sometimes also be promoted by GA3 if it is applied to cuttings in the absence of an auxin, and the plant material (or at least the rooting zone) is subsequently kept in darkness. As in caulogenesis, it has been proposed that the effect of gibberellic acid on root formation is dependent on time of application. If GA3 was applied to Pinus radiata cuttings when they were first cut, it inhibited rooting. It did however strongly enhance rooting when given just as there was the first sign of observable root formation, but shortly afterwards it was again inhibitory (Smith and Thorpe, 1975).

There are, however, examples of root formation occurring in the presence of gibberellic acid and synthetic auxins:

- The number of roots formed by tomato leaf disc explants treated with 20 mM indole-3-lactic acid was further increased by adding 100 μM GA3 (Coleman and Greyson, 1977b);
- The inhibition of direct root and shoot formation on isolated leaves of Begonia rex by 1-10 mg/l GA3 was overcome by adding 2,4-D at an equivalent concentration (Schraudolf and Reinert, 1959);
- Direct root formation from Helianthus tuberosus rhizome pieces was stimulated when 0.35-3500 mg/l GA3 was added to NAA (0.2 mg/l) and the explants were kept in the dark, whereas in the light GA3 was inhibitory (Gautheret, 1969). Six other gibberellins also gave similar results (Tizio et al., 1970).
- GA3 was able to promote rooting of Prunus shoot cultures at 26°C in conjunction with the auxin IBA; below this temperature it had no effect (Rosati et al., 1980).

By adding 1 mg/l GA3 to the growth medium, Nemeth (1979) increased the root formation, which was unusually induced on in vitro shoots of Prunus myrobalan by the cytokinin BAP. GA3 in combination with indolebutyric acid and benzyladenine promoted rhizogenesis from callus of Pinus taeda (Tang and Fan, 1999)

1.2.4. Embryogenesis and embryo development

Although occasionally reported to be promotory (Evans et al., 1976; Lakshmi Sita et al., 1979; Komai et al., 1996), GA3 has generally been found to inhibit somatic embryo formation (Fujimura and Komamine, 1975; Tisserat and Murashige, 1977b, c; Kochba et al., 1978; Spiegel-Roy and Kochba, 1980, Hutchinson et al., 1997, Tokuji and Kuriyama, 2003, Cheong and Pooler, 2004). Indeed, the addition of inhibitors of gibberellin biosynthesis increased the number of somatic embryos produced from Citrus sinensis callus (Spiegel-Roy and Saad, 1986), although paclobutrazol (an antigibberellin, see above) had little effect in Pennisetum purpureum (Rajasekaran et al., 1987). GA3 has also been shown to antagonise the effect of ABA in promoting embryogenesis (Emons et al., 1993).

The growth (‘germination’) of preformed somatic embryos of several different species can be stimulated by the incorporation of GA3 (ca. 0.3-1 mg/l) into the second (post-initiation) medium (e.g. in Citrus - Ranga Swamy, 1959, 1961; Kochba et al., 1972, 1974; Button and Kochba, 1977; grapevine - Mullins and Srinivasan, 1976; maize and Guinea grass - Lu and Vasil, 1981, 1982; Lu et al., 1982; Das et al., 1995; Hordwickia binata - Ghosh and Sen, 1991; Dioscorea alata – Twyford and Mantell, 1996; Kebebew et al., 1998; Canhoto et al., 1999). In some plants, embryo root growth is especially promoted, in others (e.g. Santalum album - Bapat and Rao, 1979; Panax ginseng - Chang and Hsing, 1980 a,b; Shoyama et al., 1988) shoot regeneration is
stimulated. These results accord with the observations of Noma et al., (1982) that levels of polar gibberellins (GA3 is of this type) were high in undifferentiated carrot cells and in a non-embryogenic strain. When somatic embryos were initiated they contained low levels of polar gibberellins and metabolised these compounds rapidly. In Citrus and Duboisia (Nwankwo and Krikorian, 1983), once embryos have started to grow, plantlets need to be transferred to a medium lacking gibberellin, otherwise shoots are weak and spindly. The growth of soybean somatic embryos was promoted by antigibberellins (Gamborg et al., 1983).

1.3. USE IN MERISTEM, SHOOT AND NODE CULTURES

Although GA3 tends to prevent the formation of organised root and shoot meristems in callus cultures, it may assist the further growth and development of preformed organs. The growth of shoots in meristem and shoot cultures may also be enhanced by its addition.

1.3.1. Meristem cultures

A small amount of GA3 (typically 0.03-0.1 mg/l) is often added to media for meristem cultures. It may not always be beneficial or absolutely necessary, and there are conflicting results. Mellor and Stace-Smith (1969), for example, found the substance to be without any appreciable effect on meristem tip cultures of potato, but other investigators (e.g. Morel et al., 1968; Pennazio and Redolfi, 1973; Novák et al., 1980) have reported that the addition of low concentrations of GA3 (e.g. 0.03 mg/l) to media containing auxin and cytokinin, or cytokinin alone, has improved the growth of meristem tips, inhibited callus proliferation, sometimes encouraged the tips to root more freely, and (Marani and Pisi, 1977) increased the proportion of meristems that developed into shoots. Similar effects have been noted in meristem cultures of some other plants (e.g. cassava - Kartha et al., 1974b; Rey and Mroginski, 1978). In some cases there are strong varietal differences; in meristem cultures of sweet potato, GA3 promoted multiple shoot growth and elongation in cv. Mae de Familia but not in cv. Covacao Alado (Dagnino et al., 1991)

GA3 does not assist in the establishment of the shoot apices of all plants. It was found to be inhibitory to growth of meristems tips of some kinds of geraniums (Theiler, 1977) and flax (Lane, 1979), and in rose, apices grew rapidly and formed abnormal attenuated leaves, but no roots or new leaves were initiated (Jacobs et al., 1969, 1970; Elliott, 1970).

As mentioned previously, GA3 frequently inhibits root formation, especially in the presence of auxin. When the compound is used to stimulate the growth of isolated meristems or shoot tips therefore, it may prevent eventual root development (Murashige, 1961; Vine and Jones, 1969; Putz, 1971). Plantlets formed on media containing GA3 may need to be moved to a medium containing auxin, but no gibberellin, before they can be rooted (Quak, 1977).

1.3.2. Shoot and node cultures

GA3 is added to the medium, together with auxin and cytokinin, for Stages I and II of shoot cultures of certain plants. In some genera it is effective when auxins are not. At Stage I its presence can improve establishment, for example, De Fossard and de Fossard (1988) found that the addition of GA3 to the medium was useful to initiate growth in cultures from adult parts of trees of the family Myrtaceae, although thereafter it had a deleterious effect.
1.3.3. Shoot multiplication

At Stage II, GA₃ can enhance growth and/or increase the rate of shoot proliferation; adding 1.5 mM GA₃ to a medium containing 2-iP and IBA increased the number of shoots produced from seedling and tuber-shoot internodes of *Apios americana*, but reduced the number of explants which produced shoots (Wickremesinhe et al., 1990). Addition of GA₃ with benzyladenine caused high frequency bud break and shoot multiplication in apical shoot buds and nodal explants of *Morus cathayana* (Pattnaik and Chand, 1997). Similar results have been obtained with *Ocimum basilicum* (Sahoo et al., 1997).

The benefits of using GA₃ at Stage II often vary between closely related plant genotypes. Thus GA₃ was antagonistic to shoot proliferation in ‘McIntosh’ apple shoot cultures (Lane, 1978), but was essential for ‘Ottawa 3’ apple rootstock, where without the addition of 5 mg/l GA₃, shoots had short internodes and small deformed leaves.

Valles and Boxus (1987a,b) found that the addition of some GA₃ (0.1-1.0 mg/l depending on genotype) to a medium containing 1-5 mg/l BAP was essential to obtain shoot multiplication of some *Rosa hybrida* cultivars, and an improved rate of proliferation in others. Cultivar ‘Goldy’ did not proliferate at all unless 1 mg/l GA₃ was present. Adding 0.7 mg/l GA₃ to 2.3 mg/l BAP increased the rate of proliferation in *Camellia saluensis* and *C. japonica* shoot cultures (Beretta and Eccher, 1987). Substituting IAA (0.2 mg/l) for GA₃ in *Camellia* caused only an increase in shoot length; there was no shoot proliferation.

Shoot cultures of the salt-tolerant plant *Atriplex canescens* were found to remain stunted without the application of GA₃ (Wochok and Sluis, 1980). Addition of the growth regulator to the agar medium was ineffective and so filter-sterilised solution was flooded onto the plates on which the explants were growing and then decanted away after a few seconds, leaving a residue. This treatment had the effect of first promoting the multiplication of adventitious shoots, and then afterwards stimulating their elongation. Similarly, a combination of GA₃ (0.01-0.1 mg/l) and kinetin (0.5-5 mg/l) with no auxin has been found to provide a highly effective growth regulator treatment for the rapid increase of potato shoots in shaken liquid cultures (Goodwin et al., 1980).

Without the addition of 1 mg/l GA₃ to 1 mg/l IBA and 0.2 mg/l BAP at the multiplication stage, shoot cultures of *Humulus lupulus* produced masses of callus at the basal ends of shoots (Vine and Jones, 1969). Necrosis in *Rosa hybrida* shoot cultures was prevented by adding 0.1 mg/l GA₃ to the proliferation medium (Valles and Boxus, 1987).

1.3.4. Shoot elongation

Shoots are occasionally treated with GA₃ to increase the length of shoots during multiplication; or prior to rooting, when it is usually applied at a special elongation stage (Stage IIIa), after shoot multiplication and before shoots are harvested (see Chapter 12). Treatment may be beneficial where a high level of cytokinin has resulted in many short shoots (e.g. in rose - Valles and Boxus, 1987 a,b). Some examples of successful use are (mg/l):

- *Malus domestica*, 0.1 (Jones et al., 1977, 1979); 5.0 (Pua et al., 1983)
- *Malus prunifolia*, 0.1 (Aldwinckle and Gustafson, 1981)
- *Rubus caesius*, 0.1 (Babic and Neskovic, 1984)
- *Simmondsia chinensis*, 2.0 (Jacoboni and Standardi, 1987)
- *Fragaria ananassa*, 0.1 (Boxus, 1974a, b; Boxus et al., 1977)
- *Ficus benjamina*, 0.5 (Delamomarco and Picazo, 1994)
- *Acacia sinuata*, 0.35 (Vengadesan et al., 2000, 2003)

1.3.5. Apical integrity

Cytokinin treatments, used to promote axillary shoot proliferation, can cause shoots to develop with more than one apical meristem (see Chapter 10). In strawberry, GA₃ may help to preserve the integrity of apical buds during shoot culture. Anderson et al., (1982) showed that 0.1 mg/l GA₃ largely eliminated the formation of abnormal multi-apexed plants, which was caused by combinations of BAP and IBA favourable to rapid shoot proliferation.

1.3.6. Detrimental effects

In most plants, the use of gibberellin in shoot culture media is detrimental, producing elongated shoots with narrow leaves. Such was the effect on *Duboisia myoporoides* shoots when 0.1-0.3 mg/l GA₃ was introduced into MS medium containing 3 mg/l BAP and 1 mg/l IAA (Kukreja and Mathur, 1985). In tree species of the Myrtaceae, adding GA₃ to Stage II cultures caused too much shoot elongation, the formation of narrow leaves, and the production of callus at the base of axillary branches (De Fossard...
and De Fossard, 1988). GA$_3$ inhibited bud formation in *Thuja plicata* shoot cultures (Coleman and Thorpe, 1977) and caused shoot tip explants of *Acer freemanii* to develop massive basal callus (Kerns and Meyer, 1986). Shoots treated with GA$_3$ may be difficult to root.

1.3.7. Stage IV treatments

Plantlets of some woody species may become dormant after being transplanted to soil and fail to grow properly unless subjected to a period of cold, or treated with GA$_3$. Biosynthesis of gibberellins is often promoted by cold treatment of plant material. Cold treatment of cultured shoots is necessary to promote bulb formation in *Tulipa*, but can be replaced by soaking shoots in 1 mg/l GA$_3$ for 15 h (Wright et al., 1982; Rice et al., 1983).

1.4. ‘ANTIGIBBERELLINS’ AND GROWTH RETARDANTS

As exogenous GA$_3$ is frequently inhibitory to in vitro growth and development, chemicals capable of blocking the biosynthesis or action of endogenous gibberellin may have promotory effects on cultures in which natural gibberellin levels are supra-optimal. Although chemicals with both of these kinds of activity are conveniently called anti-gibberellins, those which interfere with gibberellin biosynthesis (which is by far the majority) should not strictly be grouped under this heading, because their effects on plants can usually be reversed by applications of a gibberellin such as GA$_3$. The nature of these compounds and their mode of action has been described earlier in this chapter.

1.4.1. Onium compounds

The most commonly used of these substances are chlormequat chloride (CCC) and Amo1618. CCC can stimulate embryogenesis in species such as *Citrus* where the process is inhibited by GA$_3$ (Kochba et al., 1978; Spiegel-Roy and Kochba, 1980). In *Ramunculus sceleratus*, direct shoot formation from hypocotyl segments (which was stimulated by GA$_3$) was reduced by CCC (Konar and Konar, 1973). Some workers have added small amounts (0.1mg/l) of CCC to their culture medium in the belief that this improves morphogenesis (Blackmon et al., 1981a,b; Blackmon and Reynolds, 1982; Reynolds et al., 1980). De Langhe and De Brujine, (1976) showed that in tomato, pretreating plants with CCC before explants were removed, stimulated shoot formation in culture. The treatment also changed the auxin/cytokinon balance necessary to achieve shoot formation.

1.4.2. Heterocyclic compounds

Most work with these compounds has centred on paclobutrazol and to a lesser extent uniconazol and uniconazole. All the members are potent inhibitors of gibberellin biosynthesis but they also interfere with the synthesis of abscisic acid and sterols (Davis et al., 1988; Yates et al., 1993). Like other gibberellins they can stimulate embryogenesis where it is inhibited by GA$_3$ (Spiegel-Roy and Saad, 1986; Hutchinson et al., 1997). They have also been shown to be effective in promoting shoot formation and rhizogenesis in a number of systems (*Helianthus annuus* - Fiore et al., 1997; *Populus tremula* - Vinocur et al., 2000; carnations - Sankhla et al., 1994). Ancymidol has beenshown to enhance tuber formation in single node sections from potato plantlets (Levy et al., 1993) and microtuber formation on propagated plantlets (Alchanatis et al., 1994). There is also some evidence that these compounds can improve acclimatization and tolerance to desiccation in plantlets or rooted shoots (Gavidia et al., 1997; Panaia et al., 2000).

1.4.3. Acylhexanediones

Most work in the past has used daminozide - for example in stimulating embryogenesis (Kochba et al., 1978; Spiegel-Roy and Kochba, 1980; Moore, 1985) and decreasing shoot elongation (Stimart, 1986). The newer members of this group - such as prohexadione (11)- have mainly been investigated in the context of intact plants. However, prohexadione does appear to have effects on a greater range of species than daminozide - for example in terms of the retardation of shoot growth (Brown et al., 1997). In hypocotyl explants of *Albizia julibrissin*, prohexadione was much more effective than either paclobutrazol or uniconazole in promoting adventitious shoot formation (Sankhla et al., 1993).

However, the effects of these inhibitors, like those of many others, are not entirely predictable. Thus, stem elongation and flowering of *Matthiola incana* was promoted by GAs and by acylhexanediones (Hisamatsu et al., 2000) and in intact epicotyls of *Vigna sinensis*, LAB 198 999 (another acylhexan- dione) inhibited elongation, whereas in debladed seedlings and explants, promotion was observed (Martinez-Garcia and Garcia-Martinez, 1992).

The gibberellin analogues such as 16,17-dihydro GA$_3$ do not seem to have attracted much attention from workers in the field, probably because of difficulties in obtaining supplies of the compounds.
2. ABSCISIC ACID

2.1. OCCURRENCE AND ACTIVITY OF ABSCISIC ACID

Abscisic acid (ABA) (14) is another naturally-occurring growth substance. It is a 15-carbon acid; four stereoisomers exist, differing in the orientation of the carboxyl group and the attachment of the sidechain to the ring. The naturally-occurring form is S-(+)-ABA. Commercially available abscisic acid is a mixture of isomers. ABA appears to be produced as a cleavage product of certain carotenoids - xanthophylls - yielding xanthoxin, which is converted to ABA aldehyde and hence to ABA (Zeevart, 1999)(Fig. 7.2). It has long been known that dehydration of plant tissue leads to increased biosynthesis of ABA (Wright and Hiron, 1969); however, it is now well-established that a number of other environmental factors - low (Vernieri et al., 1991) and high temperatures (Daie and Campbell, 1981), salinity (Kefu et al., 1991) and flooding (Jackson, 1991) - can also produce the same effect.

ABA catabolism is complex involving either oxidation/reduction - to phaseic acid and dihydrophaseic acid - or conjugation to produce the glucose ester or glucoside (Zeevart, 1999).

Biosynthesis occurs in plastids (especially chloroplasts) (Milborrow, 1974). The herbicide ‘fluridone’ (15), which inhibits the natural production of carotenoids (Bartels and Watson, 1978), can prevent ABA biosynthesis (Moore and Smith, 1984). Norflurazon (16) produces the same effect.

Abscisic acid is found ubiquitously in plants and is the most commonly identified of a number of other structurally related natural compounds, which have plant growth regulatory activity. It has often been regarded as being a plant growth inhibitor, partly because of its early history, which involved studies on bud dormancy and abscission. However, ABA has many roles in plants, such as the regulation of stomatal closure, control of water and ion uptake by roots, and of leaf abscission and senescence and hence, like other hormones has multifaceted effects. In tissue cultures, it sometimes promotes morphogenesis or growth. The quantity present in plant cultures can be determined by gas chromatography mass spectrometry or ELISA, following purification by high-pressure liquid chromatography (Ryu et al., 1988). Uptake of ABA into tissues appears to be by simple diffusion of the undissociated molecule, the anions being trapped upon entry into cells. It is decreased at pH levels above 5.5 (Minocha and Nissen, 1985; Patel et al., 1986).

ABA catabolism is complex involving either oxidation/reduction - to phaseic acid and dihydrophaseic acid - or conjugation to produce the glucose ester or glucoside (Zeevart, 1999).

Biosynthesis occurs in plastids (especially chloroplasts) (Milborrow, 1974). The herbicide ‘fluridone’ (15), which inhibits the natural production of carotenoids (Bartels and Watson, 1978), can prevent ABA biosynthesis (Moore and Smith, 1984). Norflurazon (16) produces the same effect.

Abscisic acid is found ubiquitously in plants and is the most commonly identified of a number of other structurally related natural compounds, which have plant growth regulatory activity. It has often been regarded as being a plant growth inhibitor, partly because of its early history, which involved studies on bud dormancy and abscission. However, ABA has many roles in plants, such as the regulation of stomatal closure, control of water and ion uptake by roots, and of leaf abscission and senescence and hence, like other hormones has multifaceted effects. In tissue cultures, it sometimes promotes morphogenesis or growth. The quantity present in plant cultures can be determined by gas chromatography mass spectrometry or ELISA, following purification by high-pressure liquid chromatography (Ryu et al., 1988). Uptake of ABA into tissues appears to be by simple diffusion of the undissociated molecule, the anions being trapped upon entry into cells. It is decreased at pH levels above 5.5 (Minocha and Nissen, 1985; Patel et al., 1986).
Fig. 7.2 Biosynthesis of abscisic acid.
At another level, some of the effects of ABA lie in the hormone antagonising or modifying the effects of other hormones, notably cytokinins and gibberellins, but also auxins. For example, Charriere et al., (1999) have suggested that the effect of ABA on morphogenesis in zygotic embryos of Helianthus annuus is indirect and due to a modification of auxin levels.

2.2. ABA IN TISSUE CULTURES

2.2.1. Effects On Callus Growth

ABA has usually been found to be inhibitory to callus growth. Sankhla and Sankhla (1968) reported that 1 mg/l was markedly inhibitory to Ipomoea callus, but generally, concentrations between 5 and 50 mg/l appear to be necessary to cause a 50% growth inhibition of cell growth (Li et al., 1970; Gamborg and LaRue, 1971; Taylor and Burden, 1972). However, several independent instances have been cited where ABA has been capable of stimulating callus growth, for example:

- On hypocotyl explants of Cryptomeria (a gymnosperm tree), 1 mg/l ABA in the culture medium had the same effect as 10 mg/l of the cytokinin BAP in stimulating internal callus or adventitious bud formation (Isikawa, 1974).
- On explants consisting of pieces of Citrus leaf and stem, 0.3-2.6 mg/l ABA (1-10 μM) stimulated callus formation specifically on the abscission zone between the petiole and the stem (Altman and Goren, 1971).
- In soybean, ABA stimulated callus growth when 0.05 or 0.5 mg/l kinetin was present in the medium. At lower kinetin levels ABA had no effect or was inhibitory (Blumenfeld and Gazit, 1970);
- Haploid tobacco callus was increased in growth by 0.1 mg/l ABA. At 10 mg/l the regulator was completely inhibitory (Kochhar, 1980).
- In excised hypocotyls of carrot ABA in the culture medium promoted callus induction and proliferation in the tissue (Jimenez and Bangerth, 2001).

These responses are usually only obtained with relatively low ABA concentrations: higher rates bring about corresponding decreases in the weight of callus produced (Torrizo and Zapata, 1986). This probably indicates that the concentrations inhibiting callus growth (which have been most commonly used) are unphysiological.

2.2.2. Effects on morphogenesis

Adventitious shoots and roots. ABA has been observed to influence morphogenesis in a number of plants. The first report was by Heide (1968) who found that shoot bud formation on isolated Begonia cheimantha leaves (not in aseptic culture) was enhanced when the leaves were treated with abscisic acid, and inhibited when either auxin or gibberellin was applied. Seasonal variation in the capacity of Begonia leaves to produce shoot buds was thought to be associated with variation in endogenous ABA levels. Shepard (1980) found that adding ABA to the growth medium (0.05-0.2 mg/l, depending on variety), caused morphogenesis to occur more rapidly than it otherwise would from potato callus. Natural ABA levels have been noted to correspond to the maturation state of tissues (Tanimoto et al., 1985). Adding 100 mg/l ABA to the medium, on which internode segments of Torenia were cultured, stimulated the production of flower buds on previously vegetative explants. The greatest amount of flowering occurred when the ABA within the tissues (i.e. the sum of endogenous and exogenous sources) was between 16 and 20 mg/g. Hooker and Thorpe (1998) using cultured tomato roots observed that ABA at concentrations of 0.2 mg/l and above inhibited lateral root initiation and emergence, whereas its putative biosynthesis inhibitor fluridone (15) enhanced the formation of lateral roots. Hartung and Abou-Mandour (1996) observed that regenerates of Ruta graveolens only survive transplant shock if pretreated with 2.5 mg/l ABA, which they attributed to a stimulatory effect on lateral root and root hair formation.

Embryogenesis. ABA is essential for the normal growth of somatic embryos and only in its presence do they closely resemble zygotic embryos in their development and structure. Manipulation of endogenous and/or exogenous ABA levels increases the frequency of embryos reaching maturity and can assist the handling of the large populations of somatic embryos which can be required for mass propagation (Ammirato, 1988).

The slight check to embryo development caused by 0.03 mg/l ABA was found by Ammirato (1973, 1974) to be associated with the elimination of abnormal forms of embryos (such as embryos with fused or multiple cotyledons, mature leaves in place of cotyledons, or other accessory structures) that were formed in caraway (Carum) suspension cultures, especially in the light. ABA treatment also prevented
the formation of accessory embryos in this tissue, which were otherwise developed on somatic embryos already in existence. The effectiveness of ABA in decreasing the proportion of abnormal embryos and assisting and synchronising embryo maturation (conversion) has since been confirmed in other species (e.g. Kamada and Harada, 1981; Dunstan et al., 1988; Krogstrup et al., 1988; Capuana and Debergh, 1997; Castillo et al., 1998; Cvikrova et al., 1998; Bela and Shetty, 1999; Fernando and Gamage, 2000).

There are also reports of low concentrations of ABA stimulating somatic embryo initiation or embryo growth:

- Embryogenesis was stimulated in growth regulator habituated *Citrus sinensis* (Shamouti orange) callus by 0.01-1 mg/l ABA (Kochba et al., 1978; Spiegel-Roy and Kochba, 1980).
- Embryoids were only developed from suspension cultures of *Pennisetum* when cells were transferred to a medium containing 0.01-0.02 mg/l ABA (Vasil and Vasil, 1981).
- The addition of 0.1-50 mg/l ABA to media containing 2,4-D, adenine and kinetin, increased the number of embryos which grew from the globular stage to the heart-shaped stage in soybean suspension and callus cultures (Phillips and Collins, 1981).
- Adding 0.02-10 mg/l ABA to the medium increased the proportion of *Pennisetum purpureum* leaf explants which produced embryogenic callus, especially from tissues treated with fluridone (0.02-20 mg/l) in which, without ABA, embryogenesis was inhibited (Rajasekaran et al., 1987).
- Transfer of embryo suspensor masses of *Abies fraseri* to media containing 50-80 μM ABA resulted in the formation of cotyledon stage embryos (Guevin and Kirby, 1997).
- ABA and polyethylene glycol are instrumental in the functional development of somatic embryos from conifers (Stassolla et al., 2002).

Several authors have noticed a growth-inhibiting action of exogenous ABA on embryogenesis and on the growth of both somatic and zygotic embryos, but these reports are rare and often describe the effects of high concentrations of the regulant. Although 0.002-2.6 mg/l ABA had little effect during the development of early globular or heart stages of somatic embryos formed in carrot cultures, it decreased the growth at stages beyond this (Fujimura and Komamine, 1975). Embryo formation in *Citrus sinensis* is suppressed by 11-21 mg/l ABA (Spiegel-Roy and Kochba, 1980), or by even higher concentrations (Tisserat and Murashige, 1977a).

Pre-formed late stage embryos can be completely arrested in growth by 26.4 mg/l ABA, but remain viable (even though they lack chlorophyll), and will continue to develop and grow when the ABA is removed. ABA treatment might therefore be used to facilitate the storage of embryos needed at some future date for plant propagation (Ammirato, 1974). The inhibition of somatic embryos by ABA is very similar to the inhibition of zygotic embryo growth, which it induces naturally (LePage-Degivry, 1973; Sondheimer et al., 1968); this serves to keep seed embryos dormant, preventing precocious germination.

Seeds of *Dendrocalamus strictus* germinated in the presence of 0.1-1.0 μM ABA, but if 2,4-D was also added, embryogenic callus was produced. However, the number of embryos obtained was finally less than with 2,4-D alone (Rao et al., 1987).

As noted earlier, in many of the cases where ABA has been shown to be inhibitory this is almost certainly due to the use of unphysiological concentrations. However, there is also evidence that part of this may be due to changes in ABA concentrations in cultures during embryogenesis and also differences between types of embryos. Thus, in carrot, Jimenez and Bangerth (2001) showed that there were much higher ABA levels in embryogenic calli compared to non-embryogenic. Similarly, Jimenez and Bangerth (2000), using different callus lines of *Vitis vinifera* showed that there was a strong correlation between high endogenous ABA concentrations and morphogenetic capacity. Similarly, Faure et al., (1998) demonstrated a relationship between precocious germination of somatic embryos of *Vitis vinifera* and low ABA levels, and Kim et al., (1998) showed that while ABA did not promote maturation in embryos of *Larix leptolepis* it was beneficial in reducing precocious germination. It is also clear from the work of Faure et al., (1998) and Gawronska et al., (2000) that somatic and zygotic embryos differ significantly in their ABA contents - generally low in the former and high in the latter - and this is likely to influence the concentration of the hormone at which beneficial effects will be observed.
3. ETHYLENE

The presence of very low concentrations of ethylene (17) in the atmosphere, has long been known to affect plant growth and development. Ethylene concentrations in the gaseous phase are usually expressed as ppm - parts per million (volume per million) - or μl.l⁻¹ and many ethylene effects show half-maximal responses at 0.1 μl.l⁻¹. Since ethylene equilibrates rapidly with the aqueous phase of the cell this corresponds to a concentration of the substance in that phase of about 4.5x10⁻¹⁰M at 20°C.

\[
\text{CH}_2=\text{CH}_2 \quad (17) \text{ethylene}
\]

It is now known that ethylene is produced by all living plant tissues and regulates their growth. The gas is most obviously involved in fruit ripening, senescence, and the abscission of leaves, but also has many other functions (see Abeles et al., 1992). It is also notable that, depending on the species or the tissues involved, ethylene can have markedly different effects on development. For example, while the gas generally inhibits the growth of dicotyledonous shoots (e.g. peas) it promotes growth in a number of hydrophytes - e.g. rice (Ku et al., 1970; Suge, 1972). Equally, in the light, ethylene can actually promote the growth of Arabidopsis seedlings (Smalle et al., 1997).

3.1. ETHYLENE BIOSYNTHESIS

The biosynthetic pathway for ethylene is now well established (see Imaseki, 1999) and is illustrated in Fig. 7.3. Methionine is converted to S-adenosylmethionine, which in turn is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) via the enzyme ACC synthase (ACS); the ACC is then metabolised to ethylene via ACC oxidase (ACO). Methylthioadenosine, the other product of ACS, is recycled to methionine hence conserving sulphur. Unsurprisingly, addition of either methionine, or ACC, to plant tissue of all kinds usually leads to increased rates of ethylene biosynthesis. While, in comparison with other plant hormones, the biosynthetic pathway for ethylene appears to be relatively simple, the issue is complicated because of the existence of isoenzymes for both the enzymes involved (see Imaseki, 1999). Moreover, these enzymes are controlled differentially. Thus, there are three specific stimuli, which activate gene expression of different ACS isogenes - auxin, wounding or ripening - but this expression in turn can be modulated by other components - ethylene itself, abscisic acid, cytokinin, carbon dioxide and light. Hence, manipulation of tissue or cultures, the environmental conditions and the makeup of media can all influence ethylene production, the final outcome depending on the balance between activation and inactivation of particular genes.

It is also important to note that because ethylene may have either an autocatalytic or an autoinhibitory effect on its own synthesis depending on the tissue or plant species (Vendrell and McGlasson, 1971; Zeroni et al., 1976; McGlasson et al., 1978; Riov and Yang, 1982a; Yang and Hoffman, 1984; Butler, 1986; Mattoo and White, 1991; McKeon et al., 1995) and that this is receptor-controlled, then the use of receptor-directed inhibitors of ethylene action such as norbornadiene (see below) may in fact result in either increased or decreased biosynthesis of ethylene depending on the tissue type or plant species. Similarly, the ethylene receptor mutants etr1 and eti5 of Arabidopsis (where ethylene biosynthesis is autoinhibited in wild type) both overproduce the gas. Plants can metabolise ethylene to ethylene oxide via monoxygenase enzymes (Jerie and Hall, 1978); however, with the exception of those from Vicia faba and alfalfa, these latter usually show low activity and low specificity and are unlikely to affect internal concentrations markedly (Beyer, 1985).

3.2. INHIBITORS OF BIOSYNTHESIS

A number of compounds or treatments have been shown to inhibit ethylene biosynthesis:

3.2.1. Aminoethoxyvinylglycine (AVG)

AVG (18) is a potent inhibitor of ethylene biosynthesis in plants. It acts by inhibiting ACS (Yang et al., 1980; Kende et al., 1980). In tissue cultures 1-50 μg/l is effective without causing direct toxicity.
3.2.2. Cobalt ions
A high concentration of cobalt ions inhibits ethylene production in plant tissues (Lau and Yang, 1976) by preventing the conversion of ACC to ethylene. In the presence of 50-500 μM Co²⁺, ACC levels increase in tissues treated with IAA (Yu and Yang, 1979). Cobalt chloride (10-100 mM) added to rose shoot cultures increased apical dominance (the opposite of the effect produced by low concentrations of ethylene (Kevers et al., 1992).

3.2.3. Anoxia and Oxidation inhibitors
Because oxygen is required for the conversion of ACC to ethylene, anoxia inhibits ethylene production and synthesis may decrease significantly when the partial pressure of oxygen falls below 15 kPa. However, in some plants, such as barley and maize ethylene production is stimulated at 3-5 kPa (Jackson, 1985a, b). Similarly, the effects of a variety of oxidation inhibitors have been assessed in ethylene-forming systems. These have included salicylic acid (19) and acetyl salicylic acid (20) (but also see below), and n-propyl gallate (21) as well as uncouplers of oxidative phosphorylation and inhibitors of cytochrome oxidase. However, while they may indeed affect ethylene synthesis their broad-spectrum effects are such that their use for this purpose cannot be recommended, especially since much more specific inhibitors, such as AVG, are available.

Fig. 7.3 Biosynthesis of ethylene.
3.2.4. Chelating agents

Chelating agents such as 8-hydroxyquinoline (22) are effective in prolonging the vase life of cut flowers (thereby overcoming ethylene-induced senescence). Their mode of action is unknown, but may be related to their ability to sequester copper ions (see below).

3.3. ETHYLENE ACTION

Five partially functionally redundant receptors for ethylene have now been identified (Bleecker, 1999) and signal transduction appears to involve protein kinases (Kieber et al., 1993; Novikova et al., 2000, Moshkov et al., 2003a), monomeric GTP-binding proteins (Novikova et al., 1997, 1999, Moshkov et al., 2003b), transcription factors (Chao et al., 1997) and other proteins of unknown function (Johnson and Ecker, 1998; Stepanova and Ecker, 2000). The receptors all contain Cu(I) in the binding domain (Rodriguez et al., 1999). The downstream effects include altered gene transcription and protein synthesis.

3.3.1. Inhibitors of ethylene action

Several chemicals and environmental factors are known to inhibit ethylene action. These may either compete with ethylene for binding domains in the receptors or act by unknown mechanisms. Inhibitors of ethylene action have been used experimentally as an alternative to biosynthesis inhibitors, in conditions where ethylene is thought to affect growth or morphogenesis in tissue cultures.

Silver ions. Silver ions are known to overcome the action of ethylene on whole plants (Beyer, 1976a, b). Both silver thiosulphate (Ag$_2$S$_2$O$_3$) and silver nitrate (AgNO$_3$) are therefore effective in preventing ethylene action although the former is much more effective because it is readily translocated. They do not, as was once thought, appear to replace Cu(I) in the binding domain and in fact increase rates of ethylene biosynthesis in peas (Sanders et al., 1991), but may act by inhibiting the copper transporter protein RAN1.

Carbon dioxide. High concentrations (5-10%) of carbon dioxide can antagonise some ethylene effects - for example inhibition of epicotyl or hypocotyl extension (Burg and Burg, 1967; Beyer, 1979). The effect is competitive in vivo (Burg and Burg, 1967) but does not appear to be a result of displacement of ethylene from its receptor (Sisler, 1982; Sanders et al., 1991). On the other hand, CO$_2$ at atmospheric concentrations appears to be necessary for some responses to ethylene (Hall et al., 1980).

Chemical inhibitors. Although a wide range of chemicals, e.g. ioxynil (23) 3,5-diiodo-4-hydroxybenzoic acid (DIHB) (24) and 5-methyl-7-chloro-4-ethoxycarbamylmethoxy-2,1,3-benzothia-diazole (benzothiadiazole TH6241; 25) are known to block developmental effects of ethylene reputedly via effects on ethylene action, it is questionable whether this is so or whether the mechanisms’ effects may be indirect and/or the result of modulation of ethylene biosynthesis. However, a number of hydrocarbons do specifically inhibit ethylene action by competing with the growth regulator for binding sites on its receptor. Such substances include 2,5 norbornadiene (26), cis-2-butene (27), cyclooctene (28) and methylcyclopentene (29) (Sisler, 1991; Sisler et al., 1996). The latter is particularly effective, at concentrations as low as 10$^{-9}$ M (Sisler and Serek, 1997).

Cytokinins. Cytokinins antagonise ethylene in many systems - for example leaf senescence - probably via early events in signal transduction (see e.g. Novikova et al., 1999).

3.3.2. Ethylene-Releasing Chemicals

Several synthetic ethylene-releasing chemicals have been discovered. The one most commonly used in plant tissue culture experiments is ethephon (2-CEPA or 2-chloroethanephosphonic acid; 30). This compound is absorbed into plant tissues where it breaks down to release ethylene at cytoplasmic pH
levels. Cultures also usually produce more ethylene if the compound from which it is naturally derived, ACC, is added to the medium (Puschmann et al., 1985). Adding methionine may also have the same effect (Druart, 1988).

3.4. ETHYLENE SOLUBILITY AND CHEMICAL ABSORPTION
Ethylene has a partition coefficient in water (concentration in aqueous phase / concentration in gaseous phase) of 0.20 at 0°C but only 0.10 at 20°C; so it is important to remember that the temperature at which a culture is maintained may have a marked effect on the cellular concentration and hence perhaps the developmental response. For experimental purposes, ethylene in the atmosphere of culture vessels can be be preferentially absorbed on a solution of potassium permanganate or mercuric perchlorate solution (Young et al., 1951). The latter is the most efficient.

3.5. ETHYLENE PRODUCTION IN VITRO
Ethylene is produced during the culture of all kinds of plant cells, tissues and organs. The rate of biosynthesis is increased if cells are subjected to stress of some kind [e.g. high sodium chloride levels (Garcia and Einset, 1982, 1983) or toxic levels of ammonium ions]. Some chemicals added to culture media can also stimulate ethylene formation. Mannitol, which is commonly used in protoplast and other tissue cultures as an osmoticum, causes ethylene biosynthesis to be increased (Riov and Yang, 1982b); polyethylene glycol, which is sometimes used in protoplast fusion experiments, can also have the same effect. Potato protoplasts which had been treated with polyethylene glycol were much more likely to produce microcalli if 100 mg2 Ag2S2O3 was added to the medium (Perl et al., 1988).

Ethylene production is also greater during the senescence of cultured plant material: it reaches a maximum in suspension cultures at the start of the stationary phase when nutrients are limiting and most of the cells are senescing (LaRue and Gamborg, 1971). As noted, Prunus avium shoot cultures produced ethylene at a constant rate over 30 days (19 mlg-1 dry weight) (Righetti et al., 1988) even when the CO2 in the culture vessels reached 30% (Righetti et al., 1990).

Suspension cultures of several different kinds of plants were found by Gamborg and LaRue (1968) and LaRue and Gamborg (1971) to produce ethylene at up to 1.22 μmole/hour/g dry weight of cells. The rate of evolution was greatest as the cells reached stationary phase, was the same in the light or the dark, and varied greatly between species (being especially low in cultures of monocotyledonous plants). Marked differences in the rate of ethylene production in different experiments were attributed to the differing physiological state of the cells. The amount of ethylene produced by callus cultures is also dependent on genotype (Thomas and Murashige, 1979a).

In sunflower suspensions, there appears to be no functional relationship between growth and ethylene synthesis, ethylene being just a by-product of actively dividing cells (Sauerbrey et al., 1987).

As with whole plants or parts of plants, auxins generally increase the production of ethylene by cell and callus cultures but results have not always been predictable. This is unsurprising since, as noted...
above, auxins can stimulate transcription of a specific isogene(s) for the ethylene biosynthetic enzyme ACS. Some at least of the effects of auxins on cultures are certainly mediated, at least in part, by ethylene. Production of ethylene by suspension cultures is dependent on the level of 2,4-D in the medium, but is independent of the effect of 2,4-D on growth (Mackenzie and Street, 1970; Sauerbrey et al., 1987).

Similarly, addition of 2,4-D to suspensions of Ruta graveolens promoted ethylene formation, but did not do so in cell cultures of Rosa, where only NAA and pCPA were stimulatory (Gamborg and LaRue, 1971). IAA increased ethylene production by suspension cultures of pear (Puschmann et al., 1985).

Wulster and Sacalis (1980) observed that ethylene production from callus cultures of Rosa hybrida was increased by 1-3 mg/l of the auxins NAA or IBA, but was little affected by 5-15 mg/l of three cytokinins except when they were used in conjunction with auxin. Then the rate of ethylene production could be markedly increased. The concentration of cytokinin at which synergism occurred varied according to whether BAP, 2-iP or zeatin riboside was used. Lau and Yang (1973), who found a similar synergism in mung bean, discovered that ethylene evolution was closely related to the level of free IAA in the tissue. Kinetin promoted ethylene evolution because it prevented added IAA being converted rapidly into indoleacetylaspartic acid. In this conjugated form, the auxin had no effect on ethylene production. The amount of ethylene evolved by Dahlia callus was proportional to the concentration of NAA added to the medium (Gavinlertvatana et al., 1982).

The addition of galactose to a medium has been found to increase ethylene levels within tissues (Colclasure and Yopp, 1976). Ethylene production by habituated cultures is in general lower than in the normal hormone-dependent equivalents (see below).

3.5.1. Accumulation in culture vessels

As ethylene is produced from all kinds of plant cultures, including callus and suspensions, it accumulates in the gas phase within sealed culture vessels. The concentration in the free air space is found to vary according to the type of tissue being grown, the weight of the tissue, the volume of the culture vessel, the manner in which it is sealed, and the culture conditions.

The physiological effects of an ethylene atmosphere within vessels vary according to the concentration of the gas. The desirable and undesirable physiological effects of the concentrations with which cells or tissues are sometimes presented (particularly in containers that are tightly closed), are discussed below.

If the suspension cultures of LaRue and Gamborg (1971) produced ethylene at the same rate in tightly closed flasks as they did in foam-stoppered vessels, the air space in the flasks after 6 days of culture would have contained from only a trace (Triticum monococcum) to ca. 7.4 p.p.m ethylene (rose). Huxter et al., (1981) measured 0.3-1.8 ppm ethylene in foam-stoppered flasks containing tobacco callus; Mackenzie and Street (1970) - 10 ppm in the air space above their sycamore suspensions; De Proft et al., (1985) - up to 2-3 ppm above tightly stoppered Magnolia shoot cultures after 9 weeks.

The retention of ethylene depends of the nature of the closures used on culture vessels and on the tightness of the seal. Loosely covered flasks, such as those capped with aluminium foil, have been found to lose 50% of their ethylene in 2 hours, the rate of loss thereafter being constant (Gavinlertvatana et al., 1982).

Ethylene can accumulate in flasks in significant quantities if their necks are momentarily flamed with an alcohol or natural gas burner during transfers (Beasley and Eaks, 1979). It should be noted however that the effects of closures do not necessarily reflect changes in gaseous components such as CO₂ and ethylene. Thus, Santamaria et al., (2000), using Delphinium plantlets, concluded that improved stomatal performance, growth and survival of the plantlets in ventilated vessels was more likely due to increased flow of water rather than an improvement in the gaseous environment.

3.6. ETHYLENE EFFECTS ON CULTURES

3.6.1. Explant Isolation

Ethylene production by plant tissues is temporarily increased when they are wounded, and so is significant during explant isolation. Less ethylene was produced during the isolation of potato leaf protoplasts if shoots, from which the leaves were taken, had been previously cultured with silver thiosulphate; the quantity of ethylene decreased still further if acetylsalicylic acid was added during the maceration process (Perl et al., 1988). The effects of wounding on growth and morphogenesis are discussed further below.
3.6.2. Suspension cultures

In the cell cultures of LaRue and Gamborg (1971) described above, exogenous ethylene could not replace an auxin, which was required to induce cell division. Ethylene naturally accumulated within flasks appeared to have little effect, and there was only a 20-30% reduction in cell yield of *Ruta* and *Rosa* suspensions when relatively large amounts of ethylene were artificially added. The addition of ethephon did not stimulate cell division or growth of sycamore cells (MacKenzie and Street, 1970).

3.6.3. Callus initiation and growth

Growth stimulation. It might be expected that the accumulation of ethylene in culture vessels would induce the formation of callus, because in whole plants, undifferentiated callus-like growths (intumescences) have been seen to grow from the stems (Wallace, 1928; Evans, 1961) or roots (Wilson, 1966) of intact plants, which have been kept for prolonged periods in low ethylene concentrations.

Ethylene does seem to stimulate callus growth of some plants *in vitro*. For example, on a hormone-free medium, *Ginkgo biloba* embryos germinated when placed on medium within tubes sealed with cotton plugs, but gave rise to callus if the tubes were covered with Parafilm (Webb *et al.*, 1986). Furthermore, although it has been thought that the increase in ethylene evolution caused by 2,4-D is independent of the effect of the auxin on growth (MacKenzie and Street, 1970), a close correlation has been found between the rate of ethylene production and the growth rate of tobacco (Huxter *et al.*, 1979; Bridgen and Lineberger, 1981), *Dahlia* (Gavinlertvatana *et al.*, 1982) and tomato (Mukund *et al.*, 1988) calluses. Several chemicals known to inhibit ethylene biosynthesis also reduced growth and ethylene evolution in exact proportion.

Growth inhibition. Contrary indications have also often been obtained: Chalutz and DeVay (1969) showed that ethylene inhibited the formation of callus and suberised cork cells on the injured surfaces of sweet potato roots and seemed to have little effect on the subsequent division of undifferentiated cells. Similarly, Zobel and Roberts (1978) found that an ethylene concentration above 0.1 ppm prevented the initiation of callus and tracheids from *Lactuca* pith explants and deduced that this was because the gas prevented the cells becoming determined or differentiated. Once the cells became programmed to divide and grow as callus, ethylene had no further effect.

In rice, callus necrosis was most likely to occur in cultivars which produced ethylene at a high rate. Callus growth of these plants was more strongly inhibited by a controlled gas mixture high in ethylene than was that of necrosis-tolerant cultivars (Adkins *et al.*, 1990).

Songstad *et al.*, (1991) showed that the ethylene action inhibitor AgNO$_3$ increased type II callus production from immature embryos of maize.

Other physiological effects. A promotory effect of ethylene on xylogenesis in soybean callus and *Lactuca* pith explants has been reported (Miller and Roberts, 1982; Miller *et al.*, 1985). Chlorophyll synthesis and chloroplast development *in vitro* is depressed by ethylene (Dalton and Street, 1976).

3.6.4. Morphogenesis

The role of ethylene in morphogenesis is by no means clear, although its action in inhibiting polar auxin movement (see Chapter 5) may be partly responsible for the observed effects. Besides influencing the determination of cells that will give rise to callus (see above), the gas can influence organ formation *in vitro*. From available results, it appears that there is often a critical concentration at which morphogenesis is stimulated; concentrations below and above this being respectively ineffective or inhibitory.

Determination. Ethylene appeared to inhibit the capacity of *Helianthus annuus* callus to produce adventitious shoots. The determination was influenced by treatments to the seedlings from which explants were derived. Hypocotyls of dark-grown seedlings of *Helianthus annuus* produced less adventitious shoots than those grown in the light. This seemed to be correlated with an effect of light on the sensitivity of the tissues to ethylene, because treating 3-day-old dark-grown seedlings with 10 μM AVG, inhibited ethylene production for 7 days; providing 4 days elapsed before cultures were initiated, callus from the hypocotyls of these seedlings produced the same number of adventitious shoots as light-grown callus (Robinson and Adams, 1987).

Adventitious shoot formation. Ringe (1972) reported that direct shoot formation on *Begonia x richmondensis* stem segments was inhibited by 2-20 mg/l ethephon and completely prevented by 200 mg/l (although these same concentrations promoted callus proliferation). Adding ethephon to media supporting callus growth of wild or cultivated carrot has been reported to inhibit root and shoot formation (Wochok...
and Wetherell, 1971). However, Gonzalez et al., (1997) showed that AVG inhibited shoot induction and elongation in nodal segments of *Populus tremula*. Ethephon and ACC on the other hand promoted shoot induction. Chraibi et al., (1991) showed that CoCl₂ and AgNO₃ stimulated shoot formation from cotyledons of *Helianthus annuus*. Similar effects of AgNO₃ on shoot formation from cotyledons of *Cucumis melo* were demonstrated by Roustan et al., (1992).

Thorpe and co-workers (Thorpe et al., 1981; Huxter et al., 1981) concluded that ethylene inhibited shoot formation during the first 5 days of the initiation period, but thereafter it speeded up the formation of primordia. Callus of wheat and *Nicotiana plumbaginifolia* cultured on Tran Thanh Van (1973) medium with 1 mg/l 2,4-D, formed adventitious shoots when the auxin was omitted. Shoot formation was inhibited if ethylene (70 mM ethephon) was present from the beginning of the culture period and was stimulated (and adventitious root formation simultaneously reduced) if 5-50 mg/l silver nitrate was present throughout the culture period (Purnhauser et al., 1987). Ethylene inhibitors have been found to have a similar effect in other species too. For example, adventitious shoot formation on cotyledons or hypocotyls of *Brassica* spp. was enhanced by adding AVG (1-10 μM) or AgNO₃ (5-30 μM) to MS medium containing auxin and cytokinin (Chi et al., 1990).

Ethylene in culture vessels. The ethylene and carbon dioxide, which built up in closed culture flasks during the first 15 days of culture, promoted the formation of shoot buds from *Pinus radiata* cotyledons. The additional ethylene was especially promotory during the first few days of culture but, if flasks were stoppered with foam plugs for 10-15 days, there was only a low frequency of shoot bud formation. Excessive concentrations of ethylene, which accumulated after 15 days (e.g. 25 ml/l at 25 days) caused a slight dedifferentiation of buds (Kumar et al., 1986, 1987).

Formation of apogamous buds in the fern *Pteridium aquilinum* was also stimulated most effectively by a certain concentration of ethylene. Gametophytic colonies exposed to air produced only 4 buds per gram of tissue, whereas those exposed to 0.7 ppm ethylene gave rise to 32. Less apogamous buds were formed by colonies in 2.5 and 14.5 ppm ethylene (Elmore and Whittier, 1973).

The number of adventitious buds formed on bulb scale explants of lily was increased if 1-10 ppm ethylene was applied in the gas phase above the cultures during the first 3-7 days of culture (Van Aartrijk et al., 1985). A similar result was obtained by Taeb and Alderson (1987) with sections of the immature floral stems of tulips. Adding 1-10 μM ACC or 0.1-100 mM ethephon did not have the same promotory effect.

Bulb formation. The formation of bulbs on tulip shoots was enhanced by increased endogenous ethylene, achieved by adding 0.1-10 mg/l ACC to the medium, or by growing cultures under lights with a low red/far red ratio (Alderson and Taeb, 1990).

Root formation. Ethylene has been reported to have both promotory and inhibitory effects on rooting *in vitro*. Coleman et al., (1980) showed that in conditions where 5 mM IAA promoted the formation of adventitious roots on tomato leaf discs, the simultaneous application of ethylene, or ethephon, was inhibitory. Furthermore, although natural ethylene production was stimulated by adding auxin to the medium, lowering its level in the culture flasks by aeration, absorbing it with mercuric perchlorate, or leaf disc pretreatment with AgNO₃ (1.7-17.0 mg/l for 30 min), doubled the number of roots formed. Although Coleman et al., (1980) concluded that ethylene was not a rooting hormone per se, others have reported contrary indications. Fabijan et al., (1981) suggested that although the initiation of roots from *Helianthus* hypocotyls was blocked by endogenous ethylene on the first day after excision, thereafter the gas was promotory.

Thin cell layers of *Nicotiana tabacum* were found to produce 100 times more ethylene on a root-inducing medium (containing 10 mM IBA and 0.1 mM kinetin) than tissues cultured on other media. The appearance of roots was associated with a further increase in ethylene synthesis, which was maximal at 30°C and only trivial at 15 or 40°C, suggesting an enzyme-mediated process. If silver ions were added to the medium, root formation was blocked and adventitious shoot buds were formed (Le Guyader, 1987).

Providing oxygen was present, the rooting of chrysanthemum cuttings in an experimental mist system was slightly enhanced by adding 10 ppm ethylene in the gas phase (Soffer and Burger, 1988), and extensive wounding (likely to increase endogenous ethylene evolution) also increased rooting of mung bean cuttings except when they were treated with 10 μM AVG (Robbins et al., 1981). Gonzalez et al., (1997) showed that AVG inhibited root formation in nodal segments of *Populus tremula*.
whereas ethylene was promotory. On the other hand, Khalafalla and Hattori (2000) showed that AgNO₃, cobalt chloride and acetylsalicylic acid enhanced root formation on Vicia faba shoots regenerated on a medium containing thidiazuron. ACC inhibited root formation.

Embryogenesis. Size of culture vessel was found to be most important to obtain optimum rates of embryogenesis from tobacco anthers (Dunwell, 1979), suggesting that a volatile substance was stimulatory at a critical concentration. In embryogenic ‘Shamouti’ orange cultures, low concentrations of ethephon (0.01-1.0 mg/l) stimulated embryo formation, but levels above these were inhibitory (Kochba et al., 1978), and excessive levels of ethylene accumulated within closed flasks, have been found to prevent embryogenesis (Spiegel-Roy and Kochba, 1980).

Ishizaki et al., (2000) found that at low concentration (10⁻⁹ M) ethephon more than doubled the frequency of formation of embryogenic callus from explants of spinach, a process inhibited by AgNO₃. Conversely, ethephon completely inhibited embryo development whereas AgNO₃ markedly increased the number of embryos. Hatanaka et al., (1995) showed that removal of ethylene from culture flasks reduced the number of somatic embryos produced from leaf disks of Coffea canephora whereas AgNO₃ and cobalt inhibited embryo formation - the latter effect being reversed by ethephon.

Other evidence also suggests that ethylene, normally produced by tissues, is inhibitory to embryogenesis. The addition of 1-3 mg/l AgNO₃ to anther cultures of many varieties of Brassica oleracea gemmifera, increased the production of somatic embryos, and allowed embryos to be obtained from experiments and varieties where there would normally have been very few (Biddington et al., 1988). Similarly, by placing 50-200 μM AgNO₃ in the medium on which maize embryogenic callus was cultured for 21 days (before it was placed on a regeneration medium), the number of plants obtained per unit weight of callus was increased. Acetyl salicylic acid also improved regeneration, but was less effective than AgNO₃ (Duncan and Widholm, 1987).

Al-Khayri and Al-Bahrany (2001) showed that AgNO₃ increased embryogenic callus weight from date palm in the absence of cytokinin but not in its presence. Similar effects were noted upon the numbers of embryos formed, although here the number was reduced by an increase in AgNO₃ concentration. Fernandez et al., (1999) found that AgNO₃ enhances the induction of direct somatic embryogenesis from the scutellum of immature embryos of Triticum durum.

That ethylene is inhibitory to some early step in embryo initiation was suggested by the results of Duncan and Widholm (1988). Callus of Zea mays derived from immature embryos cultured with 15 mM dicamba (medium D) which produced somatic embryos when moved to a regeneration medium without the auxin (medium H), tended to regenerate many more plants from somatic embryos if 200 μM AgNO₃ had been added to the D medium. Tisserat and Murashige (1977c) found that embryogenesis of carrot and Citrus media was inhibited if ethephon was added to the medium. However the inhibitors of ethylene biosynthesis, AVG, amino-oxyacetic acid, 2,4-dinitrophenol and salicylic acid, prevented embryogenesis in Medicago sativa. Meijer and Brown (1988) suggested that these compounds were possibly blocking a biosynthetic pathway, other than ethylene formation, of crucial importance to embryogenesis. In the same connection Taylor et al., (1994) observed that while AgNO₃ increased the yield of protoplasts and reduced shoot regeneration from sugarcane heterogeneous cell suspension cultures, application of either AVG or ACC had no effect on protoplast yield – suggesting that, at least as far as this process is concerned the role of AgNO₃ is probably not via an effect on ethylene action. Some of these apparently contradictory results may be due to differences between species, but, equally, may be due to the concentrations of ethylene used. Thus, Chen and Chang (2003) using Oncidium leaf cultures, observed that very low concentrations of ACC (5 and 10 mM) retarded direct embryo formation from cut ends, but higher concentrations (20 and 50 mM) accelerated the process.

Shoot growth and axillary bud break. Ethylene in the external atmosphere is generally inhibitory to cell growth in the meristems of seedlings (Fidler, 1960), whole plant shoots (Heck and Pires, 1962a, b), or roots (Chadwick and Burg, 1967; Andreae et al., 1968; Radin and Loomis, 1969). Monocotyledons such as cereals and grasses are less affected than dicotyledons. Many species are extremely sensitive: pea seedlings for instance make noticeably less growth in an atmosphere containing 0.05-0.1 ppm ethylene (Fidler, 1960). It might therefore be expected that concentrations of ethylene found within culture flasks would prevent the normal growth of
directly or indirectly regenerated shoots, or of axillary shoots proliferating in shoot cultures. In fact, growth inhibition seldom appears to take place, and there is some evidence that ethylene may often have a stimulatory role (see introductory section). Adding 50-100 mg/l of the ethylene precursor methionine to the medium together with 1 mg/l BAP increased the rate of propagation of several woody species through several subcultures (Druart, 1988). Although their quality was poor, more shoots were produced by rose shoot cultures grown in sealed vessels (Horn et al., 1988a, b), and low rates of exogenous ethylene (an injection of which gave an intra-vessel concentration of 5 p.p.m. that declined to zero over 10 days) were found to increase the rate of rose shoot proliferation. Higher concentrations (20 and especially, 100 p.p.m.) were inhibitory (Kevers et al., 1992).

An intriguing experiment of Walker et al., (1988) also suggests that ethylene affects the growth of Rhododendron shoot cultures. Firstly, the fresh weight and the number of shoots were reduced if culture vessels were flushed with a mixture of nitrogen, oxygen and carbon dioxide. Secondly, when cultures were grown in divided vessels with a common atmosphere, the presence in the medium on one side of the partition, of normal growth regulators (4 mg/l IAA and 15 mg/l 2-iP), increased the weight of shoots obtained from the other side when the shoots there were grown without regulators, or with IAA and 2-iP at half the above rates.

Stolon formation
Ethylene appears to be somehow involved in the regulation of stolon formation. Stolons are axillary shoots with the capacity for considerable internode extension. If metal caps covering jars for potato cultures were screwed down too tightly, there was a tendency for stolon-like shoots with small leaves to be produced; but shoots were short and swollen and had only scale leaves if the closures had been further covered with PVC tape or Parafilm. These ethylene-induced effects were eliminated by placing an ethylene absorbent (a vial containing mercuric perchlorate solution) into sealed jars or by replacing the metal covers with polyurethane foam (Hussey and Stacey, 1981; Creissen and Karp, 1985). Shoot cultures of Fragaria ananassa in covered vessels produced runners if silver nitrate (20 mg/l) and gibberellic acid (20 mg/l) were added to Boxus (1974a) medium. Without silver nitrate, gibberellic acid only caused the elongation of normal shoots (Zatyko et al., 1989).

Growth inhibition
Some cases of ethylene-induced inhibition of shoot growth have been reported. The growth of cultured Kalanchoe blossfeldiana shoots was inhibited by the ethylene which built up in sealed tubes. There were less nodes per plant and a higher proportion of yellow leaves (Horn et al., 1988a). Torres et al., (1981) have reported that shoot formation from in vitro cultures of Begonia x hiemalis seemed to be inhibited in sealed flasks, although little difference was observed with Easter lilies or Exacum. When carnation shoot cultures were grown in tightly sealed vessels, sufficient ethylene was produced to reduce shoot internode length and cause leaves to become yellowish in colour and more swollen than those of the controls (Melé et al., 1982). Ethylene may normally be prevented from inhibiting the growth (rather than formation) of shoots in shoot cultures, through the presence of cytokinin in the growth medium.

Bud dormancy
Although the dormancy of buds is preserved in the presence of external ethylene, once the plant or plant organ is removed from the gas, dormancy is broken and shoot growth is often more rapid than it might otherwise have been [e.g. that of potato tuber sprouts (Elmer, 1936)]. The dormancy of axillary buds on cuttings of woody plants such as apple, plum, cherry and willow is also broken when shoots, which have been kept for some while in an ethylene atmosphere, have subsequently been removed (Vacha and Harvey, 1927). For micro-propagation purposes, cytokinins are used to promote the growth of axillary shoots, and so in this instance cytokinins and the previous presence of high ethylene levels have the same final effect.

Accumulation of metabolites
A number of workers have observed that ethylene may modulate the accumulation of several secondary metabolites in plant cell cultures. Thus, Guo and Ohta (1994) found that ethylene promoted and AVG reduced the amount of 6-methoxymellein produced by suspension-cultured cells of carrot. Mirjalili and Linden (1995) found that the presence of ethylene in suspension cultures of Taxus cuspidata enhanced taxol production; on the other hand in suspension cultures of Taxus chinensis and Taxus yunnanensis ethophen decreased paclitaxel production and inhibitors of ethylene biosynthesis and silver nitrate increased it (Zhang and Wu, 2003). Yahia et al., (1998) showed that ethylene stimulated indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus. Interestingly, cytokinin also enhanced accumulation and the responses to this hormone and ethylene were additive. On the other hand, Lee and Shuler (1991)
found that ethylene inhibited the production of ajmalicine production in the same type of cultures. Berglund and Ohlsson (1992) also showed that AVG increased and ethephon decreased the accumulation of cardenolide in tissue cultures of *Digitalis lanata*.

3.7. OTHER VOLATILES
Volatiles apart from ethylene are produced and evolved from cultured plant tissues. Methane, ethane, acetaldehyde and ethanol have all been detected in the gas phase above tissue cultures (Thomas and Murashige, 1979a, b; Torres et al., 1981), some of which are the products of inefficient respiration in conditions of oxygen deficiency: ethane is produced by cells, which have been wounded and have suffered membrane damage (Van Aartrijk et al., 1985). Embryogenesis in carrot and date palm callus can be inhibited by ethanol evolved by cultures (Tisserat and Murashige, 1977b; Thomas and Murashige, 1979a, b). Acetaldehyde has been thought to inhibit aerobic respiration, thereby stopping cell division (Latties, 1962). Methyl jasmonate (see below) is also volatile.

4. OTHER MESSAGES AND MESSENGERS

Until relatively recently, auxins, gibberellins, cytokinins, abscisic acid and ethylene were considered to be the only ‘classical’ plant hormones or natural plant growth substances. It is now clear that this is an oversimplification and that a number of other substances should be considered in this category - for example brassinosteroids, jasmonate and systemin. Yet others - such as polyamines - cannot be considered as hormones, but they are undoubtedly plant growth regulators. On the whole these other substances have so far found little application in tissue culture, (other than polyamines) but this is likely to change.

4.1. POLYAMINES

All higher plants contain aliphatic amine compounds which are necessary for growth. The most common of these compounds are putrescine (a diamine) (see Fig. 7.4), spermidine (a triamine) (Fig. 7.4) and spermine (a tetraamine) (Fig. 7.4), although there are many others. In solution, at cytoplasmic pH levels, these polyamines act as polycations and complexing agents. Polyamines are synthesized by plant cells in culture (Smith et al., 1977).

Polyamines have been found to act as growth stimulants and sometimes to enhance the action of plant growth substances. It has been suggested that they may function as secondary messengers for hormones within cells (Smith, 1985), but this hypothesis is questioned (Fobert and Webb, 1988) and no further evidence for it has since been advanced. However, they are undoubtedly important in metabolism and development in plants (see Chattopadhyay and Ghosh, 1998; Malmberg et al., 1998) and there is strong evidence that they are involved in resistance to both biotic and abiotic stresses (for reviews see Boucheeau et al., 1999, Walters, 2000) Some advantages have been shown to accrue from their addition to plant culture media.

4.1.1. Biosynthesis

The biosynthetic route to polyamines from the precursors arginine and ornithine has been determined (Fig. 7.4) although the pathways, which are operative may vary from one species to another, and according to whether morphogenesis, or growth, is taking place (Feirer et al., 1984; Tiburcio et al., 1987). Ornithine decarboxylase (ODC) is thought to be chiefly activated during cell division (Heimer et al., 1979; Bagni et al., 1983), arginine decarboxylase (ADC) being activated during cell enlargement (Galston, 1983). Interestingly, *Arabidopsis thaliana*, used widely in molecular genetic studies, appears to lack ODC (Hanfrey et al., 2001).

The biosynthesis of polyamines is influenced by the medium used for *in vitro* culture; that of putrescine has been shown to be much greater on ammonium-based nutrition than when nitrogen is supplied as nitrate ions (Smith and Wiltshire, 1975; Altman and Levin, 1993). This may be in response to the reduction of medium pH which is associated with uptake of N\textsubscript{H}_4+, although it has been suggested that putrescine accumulation may result when ammonium competes for potassium at a site of metabolic importance (Le Rudulier and Goas, 1975).
4.1.2. Inhibitors of biosynthesis

Inhibitors of specific stages in the biosynthetic pathways illustrated in Fig. 7.4 have been discovered. They are:
- DFMA, DL-α-difluoromethylarginine (31);
- DFMO, α-difluoromethylornithine (32);
- MGBG, methylglyoxal-bis-(guanylhydrazone) (33).

The cyclohexylammonium ion is also inhibitory; it is commonly made available from one of two compounds, viz:
- DCHA, dicyclohexylammonium sulphate (34);
- CHAP, cyclohexylammonium phosphate (35).

Very recently Bachmann et al., (1998) have demonstrated that phaseolotoxin, a peptide produced by Pseudomonas syringae phaseolicola, is a potent inhibitor of ODC.

Responses obtained from addition of these inhibitors to plant culture media have been used to indicate the involvement of polyamines in growth and morphogenesis. DFMO has been said to be ineffective in certain plants (Galston, 1983; Flores and Galston, 1984). DFMO retards the growth of phytopathogenic fungi and it is claimed that plants treated with this inhibitor are protected from some kinds of fungal attack (Weinstein and Galston, 1988). Polyamine conjugates with hydroxylated cinnamic acids also occur in plants. They are thought to have regulatory properties and to be used by plants to inhibit the multiplication of viral pathogens.

4.1.3. Physiological activity

At physiological pH, polyamines act as cations and bind strongly to nucleic acids and proteins, which
carry negatively charged groups. RNA and DNA are stabilized by their association with polyamines and in the bound form are more resistant to nuclease enzymes and thermal denaturation (Galston et al., 1980). Free polyamines can compensate for ionic deficiencies or stress (Spector, 1989) within plants and can temporarily substitute for, and sometimes have the same physiological effect as, the cations K⁺, Ca²⁺ and Mg²⁺. Part of their function may be to act as buffers to minimize fluctuations in cellular pH (Slocum et al., 1984). The concentration of putrescine is high in plants grown in conditions which favour the production of H⁺ ions, such as acid stress, or where ammonium ions are provided as the major nitrogen source.

Levels of polyamine compounds tend to be highest in actively growing tissues and organs, such as root tips, buds (Kulpa et al., 1985) and cells and tissues undergoing, or which have just undergone, morphogenesis (Tiburcio et al., 1987; Wang and Faust, 1986; Martin-Tanguy et al., 1988).

4.1.4. Interaction with growth regulators

Auxin activity. Exogenous polyamines have similar effects on plants to auxins, are directly involved in cell division (Bagni, 1966) and cell elongation (Bagni, 1986), and in certain circumstances can be used as a substitute for auxin treatment (Bagni et al., 1978). Both auxins and polyamines are thought to act at cell membranes together with Ca²⁺ ions. The promotion of peroxidase secretion by auxins depends on the presence of calcium but polycations cause a rapid release of Ca²⁺ from the plasma membrane (Kevers et al., 1985).

In *Sideratis* callus, 10 mM spermidine was able to annul the toxic effect of supra-optimal auxin or cytokinin levels (Sanchez-Graz and Segura, 1988). This may be related to the effects of polyamines on ethylene biosynthesis (see below).

Ethylene. Because polyamines and ethylene share a common precursor (S-adenosylmethionine, see Fig. 7.3) much attention has been devoted to their possible relationship. Polyamines can certainly inhibit ethylene biosynthesis, probably by inhibiting ACO (Apelbaum et al., 1981); equally, ethylene can inhibit polyamine synthesis, by reducing the activity of ADC (Palavan et al., 1984). Blocking ethylene production with the inhibitor AVG lends to increased spermidine production (Even-Chen et al., 1982). There are also many reports that DFMO and DFMA treatment of plants leads to increased ethylene production. However, in some cases ethylene can increase putrescine levels (Lee and Chu, 1992). It should be noted that these latter findings were made in rice coleoptiles, where, in contrast to most other plants, ethylene promotes elongation, so this may be a special case. It is clear that a relationship between polyamines and ethylene does prevail *in planta*. For example Bisbis et al., (2000a) showed that whereas fully habituated non-organogenic sugarbeet callus overproduces polyamines relative to its normal hormone-dependent counterpart, the reverse is true for ethylene production. In the same work, treatment of the habituated callus with both DFMA and DFMO reduced polyamine content and promoted ethylene production.
Gibberellic acid. In dwarf peas, gibberellic acid enhances the activity of ADC and ODC, with the result that polyamine levels in tissues are increased (Daie et al., 1982; Galston, 1983; Galston et al., 1983). The quantities of polyamines in genetic lines of peas differing in growth habit from very dwarf to tall, has also been found to be correlated with internode elongation and extractable gibberellin content. Inhibitors of polyamine synthesis also prevent internode elongation of dwarf lines by gibberellic acid (Smith et al., 1985). However polyamines seem to affect only cell division, whereas gibberellin-induced growth involves both cell division and cell elongation. It was therefore concluded that polyamines are involved with only some aspects of these processes.

Cytokinins. Like gibberellins, cytokinins have also been found to increase the polyamine content of several different kinds of plant tissue (Suresh et al., 1978; Cho, 1983; Palavan et al., 1984), apparently because they increase the activity of arginine decarboxylase. Polyamines (and to a lesser extent arginine and lysine) delay leaf senescence in plants, and so have a similar physiological effect as cytokinins (Slocum et al., 1984). It may also be significant that cytokinins commonly antagonise the effects of ethylene in accelerating leaf senescence and here again it is possible that the effects involve an interplay between ethylene and polyamines. Cadaverine, putrescine (1 mM), spermidine and spermine (0.1 mM), all inhibited the senescence of Rosa suspension cultures (Muhitch et al., 1983). Polyamines are thought to delay senescence by stabilizing membranes (Altman, 1979; Srivasta and Smith, 1982), by interfering with the release or activity of hydrolytic ribonuclease and protease enzymes (Galston et al., 1978), preventing lipid peroxidation, and protecting nucleic acids against nuclease degradation. Some synthetic chelating agents have similar effects (Shoemaker et al., 1983).

Jasmonate. Lee et al., (1996) showed that induction of chilling tolerance in rice led to increased levels of putrescine and spermidine and increases in the activities of ADC and SAMDC. The induction of tolerance was reduced by DFMA. Methyl jasmonate (see below) upregulated polyamine metabolism in thin layer explants of tobacco and this was associated with differences in growth and organogenesis (Biondi et al., 2001).

4.1.5. Activity in tissue cultures

Cell division. Putrescine (50-100 μM) and ornithine (25 μM) have been found to stimulate cell division and callus colony formation from Alnus protoplasts (Huhtinen et al., 1982); putrescine, spermidine and spermine improve the plating efficiency of sweet potato protoplasts through interaction with growth regulators (Eilers et al., 1988).

Unconjugated polyamines do not appear to promote callus initiation, but do seem to improve the growth of callus when combined with sub-optimum levels of auxin and cytokinin. Perhaps this is because other growth regulators promote natural polyamine synthesis? If DCHA was added to the medium, callus growth from Sideritis angustifolium hypocotyls was decreased in the presence of auxins (Sanchez-Graz and Segura, 1988).

Spermidine (10 μM) or spermine (100 μM) were found to stimulate the growth of Helianthus tuberosus tuber explants and callus in a similar way to 0.05 μM IAA (Bagni, 1966; Bertossi et al., 1965). Nicotiana sylvestris callus was stimulated by 90 μM putrescine (Oshmarina et al., 1982), and Sideritis callus by spermidine (Sanchez-Graz and Segura, 1988). Hormone-induced dedifferentiation of root cultures of Datura stramonium was markedly inhibited by DFMA and the effect could be reversed by the addition of putrescine (Ford et al., 1998).

The rapid growth of crown gall tumour tissue is thought to be associated with its high polyamine content (Kulpa et al., 1985).

Polyamines conjugated with phenolic acids such as cinnamic, coumaric, caffeic and ferulic derivatives (see Chapter 5) are found in many plants (Smith, 1977). Martin et al., (1985) found that putrescine could promote cell division if conjugated with a cinnamic acid. Out of several cinnamoyl derivatives tested, the best was caffeoyl putrescine, where 0.25 mM induced the maximum rate of cell division. Higher concentrations inhibited cell division, but were not toxic. When hydroxycinnamoylputrescine was added to a medium containing BAP, leaf discs of N. tabacum formed undifferentiated callus, instead of direct adventitious buds (Martin-Tanguy et al., 1988).

Adventitious shoot formation. Polyamines may regulate adventitious shoot formation. Inhibitors of polyamine synthesis have been found to reduce the number of adventitious buds formed from chicory roots (Bagni and Biondi, 1987) and cotyledons of Pinus radiata (Biondi et al., 1986). Shoot regeneration from apple leaf explants was enhanced.
by adding 0.1-1 mM putrescine to a medium containing 0.5 mg/l NAA and 2 mg/l BAP (James et al., 1988).

DMFO was ineffective in preventing adventitious bud formation in tobacco, although ODC appeared to be particularly involved in the production of polyamines required for subsequent growth of the primordia once they had been formed (Tiburcio et al., 1987). In maize, however DMFA promoted indirect shoot formation: embryo-derived calluses of maize were cultured for three months on a modified MS medium containing 9 μM 2,4-D and 0.5 mM DMFA, and then moved the cultures to the same medium with 1 μM 2,4-D (and no inhibitor) (Tiburcio et al., 1991). Many more calluses formed adventitious shoots than if the inhibitor had not been present. The number of plantlets obtained per callus was also four times greater and the plants developed more rapidly than the controls.

Adventitious roots. Inhibitors of polyamine synthesis have been found to prevent the formation of roots by thin cell layers excised from the floral stems of tobacco (Tiburcio et al., 1989; Torrigiani et al., 1990). Synthesis of endogenous polyamines increased prior to the formation of root primordia and during root growth on cuttings and hypocotyls of Phaseolus and Vigna treated with IBA (Friedman et al., 1982, 1985; Jarvis et al., 1983, 1985). Furthermore, in these plants, rooting was promoted by 50 mM spermine in the presence or absence of IBA, a result confirmed in Phaseolus by Fletcher et al., (1988) and Kakkar and Rai (1987). Spermidine promoted adventitious root formation on root callus of Sideritis, but not on hypocotyl callus (Sanchez-Graz and Segura, 1988). DMFO inhibits root formation from hypocotyl segments of Euphorbia esula and this can be partly overcome by treatment with IAA or 2,4D (Davis, 1997).

Light of 60 mmol m⁻² sec⁻¹ flux density is normally inhibitory to the rooting of micropropagated olive shoots, but was found not to be so if 160 mg/l putrescine was added to the rooting medium (Rugini et al., 1988). The compound promoted earlier rooting and increased the proportion of cuttings forming roots.

MGBG totally blocked rhizogenesis but strongly promoted tuber formation in Solanum tuberosum (Pal Bais and Ravishankar, 2002).

Flowering. Evidence is accumulating that polyamines are associated with floral development (see review by Evans and Malmberg, 1989). In thin cell layers of tobacco, DFMA diminishes adventitious bud formation, particularly that of floral buds (Tiburcio et al., 1987). Moreover, spermidine is able to induce the formation of flower buds (Kaur-Sawhney et al., 1988), an event, which has been said to be associated with the attachment of the compound to a unique protein (Apelbaum et al., 1988). On the other hand, in Chrysanthemum marifolium while flowering was inhibited by DFMO there was no effect of DFMA.

Promotion of embryogenesis. That polyamines are required for somatic embryo development was suggested by the discovery of Feirer et al., (1984, 1985) that the number of somatic embryos formed from wild carrot cultures was severely reduced by 1 mM DMFA, but that embryogenesis could be restored if 0.1 mM putrescine, spermidine or spermine were added to the medium. Prevention of embryogenesis by DFMA is accompanied by an inhibition of ADC activity and a reduction in polyamine levels (Robie and Minocha, 1989). DMFO was more effective than DMFA at inhibiting direct embryogenesis on Solanum melongena cotyledons; the addition of putrescine restored the incidence of embryo formation to that of the controls (Fobert and Webb, 1988). Altman et al., (1990) have observed that MGBG inhibited the growth of embryogenic clumps in suspension cultures of celery. DCHA and CHAP also have some inhibitory effect on carrot embryogenesis (Fienberg et al., 1984; Khan and Minocha, 1991).

Hypocotyl callus of Sideritis initiated with NAA failed to produce somatic embryos when transferred to a medium without regulators, but embryogenesis did occur if the initial medium contained 27 μM NAA and 0.01 mM spermidine (Sanchez-Graz and Segura, 1988). This compound also promoted plantlet formation from embryogenic clumps of celery (Altman et al., 1990).

It is becoming clear however that the absolute level of polyamines is not necessarily the critical factor. Thus Koetje et al., (1993) showed that in rice, DFMA suppressed suspension culture growth and plant regeneration from callus. DFMO inhibited suspension culture growth only in the absence of 2,4-D and had no effect on plant regeneration. Also in rice, while spermidine had an inhibitory effect on plant regeneration in fresh cultures, it promoted this process in long-term cultures, which showed a reduction in regeneration potential (Bajaj and Rajam, 1995). Treatment with DFMA also restored regeneration potential in the long-term cultures (Bajaj and Rajam, 1996). These effects were attributed to...
change in the spermidine/putrescine ratio. That this ratio is important was confirmed by Shoeb et al., (2001) who showed that during rice embryogenesis, genotypes with good regenerative capacity had a putrescine/spermidine ratio of 2.3, those with moderate capacity a ratio of 3.8 while one genotype with a ratio of 10 showed no response at all.

Inhibition, or lack of involvement in embryogenesis. Bradley et al., (1984, 1985) found that putrescine and arginine inhibited somatic embryo growth in wild carrot and could be used experimentally to synchronise embryo development. On a medium containing 40 mg/l arginine, cell suspensions or callus cultures of carrot produced somatic embryos asynchronously approximately 3 weeks after the auxin is withdrawn. But if 0.03 mM putrescine had been added to the induction medium, globular embryos were formed on the second medium (lacking the amine) but failed to develop further. Rapid and synchronous embryo growth of approximately half of these embryos occurred when they were moved to a medium without arginine.

No positive effect of added polyamines on either callus induction or somatic embryogenesis was observed from cultured nucelli of mangos (Litz, 1987) or with cotyledon explants of Solanum melongena (Fobert and Webb, 1988), although in the latter case DMFO (and to a lesser extent DMFA) caused there to be a reduction in embryogenesis and an increase in adventitious root formation. Polyamines did not significantly affect somatic embryogenesis in Pinus taeda.

5. STEROIDS

Until recently there was no definitive evidence that plant steroids were natural growth regulators - although application of both plant and animal steroids had been shown to elicit growth responses in plants (see below). There is now convincing evidence that brassinosteroids - of which the first was brassinolide (36) and of which group over forty related compounds are now known - are true hormones (Clouse and Sasse, 1998).

![brassinolide](image)

The pathways of brassinolide biosynthesis are complex (Yokota, 1999) but involve the conversion of squalene to cycloartenol as a first step. A number of mutants of pea and Arabidopsis have defects in this biosynthetic pathway (see e.g. Fujioka et al., 1997) and much work on the latter has been carried out using transformed and mutant cells of Catharanthus roseus (Fujioka et al., 2000).

Little is known of the mode of action of brassinolide and other steroids but they appear to be involved in stem and root elongation and xylem differentiation (Iwasaki and Shibaoka, 1991). Some of these effects appear to be the result of alterations in the auxin response, but not all, and there is evidence for a role for light, either via effects on biosynthesis or signal transduction (Li et al., 1996, Li and Chory, 1997, Brosa, 1999). The BRI1 gene in Arabidopsis appears to code for a brassinolide receptor (He et al., 2000).

In isolated Zinnia mesophyll cells brassinolide promoted tracheary element differentiation (Iwasaki and Shibaoka, 1991), a process inhibited by the growth retardant uniconazole – presumably through an effect on brassinosteroid biosynthesis. Brassinolide has also been shown to accelerate early cell division in regenerating leaf protoplasts of Petunia hybrida (Oh and Clouse, 1998) and Arabidopsis (Hu et al., 2000); it also increased growth in Onosma paniculatum cell cultures and enhanced shikonin formation (Yang et al., 1999). It is beneficial in somatic embryogenesis in coconut palm (Cocos nucifera) (Azpeitia et al., 2003) and in conifers and rice (Pullman et al., 2003) and, in combination with BA, two analogues of brassinosteroids enhanced both callus formation and shoot regeneration from cotyledons of lettuce (Nunez et al., 2004).
6. PHYTOTROPINS AND FUSICOCCIN

Highly specific receptor proteins for the auxin transport inhibitor naphthylphthalamic acid (NPA) [(8) in Chapter 5] have been detected in higher plants (see e.g. Rubery, 1990) suggesting that there exists an endogenous substance(s) which interacts with these receptors. This has not yet been identified with certainty but may be a flavonoid or flavonoid-like molecule such as quercitin (Table 5.2). It seems likely that the endogenous substances act in the same way as NPA, namely through the inhibition of auxin transport.

Similarly, the toxin fusicoccin (36) derived from the fungus *Fusicoccum amygdali* binds to a plant protein(s) with high affinity and specificity (see e.g. Aducci et al., 1996), suggesting the presence of endogenous ligand(s) - for which there is some supporting evidence although the identity of these is unknown. Fusicoccin appears to mediate the effects of the protein(s) — which include promotion of growth and stomatal opening — via transmembrane ion pumps.

7. SYSTEMIN

The peptide systemin (38), which is produced in plants from its precursor prosystemin in response to wounding, appears to have a role in the development of resistance to pathogens via induction of proteinase inhibitors I and II. This effect is probably mediated via jasmonic acid. In suspension cultures of *Lycopersicon peruvianum* systemin induced transient alkalisation of the culture medium and increased the activity of the ethylene biosynthetic enzyme ACS (Felix and Boller, 1995). The peptide is translocated - at least in tomato plants (Narvaezvasquez et al., 1994; Leon et al., 2001) - but the generality of its effects remain to be determined.

8. SALICYLIC ACID

Salicylic acid (SA; Table 5.2) occurs widely in plants, being synthesized from \(\gamma \)-cinnamic acid. It appears to have a role in systemic acquired resistance to pathogens and is able to induce various pathogen resistance proteins (Durner et al., 1997). It also appears to be the substance, which controls thermogenesis in the floral spadix of some *Arum* spp. While SA is undoubtedly important in these cases, the generality of its effects and its possible function as a hormone remain to be proven.

9. NITRIC OXIDE

The important role of nitric acid (NO) as a messenger in animal systems is by now well established. However, there is increasing evidence that it has an important role in plant growth and development (Beligni and Lamattina, 2001a, b). Plants certainly have the necessary enzymic apparatus to produce the gas (Barroso et al., 1999) and there have been reports of effects on plant disease resistance (Delledonne et al., 1998), senescence (Leshem et al., 1998) and stomatal closure (Mata and Lamattina, 2001). Very little has been done in relation to plant tissue and organ culture but the use of an NO donor - sodium nitroprusside - and an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine, in callus cultures from *Kalanchoe daigremontiana* and *Taxus brevifolia* indicates the involvement of NO in apoptosis (programmed cell death) (Pedroso et al., 2000).
10. JASMONIC ACID

Jasmonic acid (JA) (39) and its methyl ester, methyl jasmonate (Me-JA) (40) have been shown to occur in many plants and synthesis is promoted by wounding via the action of systemin which activates a pathway in which linolenic acid is released from membranes (Ryan, 2000). Since JA induces the synthesis of a wide range of defence proteins, some of the effects of systemin are thought to be mediated by this compound (see also under the section on wounding below).

JA has been used by a number of workers to modulate production of various secondary metabolites in tissue culture. Thus, Yukimune et al., (1996) showed that Me-JA increased paclitaxel and related taxane production in cell cultures of Taxus spp. Reports of developmental effects in tissue culture are scanty but Camloh et al., (1996, 1999) showed that JA stimulates the development of rhizoids and shoots in leaf cultures of Platycerium bifurcatum and can promote division of fern protoplasts. On the other hand Swiatek et al., (2002) showed that jasmonate can freeze synchronized tobacco (Nicotiana tabacum) BY-2 cells in both the G1 and G2 stages of the cell cycle.

12. MYO-INOSITOL

myo-Inositol (41) is an important component in plant metabolism (see e.g. Keller et al., 1998) where it is involved in the synthesis of polyols, cell wall components and phosphoinositides. myo-Inositol often improves the growth of plant cultures but there is little evidence for a regulatory role – despite the fact that a derivative, myo-inositol-1,4,5-triphosphate, is a key factor in the phosphatidylinositol signalling system. Methylated derivatives such as oninicitol and piritol seem to have important properties as osmoprotectants (Ishitani et al., 1996; Nelson et al., 1998).

It should be noted however, that there is increasing evidence for interactions between simple sugars such as glucose, other than those concerned with the purely nutritional function of the carbohydrate (Gibson, 2004). For example, it has been shown that glucose enhances the degradation of a key transcriptional regulator in the ethylene signal transduction chain (Yanagisawa et al., 2003). This role of monosaccharides may have considerable implications for plant cell and tissue culture.

13. OLIGOSACCHARINS AND ELICITORS

Oligosaccharins are complex sugars composed of one or more different monosaccharides. The three main types appear to be β-glucans (42), galacturonides (43) and xyloglucans (44). It has been suggested that these compounds naturally regulate cellular processes when they are released from cell walls by hydrolytic enzymes, which are activated by changes in pH, or by the presence of growth regulators such as auxins and cytokinins (Mohen et al., 1985; Mutaftschiev et al., 1987; Tran Thanh Van and Mutaftschiev, 1990). The degree of oligosaccharin polymerisation is critical for determining the biological activity of experimental samples prepared from plant cell walls using an
endopolygalacturonase enzyme or hydrolysis with a base (Tran Thanh Van and Mutaftschiev, 1990).

Synthesis of the enzymes (such as β-1,3-gluconanase), which are responsible for the release of oligosaccharides, can be both induced and inhibited by auxin (York et al., 1984; Mutaftshiev et al., 1987) and mixtures of an auxin and a cytokinin (Mohen et al., 1985). Other growth substances may also be involved (Albersheim et al., 1988). Oligosaccharins have been shown to be capable of inducing cell enlargement and cell division in a similar fashion to IAA (York et al., 1984; Mutaftshiev et al., 1987) and to be capable of regulating morphogenesis (Tran Thanh Van et al., 1985; Mutaftshiev et al., 1987). Cell elongation caused by auxin can be either enhanced or inhibited by oligosaccharins. Because it is difficult to explain apical dominance satisfactorily by the translocation of IAA, Martin (1987) suggested that inhibition of lateral bud growth might be due to auxin at the apex inducing the action of β-1,3-glucanase. Oligosaccharins, which are consequently released from the walls of apical cells might then be transported to lateral buds, inhibiting their growth.

The effects of exogenous oligosaccharins are dose and pH dependent and can depend on the time at which they are introduced to the culture and the relative concentrations of auxin and cytokinin present in the medium (Mutaftschiev et al., 1987; Tran Thanh Van and Mutaftschiev, 1990). Their mode of action is not determined, but they are thought to modulate the transcription of specific genes (Guern, 1987).

Interest in these substances by workers in plant cell and tissue culture seems to have diminished in the last decade, but this may be due to difficulties in obtaining sufficient of the compounds to carry out rigorous tests. Much more interest has been generated by elicitors - molecules of microbial origin that stimulate a number of defence responses in plants (Hahn, 1996). Such substances come in many guises - oligosaccharides, glycopeptides, peptides and proteins. Equally, substances such as alginates can often mimic the effects of elicitors (Akimoto et al., 1999). Elicitors induce the formation of phytoalexins and other metabolic changes [for example increases in JA (Gundlach et al., 1992)] in plant cells including those in suspension and tissue cultures. These properties have found some application by workers seeking to optimise the production of various secondary metabolites by tissue cultures. Thus, pterocarpen and isoflavone levels in chick pea cultures can be modulated by elicitors (Barz and Mackenbrock 1994) and large increases in sanguinarine production were observed in suspension cultures of Estesicholzia californica after treatment with elicitors prepared from yeast extract, Colletotrichum lindemuthianum and Verticillium dalhiae (Byun et al., 1992). Treatment of late experimental phase hairy root cultures with pectinase led to a 150% increase in tabersonine (Rijhwani and Shanks, 1998) and elicitors from Colletotrichum lindemuthianum increased artemisin concentration in hairy root cultures of Artemisia annua (Wang et al., 2001).
14. STEROLS

Plants synthesize a complex mixture of sterols; stigmasterol (45), sitosterol (46) and 24-methylcholesterol (47) are usually major components (Hartmann, 1998). They are important in the control of membrane fluidity but, perhaps equally importantly, they are involved in the synthesis of brassinosteroids (for a review see Piironen et al., 2000). Indeed the phenotype of the dwarf pea mutant lkb is ascribed to a block in sterol metabolism leading to reduced levels of sitosterol and brassinosteroid (Nomura et al., 1999). This may account for the effects of the sitosterol/24-methylcholesterol ratio on cell division in tobacco (Schaller et al., 1998). It should also be noted that some of the effects of ‘anti-gibberellins’ may be due to effects on sterol metabolism (Rademacher, 2000). Given these roles it is unsurprising therefore that sterols may influence growth and development in culture. Thus, stigmasterol and vitamins D₂ (48) and D₃ (49) (which are required in mammals for proper bone structure), have been found to promote adventitious root formation in plants (Pythoud et al., 1986; Talmon et al., 1989). In shoot cultures of some cherry and apple cultivars, 1-10 ml/l of a water soluble formulation of vitamin D₂ enhanced the rate of propagation in early subcultures. After many subcultures with 10 ml/l, leaves became yellow (Druart, 1988).

Rooting can be induced by relatively low concentrations of vitamin D₃ (e.g. 0.1 mg/l) but yet there is no damage to the plant from relatively high concentrations. Green cuttings of Populus tremula rooted best after being pre-dipped for 24 h at room temperature into a 0.25 μM (95.7 mg/l) solution which also contained 50 μM (10.2 mg/l) IBA (Pythoud et al., 1986). The effect of vitamins D₂ and D₃ on stimulating root formation has been found to be additive or synergistic with that of auxins such as NAA (Moncousin and Gaspar, 1983), or IBA (Buchala and Schmid, 1979; Pythoud et al., 1986); the number of roots formed depending on the age of the cuttings, the concentration of the compounds and the timing of the treatment. The rooting of cuttings produced by micropropagation has been said to be improved by adding a small amount of one of the D vitamins (e.g. 0.1-1 mg/l to an auxin preparation) (Pittet and Moncousin, 1982).

15. UNUSUAL REGULANTS

15.1. COMPOUNDS WHICH CAN ARREST APICAL GROWTH

In shoot cultures, it is important to encourage the growth of lateral shoots, but genotypes vary in their natural degree of apical dominance: some produce a few long shoots while others have shorter shoots, but many laterals are formed. Perhaps genotypes with strong apical dominance may have a high natural...
auxin content, or a more sensitive auxin receptor system (Newbury, 1986).

Although cytokinins are most frequently added to the medium to promote lateral branching, other techniques can be used to assist the process. Examples are reducing apical dominance by laying explants on their sides, removing the tips of shoots manually (Bressan et al., 1982) and at each harvest subculturing the basal clump of tissue from which shoots have been removed. Some regulants can also help to remove apical dominance.

15.2. DIKEGULAC

Dikegulac (50) is a compound which, when sprayed over entire plants, is capable of arresting the growth of apical buds. Axillary buds are not inhibited and therefore grow out to produce a bushy plant. Dikegulac has been used routinely for this purpose on pot azaleas. Adding 500 or 1000 mg/l sodium dikegulac to the medium in which shoot cultures of sweet cherries were grown, caused an increased number of shoots to be developed from axillary buds (Snir, 1982).

15.3. METHYL LAURATE AND OPE

Methyl esters of fatty acids have been applied routinely to field-grown tobacco to prevent the growth of side shoots. Voyiatzi and Voyiatzis (1988) found that 100 mg/l methyl laurate (MELA) (51), added to MS medium containing 0.3 mg/l IAA and 3 mg/l BAP, increased the number of shoots produced by Rosa hybrida shoot cultures. The effect of the compound was initially similar to manual tipping but shoot number continued to be increased during further subcultures of the basal clump even though MELA was not then present. TIBA (3 mg/l) had an effect similar to manual tipping but only during the first passage.

When Jackson et al., (1977) germinated seeds of Colocasia esculenta on Linsmaier and Skoog (1965) medium containing 5 mM of the surfactant octadecylpolyethoxethanol (OPE), they found that growth of the seedlings was restricted, but this was followed by the appearance of 5-10 shoots. Trial of this surfactant on shoot cultures is not reported.

15.4. GLYPHOSATE

Glyphosate (52) is a general purpose post-emergence weedkiller which is translocated within both xylem and phloem. Winata and Harvey (1980) reported that sub-lethal doses, added to the medium used to induce callus from axillary buds of alfalfa, produced growth responses similar to those of more common growth regulators. In the presence of 0.17 mg/l glyphosate, the cultures produced rather more shoots than normal. If mother plants of some clones of lowbush blueberry had been sprayed with 250 or 500 mg/l glyphosate, single bud explants produced more shoots than usual during in vitro culture. Scorza et al., (1982, 1984) similarly found that when stem explants of cranberry were dipped in a 102.5 mg/l glyphosate solution for 30 seconds or a 321.2 mg/l solution for 5 seconds the development of both axillary and adventitious shoots was greater than usual when the explants were cultured afterwards on Anderson (1975) rhododendron medium containing 2-iP. Lower or higher levels of glyphosate were respectively ineffective or toxic. Stepwise selection carried out with increasing glyphosate concentrations to produce suspension cultures of alfalfa, soybean and tobacco leads to the production of glyphosate tolerant lines (100 fold more resistant than the original culture) (Widholm et al., 2001).

15.5. ACTIVATED CHARCOAL

Finely-divided activated charcoal is often added advantageously to media at different stages of tissue cultures. Activated charcoal is not a growth regulator, but a discussion of its properties is conveniently included in this chapter on account of
its ability to modify medium composition, and thereby, in some circumstances, improve or regulate plant growth in vitro. The properties of activated charcoal vary according to the method by which it has been prepared, and not all brands are equivalent. A clear difference in the effectiveness of charcoal of different origins in promoting androgenesis was reported by Heberle-Bors (1980). As many of the beneficial effects of charcoal depend on its ability to absorb a wide range of compounds, results from even the most effective brands are liable to be unpredictable; inhibition of growth and morphogenesis are frequently observed.

Five kinds of advantageous uses of charcoal have been reported depending on the type of culture:

- to absorb compounds secreted from cultured tissues or present in agar that would otherwise inhibit growth;
- to prevent unwanted callus growth;
- to promote morphogenesis, particularly embryogenesis;
- to promote root formation (where some of the beneficial effect seems to be due to its ability to exclude light from the medium);
- to act as a reservoir during the production of secondary plant products in cultures;

A recent review on the effects and mode of action of activated charcoal may be found in Pan and van Staden (1998).

15.5.1. Mode of action of charcoal

Activated charcoal (AC) is prepared by the controlled carbonisation of wood in steam or air: it possesses strong absorptive properties and is used in chemistry to absorb both gases and dissolved solids. Activated charcoal added to tissue culture media was commonly thought to remove only growth inhibitory substances exuded by tissues or present in the ingredients of the medium; but it is now clear that promotory substances can also be absorbed and made unavailable.

Weatherhead et al., (1979) pointed out that AC has the potential to absorb some inorganic ions. A sample of fresh unused AC analysed for these authors contained many inorganic impurities, of which iron, aluminium, nickel and magnesium might have had physiological significance, but there was no evidence that these metals were donated to culture media.

15.5.2. Absorption of growth inhibitors

Charcoal can assist in absorbing toxic substances, which may be present in media ingredients, produced as a result of autoclaving, or exuded by cultured tissues, particularly when they are first transferred to media. Fridborg et al., (1978) showed that AC could adsorb some phenols commonly produced by wounded tissues, and this was later confirmed by Weatherhead et al., (1979). Extracts of the charcoal that had been incubated in Bourgin and Nitsch (1967) agar medium showed that it had adsorbed 5-hydroxymethyl-furfural (HMF). This compound was thought to have originated from autoclaving sucrose in the medium under mildly acid conditions. Furthermore, HMF was shown to be somewhat inhibitory to embryogenesis in tobacco anther culture, unless activated charcoal was present (Weatherhead et al., 1978).

Charcoal is sometimes used in bacteriological media to remove inhibitory fatty acids present in agar. That some agars can contain substances capable of hindering plant growth and morphogenesis was shown by Kohlenbach and Wernicke (1978). Somatic embryo formation from tobacco anthers on an agar medium was improved when agar was presoaked with water dialysed against activated charcoal. Better results were obtained by using highly purified Difco Noble agar rather than Difco Bacto agar. Tyagi et al., (1980) also reported that effective concentrations of charcoal for promoting embryogenesis from Datura pollen, varied according to the type of agar employed. The atypical growth of Pinus radiata shoots on some brands of agar could be prevented if AC was added (Nairn, 1988).

15.5.3. Adsorption of organic compounds

Growth regulators. Fridborg and Eriksson (1975) suggested that activated charcoal removed growth regulators, particularly auxin, from the medium and evidence has indeed accumulated to show that this does occur. A protective coating of charcoal is able to protect seeds from herbicides in soil mixtures (Taylor and Warholic, 1987). In tissue culture media 0.1% (w/w) AC can effectively absorb 10 mM IAA (1.75 mg/l) and 10 mM IBA (2.03 mg/l) from liquid MS medium to the extent that these compounds can no longer be detected by high performance liquid chromatography (limit 0.05 mg/l) (Nissen and Sutter, 1988, 1990).

Examples of growth regulators in culture media, which have been rendered ineffective by AC, are shown in Table 7.1. Note that cytokinins and abscisic acid, as well as auxins, can be made unavailable. Jona and Vigliocco (1985) added charcoal (together with GA3) to the medium on which Prunus persica
shoots were to be elongated, finding that it overcame the negative effect of the high rate of cytokinin previously used in a shoot proliferation medium.

AC can make comparatively high concentrations of growth regulators inaccessible to tissue cultures. Nissen and Sutter (1990) recommend that 10-100 times more auxin should be added to a medium if high concentrations of activated charcoal are also introduced. In cultures of palms, where up to 3% AC is added to prevent blackening, it is necessary to add 0.15-0.5 mM 2,4-D to induce embryogenesis (i.e. 5-20 times what would normally be required) (Tisserat et al., 1979; 1981). To initiate embryogenic callus of oil palm (*Elaeis*), Paranjothy and Rohani (1982) had to use 10 times the level of auxin that would otherwise have been effective, and Nwankwo and Krikorian (1983), using 0.5 g/l AC, increased the concentration of NAA or 2,4-D from 5-10 mg/l to 10-70 mg/l. Activated charcoal is capable of trapping gases, and so may remove ethylene or other gases, released from cultured tissues (Ernst, 1974; Johansson et al., 1982, Mensualisodi et al., 1993), although in the latter case this absorption did not seem of itself to improve the growth of *Anemone* seedlings in culture since they produced more of the gas in the presence of active charcoal than in its absence.

Organic nutrients. AC may not only remove growth regulators from the medium, but also some organic nutrients. Weatherhead et al., (1979) found that tobacco anther cultures were deprived of thiamine-HCl and nicotinic acid when 0.3% AC was added to Bourgin and Nitsch (1967) H medium. Biotin, folic acid and pyridoxine are also likely to be absorbed, but not *myo*-inositol

Excluding light from the medium. If sufficient AC is added to the medium it can exclude light sufficiently to promote physiological reactions, which occur in the dark. The absorptive properties of the substance are incidental, for lamp-black carbon or graphite can be used equally effectively.

Altering the pH of the medium. Several authors (Langowska, 1980; Rahbar and Chopra, 1982; Smith and Krikorian, 1990) have noticed that the presence of activated charcoal causes the pH of culture media to be higher than they would otherwise have been. Owen et al., (1991) found that an increase of ca. 0.75 units occurred in the pH of MS medium in the presence of 0.5% charcoal; the pH change occurred partly during autoclaving and partly in the subsequent first 14 days of medium storage. A similar increase in pH occurred with both hydrochloric acid washed and neutralised activated charcoal (Sigma Chemical Co.), but the final pH of the medium containing the former was ca. 6.2; that containing the netralised charcoal was ca. 6.7. It has been suggested that increase in pH could be due to the capacity of AC to absorb cations (Langowska, 1980).

<table>
<thead>
<tr>
<th>Growth regulator</th>
<th>AC % w/v</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg/l NAA</td>
<td>1</td>
<td>Fridborg & Eriksson (1975b)</td>
</tr>
<tr>
<td>0.01-10 mg/l NAA & IAA</td>
<td>1</td>
<td>Constantin et al., (1976, 1977)</td>
</tr>
<tr>
<td>5mg/l BAP</td>
<td>0.3</td>
<td>Maene and Debergh (1985)</td>
</tr>
<tr>
<td>10 mg/l BAP</td>
<td>0.5</td>
<td>Takayama & Misawa (1980)</td>
</tr>
<tr>
<td>2,4-D and 0.03 mg/l IAA + 1 mg/l kinetin</td>
<td>0.5</td>
<td>Scholl et al., (1981)</td>
</tr>
<tr>
<td>0.002-2 mg/l BAP & 2-iP + up to 300 mg/l NAA</td>
<td>0.3</td>
<td>Weatherhead et al., (1978)</td>
</tr>
<tr>
<td>1 mg/l NAA + 10 mg/l BAP</td>
<td>0.5</td>
<td>Steinitz & Yahel (1982)</td>
</tr>
<tr>
<td>ABA in cultured anthers</td>
<td>1&10</td>
<td>Johansson et al., (1982)</td>
</tr>
<tr>
<td>2.64 mg/l ABA</td>
<td>1</td>
<td>Johansson (1983)</td>
</tr>
</tbody>
</table>

As pH can influence culture growth and morphogenesis, it is probable that at least some of the effects of activated charcoal on plant cultures can be attributed to the changes it induces in the pH of the medium.

Other effects. It should be noted that sucrose hydrolysis is accelerated during autoclaving of media containing activated charcoal (1%) resulting in acidification and increase in osmolarity (Druart and Dewulf, 1993).

16. UNIDENTIFIED GROWTH FACTORS

16.1 THE WOUND RESPONSE

Wounding is a commonplace occurrence for plants in the field or the laboratory, whether herbivory, mechanical stress or attack by insects, infection by microorganisms or nematodes and so on. Equally, in plant manipulation for tissue and organ
culture, wounding is a feature of the techniques whether this be shear stresses in liquid culture, excision of plant parts and, more recently, in plant transformation - for example via particle guns or Agrobacterium.

It has become clear in the last decade that the response of plants to wounding - by whatever means - is extremely complex, but also tightly regulated. It has long been known that wounding leads to increased ethylene biosynthesis and that the effect is dependent on the expression of wound-specific genes for ACS. However, it is now clear that this is only part of the story. Mention has already been made of the induction of the mobile peptide systemin by wounding and of the fact that this in turn leads to increased synthesis of ethylene and jasmonate. This results in a galaxy of effects including changes in ion fluxes, induction of pathogen related proteins, proteinase inhibitors, antioxidant enzymes as well as other processes leading to increased lignification and cross-linking of cell wall components (e.g. Bradley et al., 1992; McGurl et al., 1994; Grantz et al., 1995; Hiraga et al., 2000). Aside from mechanical wounding itself other dimensions of this syndrome are provided by elicitors and oligosaccharins, which may induce similar and/or complementary effects. Indeed, it is notable that many other natural and unnatural stresses such as heat, cold, drought, salinity and synthetic growth regulators can also initiate metabolic events similar to those caused by wounding.

The key to understanding these phenomena probably lies in the fact that whatever the stimulus or signal - environmental or endogenous - the initial responses are mediated by systems similar to those found in animals, monomeric G-protein and protein kinase cascades, phospholipid signalling and so on. Moreover, these signalling pathways are not wholly independent but may interact in complex ways (for a review see Hall et al., 2002).

Given the foregoing, it is unsurprising therefore that wounding tissue often leads to effects such as those seen after application of various substances such as hormones, elicitors and synthetic growth regulators which are described earlier in this chapter - for example effects on morphogenesis. However, we can only see through a glass darkly at this stage and the effect of wounding on any one system will depend on a multitude of factors, which we cannot presently define.

17. HABITUATION

The capacity of cells to change from a state of being dependent on the exogenous supply of a particular substance to one, in which they are wholly - or partly - sufficient, has been termed habituation: cells or tissues are said to be habituated to substance X or substance Y. The habituated condition of cultured cells or tissues is usually self-perpetuating from one vegetative generation to another, but can be reversed. Clearly habituation can only occur to organic molecules, which can be synthesized by cells, and not to basic nutrients.

Although habituation usually describes a change in the requirement of cultured tissues, from needing an exogenous supply of a substance, to becoming self-sufficient, the definition could be extended to include all cells or tissues capable of self-sufficiency, whether or not the trait was developed in culture. Tissues habituated towards the production of a particular substance or type of substance are autotrophic for that compound, while non-habituated tissues are heterotrophic.

It has been found that in vitro habituation does not necessarily result in complete independence from exogenous growth factors. Meins (1974) showed that cells were capable of shifting into a variety of stable states of cytokinin-habituation and could also undergo changes into states of greater or lesser habituation (see below). Kevers et al., (1996) showed that fully habituated organogenic sugar beet calluses responded to auxins, both in terms of growth and ethylene production and that these treatments also resulted in changes in contents of cytokinin, polyamines and ajmalicine; a hypothesis supported by the work of Gaspar et al., (1991) with sugar beet calluses. Habituated tissues are often differentiated. Highly embryogenic callus [e.g. of Citrus (Button et al., 1974; Spiegel-Roy and Kochba, 1980)] and shoot-forming calluses [e.g. of sugar beet (de Greef and Jacobs, 1979; Van Geyt and Jacobs, 1985)] have been capable of growth and morphogenesis without the addition of exogenous growth regulators.

Habituation to growth regulators occurs commonly in plant tissue cultures, but plant cells may also become habituated to other organic compounds normally added to culture media to support cell growth. For example, Ikeda et al., (1979) recorded the habituation of soybean cells to thiamine and its precursors and Savage et al., (1979) the recovery of a
pantothenate autotroph from a cell line of *Datura innoxia* which previously required this vitamin for growth.

17.1. GROWTH FACTOR DEPENDENCE

Auxin- or cytokinin-habituations are found relatively frequently in tissue cultures and are generally very stable. Cells in this condition can remain independent of an exogenous growth factor supply for many generations, although typically the condition is eliminated when plants are regenerated. However, as noted above, habituation to a growth regulator does not imply insensitivity to it.

Kerbauy *et al.*, (1986) found that cytokinin-autotrophic callus could be isolated from tissue explanted directly onto media without cytokinin, and Jackson and Lyndon (1988) have showed that explants removed from the meristematic regions of tobacco are most likely to form cytokinin-autotrophic callus. Thus callus derived from internode pith of juvenile plants was autotrophic, but that derived from similar regions of a mature plant was not. Pith removed from a few internodes below that, which was habituated gave rise to callus which could become cytokinin-habituated when cultured at 35°C. Cheng (1972) obtained auxin autotrophic callus from pith isolated near the apex of *Nicotiana glauca x N. langsdorfii* hybrids, but auxin-requiring (heterotrophic) callus from pith taken from below the 7th node.

17.2. INDUCTION OF HABITUATION

Meins (1974) showed that a cytokinin-habituated state can be induced in tobacco tissue by incubating explants at 35°C without cytokinin. In subsequent incubation at 25°C, no cytokinin was required for callus initiation or growth, unlike tissue incubated throughout at this temperature. However, cells habituated at 35°C required exogenous cytokinin once again if incubated at 16°C (Binns and Meins, 1979). Presumably endogenous synthesis of cytokinin had decreased at the lower temperature (or there was an accelerated rate of degradation). A reversal of cytokinin habituation by culturing tissue at 16°C, instead of the usual 26°C, was reported by Syono and Furuya (1971); a reversal of habituation is also commonly brought about by the regeneration of complete plants from cell clones autotrophic for cytokinin and/or auxin. Explants from the regenerated plants are unable to grow in culture without addition of the growth factor, which was produced endogenously by cells in the original habituated state. Bennici and Bruschi (1999) showed that the formation of callus habituated for both auxin and cytokinin could be induced with high frequency after a very short treatment of hypocotyls of *Nicotiana bigelovii* with 2,4D.

17.3. THE CAUSES AND EFFECTS OF HABITUATION

Meins (1974) and Meins and Lutz (1980) argued that reversible habituation results from an altered expression of the genes already present in the cell (their repression or derepression) and is epigenetic by nature, because the changes observed:

- are directed rather than random;
- are restricted by the genetic capacity of the cell;
- are potentially reversible;
- involve a large number of cell conversions per generation, and
- do not alter the totipotency of the altered cell.

Meins and Binns (1978) and Meins (1987) have proposed that cell division factors can induce the biosynthesis of naturally-occurring substances of the same kind, through a positive feedback mechanism (Fig. 7.5). It is not clear whether the rate of biosynthesis is accelerated or the rate of metabolism increased, and so one could predict either of the two scenarios shown in the figure.

- If according to the first case, kinetin were to cause the natural production of zeatin to be increased, and if this natural cytokinin were not metabolised sufficiently rapidly, the increase in overall cytokinin concentration would cause the level of zeatin biosynthesis to increase even further. Withdrawal of the kinetin trigger to zeatin production, would then leave the tissue in a cytokinin-autonomous state.
- The second hypothesis presumes that biosynthesis of zeatin and/or other natural cytokinins is normally balanced by the metabolism of growth substance which is not required for immediate use. This condition would be disturbed by the presence of an inhibitor of cytokinin metabolism which decreased the rate of biodegradation causing an increase in the level of free natural cytokinin. An elevated level of free growth substance must then be supposed to lead to an autocatalytic increase in biosynthesis.

Case 1 in Fig. 7.5 is supported by the discovery that kinetin can induce the increased accumulation of zeatin riboside in callus tissue (Hansen, reported in Meins, 1987). A similar condition is occasionally noted in shoot cultures of some species, where high endogenous levels of cytokinins are found after several subcultures (Boulay and Franclet, 1986; McCulloch, 1988). That case 2 can also occur, is shown by the findings that thidiazuron can inhibit the
cytokinin oxidase enzyme (see Chapter 4), and can induce cytokinin autonomous growth, for example in some *Phaseolus lunatus* genotypes (Mok et al., 1982). However, this is certainly not the whole story. Thus, Lambe et al., (1997) have presented evidence that there are marked changes in DNA methylation during long-term callus culture and suggest that auxin has a role in this process (and see also below under ‘Effects of habituation’).

17.4. GENETIC CONTROL

Although habituation of cultured tissues is usually reversible, it is now known that heterotrophic cells can also become permanently autotrophic as a result of somatic mutation in the genes governing the production of endogenous growth factors. Evidence that this might be the case was discovered by several workers; callus capable of growing on media without the addition of growth substances was, for example, obtained by exposing cultures to gamma radiation (Pandey and Sabharwal, 1979); the ability of some genotypes of *Phaseolus lunatus* to grow in vitro without the presence of cytokinin appeared to be under genetic control (Mok and Mok, 1979). Delbrel and Jullien (1994) using different genotypes of *Asparagus officinalis* demonstrated the random occurrence of highly embryogenic tissue, which could be continuously subcultured on hormone-free medium. Genetic analysis demonstrated that this was due to a dominant monogenic mutation.

Callus, re-initiated from plants derived from habituated sugarbeet callus, was again found to be habituated (Coumans et al., 1982), as were plants regenerated from auxin- habituated callus of *Nicotiana bigelovii* var. *quadrivalvis* (Bennici, 1983).

Examples of stable and sexually transmissible ‘habitutions’ are provided by Meins et al., (1983) and Meins and Foster (1986).

Fig. 7.5 Two possible explanations of growth regulator habituation in plant cultures.

17.5. EFFECTS OF HABITUATION

Habituated cultures show many differences in metabolism to normal cultures. This can take the form of changes not only in the growth regulators to which the callus has become habituated but also of others. Thus, Bisbis et al., (2000a) showed that fully
habituated non-organogenic sugarbeet callus produces less ethylene and more polyamines than its hormone-dependent counterpart. There are also marked differences between habituated and non-habituated lines in terms of general metabolism. Thus, both Poder et al., (1998) and Bisbis et al., (2000b) showed that cyanide-resistant respiration was much higher in habituated than in normal callus (both organogenic and non-organogenic). Likewise Hagege et al., (1992) demonstrated that levels of antioxidant enzymes (superoxide dismutase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase and ascorbate reductase) were much higher in habituated sugarbeet callus than in the normal form and has suggested (Hagege, 1996) that in general, habituated cells have very efficient oxidant scavenging systems. On the basis of changed metabolic patterns in habituated calluses including the high activity of antioxidant enzymes, accumulation of proline and polyamines reduction in tetrapyrroles and lipid peroxidation. Ledily et al., (1993) proposed that such systems were in effect under permanent stress and they drew comparisons with animal cancer cells and vitrified tissue and later suggested (Gaspar et al., 1998) that the changes serve to lock the cells in their habituated state.

18. THE TIMING AND DURATION OF GROWTH REGULATOR TREATMENTS

18.1. GROWTH REGULATOR EXPOSURE

It is common practice to vary the growth regulators to which tissues are exposed in vitro; for instance, callus is often initiated on a medium with one set of growth regulators and then moved to a second medium with different regalants for the induction of morphogenesis. Both the nature and the duration of the first and second treatments can be important and, because it is inconvenient to move explants frequently between one medium and another, recommended protocols are often a compromise between the most effective timings and durations of growth regulator exposure, and what is practical. Experimentation is complicated by the difficulty of determining growth regulator carry-over from one stage to another (for example, exogenously-applied auxins can become conjugated to other molecules from which they may be released when auxin is withdrawn from the medium), and the difficulty in determining the level of endogenous growth substances, (particularly cytokinins) which may be complementing, or antagonising exogenous treatments (Phillips, 1987).

The effect of the nature of the growth regulators in an induction medium, and the combined effects of concentration and timing, are well illustrated by some of the results of Behki and Lesley (1980). Tomato leaf disc explants were cultured for varying lengths of time with growth regulators, which induced callus formation. Small pieces of the callus (or the explant itself when transfer was effected after 1 day) were then moved to a medium containing other regualants known to be capable of inducing shoot formation. The results are illustrated in Fig. 7.6.

Whether there was continued callus growth, or the formation of adventitious shoots or roots, depended on the nature of the induction medium and the time at which transfer took place. Auxin is necessary early in the culture period to induce cell proliferation (Phillips, 1987).

18.2. PULSE TREATMENTS

When cultured material is exposed to a substance for only a short period of time, it is frequently said to have been given a pulse of that substance or regulant. Sometimes a pulse of a growth regulator at a relatively high rate can be as effective as a lower concentration, which is present continuously (Thomas and Tran-Van, 1982). Cotyledonary node explants of Calocedrus decurrens, for example, produced axillary shoots if exposed to 7-10 μM BA in the proliferation medium, or to 125 μM BA for 3 h (after which they were moved to a regulant-free medium) (Jelaska, 1987). Adventitious buds of Picea alba developed faster after a pulse of 250 μM BA for 2 h than if placed continually on a medium containing 5 μM BA (Von Arnold and Eriksson, 1985).

By supplying pulses of a growth regulator for progressively longer periods, it is possible to monitor the gaining of competence and the onset of determination in tissues. These processes can be further studied by the experimental application of metabolic inhibitors at specific times. Explants require to be exposed to a growth regulator for a minimum length of time for a given morphogenic event to be initiated.

Hussey (1977) showed that morphogenesis in Freezia could be determined by the duration of
exposure to growth regulators. When explants of soft stem tissue were placed for 12 h in a liquid culture medium containing 0.12 mg/l NAA and afterwards transferred to another medium without NAA but containing 0.5-1.0 mg/l BA, meristems were formed which gave rise directly to shoots. Increasing the duration of the preliminary NAA treatment had the same effect as increasing the concentration of NAA during an initial 12 h period, and induced the formation of callus having the capacity to form only roots. Continuous exposure of explanted tissue to NAA also caused the formation of callus, but its morphogenic capacity was determined by the concentration of the auxin: 0.015-0.03 mg/l NAA induced shoot-forming callus; continuous exposure to higher concentrations caused callus to be produced which mainly gave rise to roots.

Similarly thin cell layers from internodes of 2 week-old *Psophocarpus tetragonolobus* plants needed more than 5 days incubation with 1 μM IAA and 10 μM BA to become committed to produce adventitious shoots; but when exposed to the regulants for longer than 10 days, the tissues also produced callus and their capacity to form shoot buds declined (Hahn et al., 1981; Table 7.2).

<table>
<thead>
<tr>
<th>Induction medium</th>
<th>Regeneration medium</th>
<th>Time (days) in induction medium before transfer to regeneration medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/l 2,4-D</td>
<td>0.1 mg/l NAA + 2 mg/l BAP</td>
<td>1 - Cellus; 5 - Cellus; 8 - Cellus; 12 - Cellus; 18 - Cellus; Not moved</td>
</tr>
<tr>
<td>0.04 mg/l 2,4-D</td>
<td>0.1 mg/l NAA + 2 mg/l BAP</td>
<td>1 - Adv. shoots; 5 - Adv. shoots; 8 - Adv. roots; 12 - Adv. roots; 18 - Adv. roots</td>
</tr>
<tr>
<td>0.5 mg/l 2,4-D + 1 mg/l BAP</td>
<td>0.1 mg/l NAA + 2 mg/l zeatin</td>
<td>1 - Adv. shoots; 5 - Adv. shoots; 8 - Adv. roots; 12 - Adv. roots; 18 - Callus</td>
</tr>
</tbody>
</table>

Fig. 7.6 The effect of the growth regulators used for callus induction, and the duration of this treatment, on subsequent morphogenesis. [From the data of Behki and Lesley (1980) – see text]

James and Wakerell (1982) found that apple shoots rooted optimally if cultured with 3 mg/l IBA for 4 days or 4.9 mg/l IAA for 6 days. Longer exposures decreased final root number and increased callus growth at the cut ends of the shoots. Margara (1969) found that the best treatment to induce direct adventitious shoots on *Brassica oleracea* var. *botrytis* inflorescence tissue, was to place the explants on a medium with 0.5 μM IBA for one week, and then transfer them to 10 μM for weeks 2 and 3.

Pinus strobus cotyledons required at least 4 days exposure to 4.4 μM BA for shoot formation to occur: 5 days exposure resulted in 50% of the explants responding, while after 7 days exposure there was an almost 100% response (Flinn and Webb, 1986).

Similarly *P. resinosa* embryos, or their cotyledons, needed to be exposed to 10-25 μM BA for at least 3 days for the stimulation of adventitious shoot formation (Noh et al., 1988). Incubation for only 30-60 min on a medium containing 0.17 mg/l GA₃ was sufficient to partly inhibit shoot formation from dark grown tobacco callus. Repression was greatest when this treatment was applied during 6-10 days of incubation on a shoot-inducing medium. Abscisic acid could partly overcome the inhibitory effect, if instead of being placed in GA₃, the tissue was incubated in a GA₃ + ABA mixture for up to 30 min; after 30 min ABA failed to prevent the GA₃ repression (Thorpe and Meier, 1973).

18.4. EMBRYOGENESIS

The duration of auxin requirement has been most clearly determined for the induction of somatic embryogenesis, where it is now well established that an initial application must be withdrawn to permit embryo development. In carrot, 0.05 μM 2,4-D was required to be present for 6 days to induce competent single cells to form somatic embryos. Beyond this stage auxin was inhibitory (Komamine et al., 1990).
Ghazi et al., (1986) found that two types of embryogenic callus were produced from immature embryos and young seedling tissues of *Glycine max*:

- a smooth and shiny callus which originated from the cotyledons; and
- a rough callus from immature embryos, cotyledon segments and germinated seedlings.

The rough callus took 8-9 weeks to form in the presence of 2-3 mg/l 2,4-D and 3 weeks to form with 5 mg/l 2,4-D. Smooth callus (which was the only kind from which plants were regenerated), was produced in 2 weeks using 10 mg/l 2,4-D.

Table 7.2

The result of exposing thin cell layers of *Psophocarpus* to IAA and BA for progressive lengths of time (data of Hahn et al., 1981).

<table>
<thead>
<tr>
<th>Days on medium with IAA and BA</th>
<th>Explants forming buds</th>
<th>Explants forming callus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

19. OVER-EXPOSURE TO REGULANTS

The results above are concerned with cultured tissues gaining competence and becoming determined towards a developmental pathway. Over-exposure to a regulant through excessive concentration, or prolonged treatment, can result in a different developmental outcome to the one desired. The maximum number of adventitious shoots from *Datatura innoxia* internodes, was obtained when they were pre-incubated with 1 μM 2,4-D for 6 days (haploid plants) or 12 days (diploid plants), before transfer to a shoot inducing medium (MS with 46.5 μM kinetin). Longer periods of pre-incubation resulted in less shoots being produced: there were none at all after 36 days (Forche et al., 1981). Only two days of incubation with 0.1-10 mg/l 2,4-D was necessary to increase the number of buds regenerated from leaves of *Prunus canescens* (Antonelli and Druart, 1990).

Prolonging the exposure of cells to auxin, beyond the time necessary to induce embryogenesis, can result in the production of unregenerative callus, rather than embryogenic tissue.

REFERENCES

BEASLEY C.A. & EAKS I.L. 1979 Ethylene from alclhol lamps and natural gas burners: effects on cotton ovule cultures *in vitro*. In Vitro 15, 263-269.

BEASLEY C.A. 1977 Ovule culture: fundamental and pragmatic research for the cotton industry. pp. 160-178 in Reinert and Bajaj (eds.) 1977 (q.v.).

BOUXIS PH., QOIRIN M. & LAINES J.M. 1977 Large-scale propagation of strawberry plants from tissue culture. pp. 130-143 in Reinert and Bajaj (eds.) 1977 (q.v.).

BUFLER G. 1986 Ethylene-promoted conversion of 1-aminoacyclopropene-1-carboxylic acid to ethylene in peel of apple at various stages of fruit development. Plant Physiol. 80, 539-543.

BUTTON J. & KOCHBA J. 1977 Tissue culture in the citrus industry. pp. 70-92 in Reinert and Bajaj (eds.) 1977 (q.v.).

Even-Chen Z., Mattoo A.K. & Gore R. 1982 Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3,4-14C-methionine into spermidine in aged orange peel discs. Plant Physiol. 69, 385-388.

Faire O., Dewitte W., Nougarede A. & Van Onckelen H. 1998 Precociously germinating somatic embryos of Vitis vinifera have lower ABA and IAA levels than their germinating zygotic counterparts. Physiol. Plant. 102, 591-595.

Fernandez S., Michaux-Ferriere N. & Coumans M. 1999 The embryogenic response of immature embryo cultures of durum wheat (Triticum durum Desf;): histology and improvement by AgNO3. Plant Growth Regul. 28, 147-155.

Flinn B. & Webb D.T. 1986 Effects of media components and the timing of cytokinin application on callusogenesis from Pinus strobus embryonic explants. p. 36 in Abst. VI Int. Congr. Plant Tissue & Cell Culture, Minneapolis, USA.

Floyd Y.Y., Ratcliffe R.G. & Robins R.J. 1998 In vivo nuclear magnetic resonance analysis of polyamine and alkaloid

GARCIA F. & EINSET J.W. 1982 Ethylene and ethane production in salt-stressed or 2,4-D-stressed tobacco tissue cultures. In *Vitro* 18, 275.

HEDDEN P. 1999 Regulation of gibberellin biosynthesis. pp. 161-188 in Hooykaas et al., (eds.) 1999 (q.v.).

IMAISKI H. 1999 Control of ethylene synthesis and metabolism. pp. 209-245 in Hooykaas et al., (eds.) 1999 (q.v.).

RIOV J. & YANG S.F. 1982b Stimulation of ethylene production in Citrus leaf discs by mannitol. Plant Physiol. 70, 142-146.

RÜCKER W. 1982 Combined influence of indolacetic acid, gibberelic acid and benzylaminopurine on callus and organ differentiation in Digitalis purpurea leaf explants. Z. Pflanzenphysiol. 107, 141-151.

SISLER E.C. & SHEREK M. 1997 Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol. Plant. 100, 577-582.

Chapter 8
Developmental Biology

1. INTRODUCTION

Unlike animals, higher plants continue to generate new organs and tissues throughout their post-embryonic life. This ongoing process is achieved through the activity of specific domains formed during embryogenesis at the two poles of developing embryos which have capacity to continuously renew themselves: the shoot and root apical meristems, respectively. The word “meristem” derives from the Greek “merizein”, meaning “to divide” (Evans and Barton, 1997). Both shoot and root meristems add permanently new organs to the growing plant body and generate all the progeny cells that are required for tissue and organ differentiation. During the last decade, considerable progress has been made in the understanding of both shoot and root morphogenesis. A range of genes has been isolated from developmental mutants, namely from Arabidopsis thaliana, Antirrhinum majus, Zea mays and Nicotiana tabacum, and their temporal and spatial patterns of expression have been established using molecular biology techniques, so that we have now a better view of how shoot and root morphogenesis and development are controlled at cell, tissue and organ levels of organization. It is clear that each developmental step from embryogenesis to flowering, and each type of organ and tissue, is the result of the coordinated expression of sets of specific and developmentally-regulated genes. As a consequence for tissue culture, it can be expected a consideration of what genes are expressed in the initial explants, and how developmental genes are controlled by hormones and other components of culture media, would be helpful to improve the monitoring of in vitro manipulation. There is no doubt that the recent findings will have consequences for a better understanding of the processes of adventitious regeneration in tissue culture and the recently isolated genes will certainly serve as new tools to investigate these processes.

2. VEGETATIVE SHOOT MORPHOGENESIS

2.1. STRUCTURAL ORGANIZATION OF THE VEGETATIVE SHOOT APICAL MERISTEM

Although embryos from different species may vary in their developmental patterns and attain different sizes and degrees of differentiation (Esau, 1965), the future shoot apical meristem (SAM) becomes commonly recognizable at early stages during the establishment of the basic body of the embryo. It takes place in the apical domain of the globular embryo between the incipient cotyledonary primordia (Long and Barton, 1998; Lenhard and Laux, 1999) and the future SAM remains usually quiescent until germination (Pollock and Jensen, 1964). In the grass family and some dicotyledonous species, embryos become highly differentiated and the SAM becomes active and organized before germination. On the other hand, embryos from some parasitic herbs may be poorly differentiated and their SAM takes place entirely after germination (Esau, 1965). During the vegetative phase, i.e. the period during which leaves and stem are produced, the SAM varies in shape, size and meristematic activity. The SAM of conifers is commonly narrow and conical; it is narrow and elongated in some monocotyledons (wheat, Elodea) and dicotyledons (Hippuris) while it is dome-shaped, more or less broad and flat for other dicotyledons (Arabidopsis, tobacco). The shape and size of the shoot apex may also change during development (Nougarède, 1967; Besnard-Wibaut, 1975) and during a plastochron (Fig. 8.1), i.e. the time between the formation of successive leaves (Nougarède and Rembur, 1985). Whatever the species, some common features characterize the organization of functional SAMs of Angiosperms during the vegetative phase.

2.1.1. The layered organization of the SAM and its consequences for chimeras

The vegetative SAM is a highly ordered structure partitioned into domains with different functions. It usually displays an internal organization into cell layers (Fig. 8.2a) and zones (Fig. 8.2b). The layered appearance was early suggested by the analysis of chimeras (Satina et al., 1940; Stewart and Dermen, 1975), the arrangement of cell layers being maintained by predominantly anticlinal cell divisions (plane of cell division perpendicular to the meristem’s surface) in the outer cell layers. In most dicots, the SAM is composed of three lineages of cells termed histogenic layers: a two-layered tunica
(L1, L2) surrounding a corpus (L3) in which one or more cell

Fig. 8.1 – Morphological and structural evolution of Coleus vegetative shoot apical meristems during a plastochron. a,b: maximal area before leaf initiation; c,d: minimal area just after leaf initiation e,f: regeneration phase preparing the future leaf initiation (courtesy of R. Saint-Côme 1985). a,c,e: scanning election microscopy; the arrows indicate the evolution of the SAM and the orientation of the corresponding longitudinal sections presented in b,d and f. CZ: central zone; LI: leaf initial; PZ: peripheral zone; RZ : rib zone.
Fig. 8.2 – Layered (a) and zonated (b) structure of a tobacco vegetative shoot apical meristem.
L1 – L3: layers; CZ: central zone; PZ: peripheral zone; RZ: rib zone
(adapted from Bowman and Eshed, 2000, by N. Pépin, University P. M. Curie).
layers gives rise to the inner part, the pith rising from the lowest corpus layers. L1 generally divides only anticlinally and gives rise to the epidermis. The second layer, L2, forms part of the leaf mesophyll and is composed of cells dividing mainly in the anticlinal plane, except in zones where leaf initiation is occurring, and here the process involves periclinal division. The innermost corpus displays various division planes at the origin of the inner parts of leaves and stems, including the pith and the vascular strands. In monocots, both two- and three-layered apices are common. The control of orientation of cell division prevents the mixing of the layers during morphogenesis. Occasionally, abnormal division planes occur, forcing daughter cells into another layer (Laufs et al., 1998c); this indicates that the developmental fate of plant cells is not strictly determined by cell lineage and that positional information and cell-to-cell communication are involved in patterning (Dawe and Freeling, 1991).

The particular layered organization can be disturbed during the process of adventitious bud formation, leading possibly to the loss of chimeric structures for horticultural species. Adventitious shoots can arise from tissues originating from L1 layer only, from L2 or L3 layers or from combinations of all three, and each layer does not necessarily keep its original fate during the process of axillary shoot formation (in vivo) or bud regeneration (in vitro). In addition, chimeras can originate from callus cultures composed of mixed populations of cells. Both these parameters have particular consequences for the vegetative propagation of plant chimeras, for example for maintaining leaf variegations through tissue culture. Three kinds of chimera are defined by the arrangement of the genetically different cells within the SAM. In sectorial chimeras, a wedge of genetically distinct cells is present through all apical cell layers. These chimeras arise most likely when mutations occur during the very early stages of embryo development. In mericlinal chimeras, part of one cell layer or more is genetically distinct from the remainder of the layer. These chimeras are unstable and tend to revert to periclinal chimeras or to become non-chimeral. In periclinal chimeras, one or more entire SAM layers is different from the other layers. Many horticultural plants are periclinal chimeras in which the genetic composition of SAM cell layers is different. These layers can be rearranged during cell proliferation and organization of the newly formed SAMs so that regenerated plants may contain a different chimeral composition or may no longer be chimeric. This leads to the idea that reversion of sports to normal and instability in periclinal chimeras could be due to “layer switching”. In tobacco, it was demonstrated that the lineage of the three layers of the apical SAM was preserved in lateral meristems of first degree, but deviations of lineage were observed in secondary buds in which periclinal cell divisions destabilized the lineages (Tian and Marcotrigiano, 1993). Cells from one layer can divide periclinally and establish a new cell line in a different layer and this occurs in an uncontrolled manner (Fig. 8.3). Clearly the stability of chimeras depends upon how precisely the patterns of cell divisions in each meristem layer are maintained (Szymkowski and Sussex, 1996) and this could probably be extended to the domain of micropropagation. In the limited advice that has been given on how to retain chimeral characteristics through tissue culture, it has been pointed out that chimeras can break down under conditions where the growth of one of the cell types is selectively favoured. Consequently, it was suggested that culture media composition may need to be modified to prevent any selective advantage. Progress in knowledge concerning the regulation of genes specifying each kind of cell layer, particularly the role of hormones on this regulation, will be certainly helpful for a better control of chimeral patterns in tissue culture. It must also be pointed out that positional information which is important at the whole plant level is probably highly perturbed in non-organised calluses submitted to shoot regeneration. Indirectly, the regeneration experiments with chimeras that lead to the perpetuation of chimeral patterns argue for the multicellular origin of adventitious shoots (Marcotrigiano and Gouin, 1984).

2.1.2. The cytophysiological zonation of the SAM

Superimposed on the layered organization, the active SAMs are provided with another pattern of organization called cytophysiological zonation (Fig. 8.2b). Cytochemical studies of SAM from various angiosperms revealed the presence of three zones (central or axial, peripheral or lateral and rib) provided with different staining patterns, planes of division and degrees of vacuolation (Nougarède,
Cells in the central zone stain less intensely with standard histological stains and are frequently more vacuolated. This central zone is not histologically distinguishable in some species. In other species, its detection depends on the stage of SAM development and the establishment of the SAM cytophysiological zonation is a secondary phenomenon in postembryonic development. The central zone has a slower rate of cell division than surrounding cells (Nougarède and Rembur, 1977, 1978).

The lateral zone ("initiating ring" according to Plantefol, 1947) surrounds the central zone and is the site of leaf formation involving a high rate of cell division. The rib zone is constituted of layers of flat cells subjacent to the central zone and gives rise to the central part of the stem. The rib zone is often absent in aquatic Angiosperms (Lance-Nougarède and Loiseau, 1960). It is well established that leaves develop on the flanks of the SAM in a defined arrangement whereas initial cells ("stem cells") reside in the central zone. The concept of stem cells is quite recent in plant biology. It is now accepted that a group of cells located in the basal part of the central zone of the SAM can reproduce themselves as well as generate differentiated progeny. Towards the end of a plastochron, just before the emergence of a distinct leaf primordium, the SAM is at its largest (maximal-area phase) while just after the initiation of a new leaf, the SAM is at its smallest (minimal area phase) (Fig. 8.4). The self-renewing population of initial cells resides within the central zone within which a small number divides slowly and produces new cells that are pushed out onto the flanks. These central cells are today considered as stem cells. According to the concept of the initiating ring, the lateral cells intensify their rate of cell division creating a leaf base (leaf founder cells) in positions related to the leaf arrangement (phyllotaxy). Successive sectors of the ring are visualized as being partly used up in the formation of leaves. Cell division restores each sector above a newly formed primordium so that the ring moves upward and the leaves arise at successively higher levels (Bersillon, 1955). During a plastochrone, the passage from the minimal area-phase to the maximal area-phase is allowed by anticlinal cell divisions that occur superficially (L1 and L2 layers) and enlarge the apical surface. Following this, periclinal divisions occur in the deeper layers, so that the lateral zone becomes thicker. The set of meristematic cells thus produced laterally forms the leaf base (leaf founder cells) from which leaf initiation occurs except for some rare cases in which leaves or leaf-like structures can develop in the absence of shoot meristem (Selker and Lyndon, 1996). Such cases can also be observed in tissue culture (Sattler and Maier, 1977). In most other instances, one of the earliest markers of leaf initiation from the peripheral zone is periclinal cell division.
division in the L2 layer, at the vicinity of procambial cells differentiated at an early stage within the leaf founder domain. Cells in the L1 and L3 adjust their growth accordingly, so the entire region acts in coordination to produce a leaf primordium (Bowman and Eshed, 2000). During periods of dormancy, the cytophysiological zonation is no longer recognizable and all the cells enter a quiescent state (Brossard, 1973; Cottignies, 1979).

The existence of at least two communicating compartments in the SAM, perhaps corresponding to the central and peripheral zones, was demonstrated by microinjection of fluorescent dyes into single epidermal cells of birch SAM and observation of the fluorescence spread (Rinne and van der Shoot, 1998). In addition, direct evidence that mRNA transcripts move from the body of the plant to the shoot apex through phloem long distance transport was reported, suggesting that higher plants could integrate developmental and physiological signals on a whole-plant basis (Ruiz-Medrano et al., 1999).

2.2. MOLECULAR BASIS OF SAM IDENTITY AND ORGANIZATION

The view and the concepts concerning the functional organization of vegetative SAM and apical fate specification have been changed profoundly since the shoot apex was first recognized by Wolff (1759) and many series of genetic and molecular studies have been directed towards elucidating the complex process of SAM formation and functioning (Lehnard and Laux, 1999; Bowman and Eshed, 2000; Baurle and Laux, 2003; Laux, 2003; Veit, 2004). The resulting findings have provided molecular evidence supporting both the zoned and the stratified models. They are of fundamental interest for the understanding of the mechanisms of SAM behavior in plants but are also very helpful for the detection of early signs of SAM regeneration in tissue culture (Chee et al., 2002; Cary et al., 2002).

2.2.1. Genes involved in SAM establishment and maintenance

The main genes involved in SAM maintenance and organization encode either transcription factors or receptor/signal molecules (Table 8.1). Many of these genes belong to classes considered to be regulatory, controlling the expression of downstream genes. Thus current research is exploring the gene networks that underlie meristem function and cell fate determination. As in animals, families of plant homeobox genes have been found to play vital roles in developmental decisions that control cell specification and pattern formation. The complex gene expression patterns of the SAM, as shown by in situ approaches, develop gradually during embryogenesis. Early during embryo development, the expression of the shoot meristem-specific SHOOT MERISTEMLESS (STM) gene is observed between the incipient cotyledonal primordia and this gene is required for the production of a SAM (Long et al., 1996).

Fig. 8.4 – Genetic interactions in the shoot apical meristem. a: maintenance of the stem cells through the WUS/CLV auto-feed back loop; b: expression domains of selected genes involved in the establishment and patterning of leaf founder cells - for details of the genes noted in the figure, see Table 8.1 (adapted from Bowman and Eshed, 2000, by N. Pépin and E. Dubuisson, University P. M. Curie).
Table 8.1 – Genes playing a major role in initiation and maintenance of the shoot apical meristem (genes identified with Arabidopsis thaliana when the species is not otherwise indicated)

<table>
<thead>
<tr>
<th>Genes</th>
<th>Gene products</th>
<th>Phenotypes of the loss-of-function mutants</th>
<th>Sites of expression in the SAM</th>
<th>Gene function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUSCHEL (WUS)</td>
<td>WUS family of homeodomain transcription factor</td>
<td>Lack of central cells in the SAM and failure to sustain leaf organogenesis</td>
<td>Small subdomain of centrally located cells in the corpus (lower L3 cells) ; early expressed during embryogenesis (16-cell stage)</td>
<td>Maintenance of the population of undifferentiated central cells</td>
<td>Laux et al. (1996); Mayer et al. (1998); Schoof et al. (2000)</td>
</tr>
<tr>
<td>ZWILLE(ZLL)/PINHEAD (PNH) ARGONAUTE1 (AGO1)</td>
<td>AGO1-like proteins, found in many eucaryotes</td>
<td>Empty apices or presence of filamentous structures in place of shoots</td>
<td>Very early expressed during embryogenesis (4-cell stage) in procambial tissue then expression on the adaxial face of leaf primordia</td>
<td></td>
<td>Jürgens et al. (1994); Endrizzi et al. (1996); Moussian et al. (1998); Lynn et al. (1999)</td>
</tr>
<tr>
<td>KNOTTED1 (KN1, maize) BREVIPEDICELLUS (BP) KNAT1 SHOOT MERISTEMLESS (STM) OSH1 (rice) NTH15 (tobacco)**</td>
<td>Class I KNOX family of homeodomain transcription factor</td>
<td>Lack of embryonic SAM or disorganized SAM with lack of maintenance</td>
<td>All the SAM cells excepted those participating to primordia formation in the peripheral zone KN1 not expressed in layer L1 in maize</td>
<td>Maintenance of the SAM and establishment of the central-peripheral organization</td>
<td>Vollbrecht et al. (1991); Smith and Hake (1995); Barton and Poethig (1993); Jackson et al. (1994); Lincoln et al. (1994); Chuck et al. (1996); Clark et al. (1996); Endrizzi et al. (1996); Long et al. (1996); Sentoku et al. (1999); Ori et al. (2000)</td>
</tr>
<tr>
<td>CUP-SHAPED COTYLEDONS1 (CUC1)</td>
<td>Unknown</td>
<td>Fusion of cotyledons, sepals and stamen ; lack of embryonic SAM</td>
<td>Similar to STM Shoot apical meristem formation; organ formation and separation; boundary maintenance; necessary for STM expression</td>
<td></td>
<td>Aida et al. (1997, 1999)</td>
</tr>
</tbody>
</table>
Plants homozygous for loss-of-function mutations in the *STM* gene have no SAM and produce seedlings with cotyledons, but no leaves are initiated, suggesting that cotyledons and leaves are not fully homologous organs as previously thought (Kaplan, 1969; Spurr, 1949). The *STM* gene is also required to prevent incorporation of central cells into lateral organ primordia (Endrizzi et al., 1996). In *Petunia*, the gene *NO APICAL MERISTEM* (*NAM*) acts similarly to *STM* (Sauer et al., 1996). The *STM* gene is a member of the *KNOTTED* class of homeodomain protein genes found in maize and soybean (Long et al., 1996) and belongs to the KNOX family. Its expression marks the early initiation of SAM during embryogenesis and occurs in all types of SAM (vegetative, reproductive and axillary meristems) during development (Long et al., 1996). It is required during vegetative growth to maintain the undifferentiated state of the central zone (Clark et al., 1996; Endrizzi et al., 1996). In maize, the *STM*-homologue gene *KNOTTED1* (*KN1*; Vollbrecht et al., 1991) is also expressed in the SAM region of developing embryos (Smith et al., 1995) but its expression is suppressed in the peripheral zone at sites involved in leaf initiation (Jackson et al., 1994). The *KN1* gene appears to be a good marker of the undetermined state of the SAM cells. In maize, another homeobox gene (*RS1* for *ROUGH SHEATH 1*) has been identified and is also normally expressed in the SAM (Schneeberger et al., 1995). Discovered by sequence homology and expression patterns, an *Arabidopsis* class 1 homeobox gene *KNAT1*, now known as *BREVIPEDICELLUS* (*BP*) (Lincoln et al., 1994), could be an homolog of *RS1*. Some of the *KN1*-type homeobox gene family in rice (*OHS* genes) are also expressed in similar patterns (Senotoku et al., 1999). As leaf initiation is correlated with a particular accumulation of endogenous cytokinins, as shown by *in situ* immunocytochemistry (Dewitte et al., 1999; Guivarc’h et al., 2002), it could be hypothesized that this hormone is involved in the cascade of regulation of the *KN1* gene family. *KNOX* genes also interact with gibberellins (Barley and Waites, 2002). In tobacco vegetative SAM, the *NTH20* gene, another related *knotted*-type homeobox gene, is expressed in the peripheral zone while the *NTH9* is expressed in the rib zone, and the *NTH1* and *NTH15* in the corpus (Nishimura et al., 1999). *STM*
is also responsible for controlling expression of \textit{UNUSUAL FLORAL ORGAN (UFO)} in a large band underlying the SAM (Long and Barton, 1998). \textit{UFO} is involved in targeted protein degradation (Wang et al., 2003) as well as in the induction of some floral genes.

Mutations of genes involved in SAM organization such as \textit{WUSCHEL (WUS)} and \textit{ZWILLE (ZLL)} affect the initiation of true leaves but not of cotyledons (Laux et al., 1996; Moussian et al., 1998). Mutation in the \textit{WUS} gene leads to the formation of adventitious SAMs in the peripheral zone (Laux et al., 1996), as does the destruction of the central zone by microsurgery experiments (Loiseau, 1959). This suggests that the central zone has an effect on the developmental potential of the peripheral zone and that the \textit{WUS} gene is required to specify cells in the SAM central zone (Laux et al., 1996). The \textit{WUS} gene is expressed very early during embryo development before a SAM becomes evident. This expression is limited to a small group of L3 cells of the central zone (Fig. 8.4a). It has been proposed that \textit{WUS}-expressing cells act as an organizing center, conferring stem-cell identity to the overlying initial cells (Mayer et al., 1998). The \textit{ZLL} gene is expressed when the provascular cells form at the 32-cell embryo stage and is specifically required to maintain the stem cells of the shoot meristem in an undifferentiated state and to mediate signaling from the vascular initial cells to the embryo apex (Moussian et al., 1998). Interestingly, \textit{ZLL} seems to act similarly to animal genes that regulate stem cell processes (Benfey, 1999b). In the \textit{cup-shaped cotyledon} mutants (cuc1, cuc2), cotyledons are fused so that the \textit{CUC} genes are considered to play a role in organ separation. During vegetative growth, the \textit{CUC} genes are expressed in the boundary zone between the SAM and the leaf founder cells. However, they are also expressed all over the SAM during zygotic embryogenesis, indicating that they could also play a role in SAM establishment (Vroemen et al., 2003). \textit{CUC1} and \textit{CUC2} genes encode NAC domain proteins that are highly homologous to the petunia NAM protein; \textit{CUC1} may promote SAM formation by activating \textit{STM} during embryogenesis (Takada et al., 2001). In turn, \textit{STM} influences \textit{CUC1} and \textit{CUC2} gene expression during embryo development. The involvement of \textit{CUC} genes in controlling boundary size would be upstream - regulated by miRNAs (Laufs et al., 2004).

Whether or not those genes involved in specifying the SAM identity are early expressed during \textit{in vitro} SAM regeneration and at what time of the dedifferentiation process they begin to be involved has not yet been fully determined, nor how they could be regulated by hormonal factors of the media. However, it was shown that \textit{KNAT1} or \textit{KN1} overexpressing lines had increased potential for adventitious bud regeneration on leaves (Sinha et al., 1993; Chuck et al., 1996) and that \textit{Arabidopsis} mutant lines, characterized by their capacity to form shooty callus in a hormone-autotrophic way, displayed increased mRNA levels of \textit{KNAT1} and \textit{STM}. This suggests that the shoot-forming phenotype is linked to altered cytokinin content or signaling (Frank et al., 2000). Ectopic shoot production on leaves of transgenic tobacco and \textit{Arabidopsis} lines over-expressing \textit{KNOX} genes is not seen on monocot lines, suggesting that monocot leaves may have less developmental plasticity or are less competent to respond to the genes than leaves of dicots (Williams, 1998).

The stratified organization of the SAM has been confirmed by isolation of genes expressed specifically in distinct layers (Jenik and Irish, 2000). For instance, the homeobox gene \textit{AtML1} is expressed in the L1 layer and clonally derived tissues, mainly the epidermis (Lu et al., 1996; Sessions et al., 1999). Other genes were also found to be highly expressed in the L1 layer and its derivatives. Examples are genes encoding lipid transfer proteins in carrot, tobacco and \textit{Arabidopsis} (Sterk et al., 1991; Fleming et al., 1992; Thoma et al., 1994), tomato polyphenol oxidase (Shahar et al., 1992) or \textit{Arabidopsis} protodermal factor 1 (Abè et al., 1999). In contrast the \textit{KNAT2} promoter is specifically expressed in the L3 layer of \textit{Arabidopsis} SAM (Laufs et al., 1998b and c). It was also shown that the \textit{KNOTTED} protein is transported \textit{via} plasmodesmata from the inner layers to the L1 while the corresponding mRNA can be detected only in the inner layers (Jackson et al., 1994; Lucas et al., 1995).

Interestingly, some genes identified as involved in regulating stem cell maintenance in plant meristems are homologous to those found in animals (Benfey, 1999b). The recent finding that human embryonic stem cells can be grown in culture will probably renew the interest in the plant field and the particular ability of plant cells to be grown in tissue culture. The above range of genes expressed in specific SAM layers or zones could provide helpful tools as markers of specific determined states to understand the process of direct and indirect bud regeneration \textit{in vitro}. They would allow the study of the
characterization of competent cells in the initial explants or calluses and the timing of shoot determination, giving more precise information about the concepts of competence and expression. One might turn to further molecular work associated with careful stage-screened explants and in situ analyses for stage- and spatial-specific gene expression in relation to the inductive phytohormones.

2.2.1. Genes involved in SAM size and the question of fasciation

Another range of Arabidopsis genes has been reported to be involved in the control of SAM size. The loss-of-function clavata1 mutation causes an increase in the size of both the shoot and floral SAM, leading to stem fasciation and the generation of flowers with extra floral organs (Leyser and Furner, 1992; Clark et al., 1993). The CLV1 gene encodes a leucine-rich repeat trans-membrane receptor serine/threonine kinase that suggests a role in cell signaling. CLV1 is expressed in the central region of SAM corresponding to the rib zone; the CLV1 mRNAs are not found in the L1 and L2 layers (Clark et al., 1997). In the same gene family, CLV3 is expressed throughout SAM development, predominantly in the L1 and L2 tunica layers of the region corresponding to the central zone (Fletcher and Meyerowitz, 2000). The stem cells are marked by the expression of CLV3 (Fig. 8.4a); this signal has been hypothesised to inform the central zone cells either of their proper rate of cell division (Meyerowitz, 1997) or of the rate at which they should exit the central zone to enter pathways leading to differentiation (Laufs et al., 1998a). The CLV pathway functions as a negative feedback loop from the central stem cells to the organizing center (Fig. 8.4a; Schoof et al., 2000). The signal is the small protein CLV3 which is secreted by the stem cells, moves intercellularly and activates a receptor that contains the CLV1 and CLV2 proteins to repress WUS. If the stem cells proliferate too much, increased CLV3 production diminishes the maintenance signal and keep the number of stem cells in check (Mar Castellano and Sablowski, 2005). In addition, the CLV1 receptor might limit the movement of the CLV3 protein and shield the WUS expressing domain from the negative effect of CLV3 (Lenhardt and Laux, 2003).

As the Arabidopsis clavata3 mutant, the mgoun1 and 2 mutants also display an enlarged vegetative SAM with occasional fasciation and accumulation of cells in the peripheral zone (Laufs et al., 1998a); the corresponding MGOUN genes would affect the partitioning of peripheral cells into leaf or floral organ primordia. MGOUN1 would encode a topoisomerase involved in chromatin dynamics and stability. Indirect evidence indicates a probable hormonal control on the SAM fasciated phenotype but the effects of both auxins and cytokinins on the expression of meristem-specific genes remain to be elucidated. Old research (White, 1948; Gorter, 1965) described three types of abnormal shoots considered as fasciated: linear, circular and radiate. Fasciations are the result of the fusion of two or several growth points. In linear fasciations, the stem is flattened and the SAM is enlarged and flat as a ribbon (Ecole, 1970); such enlarged SAMs can be also observed in tissue culture in the presence of high cytokinin concentrations (Brossard, 1976). In such treatments, calluses surrounded with continuous meristematic bands not organized into functional SAMs or enlarged SAMs, can be observed dividing dichotomously into two normal SAMs (personal observation). In circular fasciations, SAMs are ring-shaped and such appearance can be observed following treatments with inhibitors of auxin transport (Ecole, 1971) or in the pin1 mutant which is altered in auxin efflux (Vernoux et al., 2000a). Inhibition of auxin transport can also result in fused leaf organs (Ecole, 1972) similar to what occurs in the cuc mutants, which are altered in organ separation. In the radiate fasciations, the SAM and the stem have a stellate shape in transverse section.

2.3. PHYLLOTAXY AND PATTERNS OF LEAF DEVELOPMENT

2.3.1. Phyllotaxy

Investigation of what determines the sites at which a new leaf is initiated in the SAM peripheral zone is in progress. Phyllotaxy, i.e. the positioning of leaves on the stem, has been hypothesised as a self-organized growth process (Douady and Couder, 1992) as leaf primordia normally arise in regular geometric arrays. However, these arrays result probably from the combination of genetic, environmental and developmental factors (Schwabe, 1984; Marc and Hackett, 1991). There are two classes of possible leaf arrangement: whorls (with opposite or decussate leaf position) and spirals. Several authors considered that the signal for leaf initiation could spread acropetally from the underlying tissues towards the point where a leaf is going to rise (inhibitory field theory) and that the extension of procambium differentiation may play a role in the phyllotactic organization of the stem in determining the initiating sites of the leaves (Buvat,
Phyllotaxy involves communication between existing and newly formed leaf primordia. The existence of signals from leaves to the SAM through symplastic continuity, and of specialized symplastic domains in the SAM itself, was observed by monitoring fluorescent symplastic tracers (Gisel et al., 1999).

The signalling events involved in determination of when and where new leaf primordia are formed in the peripheral zone of the SAM are beginning to be elucidated. Studies using local application of the wall-loosening protein expansin to meristems have indicated the potential role of biophysical forces in the process of leaf initiation (Fleming et al., 1997; Pien et al., 2001). Leaf primordium formation by the SAM can also be induced by a local application of auxin (Reinhart et al., 2000). In addition, LeEXP18, a tomato gene encoding expansin, is auxin-inducible and expressed preferentially at the sites of future leaf initiation, particularly in the L1 cells, making this gene an early marker for the sites of leaf initiation (Reinhart et al., 1998). The tobacco NFL gene, a homolog of the snapdragon FLORICAULA (FLO) and Arabidopsis LEAFY (LFY) genes, and the Arabidopsis AINTEGUMENTAL1 (ANT1) gene, are both expressed in young leaf primordia and in a SAM region that may correspond to the peripheral zone (Evans and Barton, 1997). In contrast, it has been shown that STM, KNAT1, OSH1, OSH43 and CLV1 genes are down-regulated at these sites (Table 8.1), suggesting that their control mechanism is involved in phyllotaxy, but further studies are necessary to clarify the phenomenon. It is noteworthy that many of the mutations that affect SAM size also affect phyllotaxy: clv1, clv3 and amp1 mutants have enlarged SAMs and all make leaves with abnormal spacing pattern, the latter being characterized by high cytokinin levels (Chaudhury et al., 1993). Results from the abphy1 maize mutant (Jackson and Hake, 1999) that displays both altered phyllotaxy and enlarged SAM, suggest a relation between meristem size and phyllotaxy. Lastly, some mutants modified in their plastochrone duration have also been isolated. For example, in the rice mutants plastochrone-1 (pla-1, pla-2), plastochrone is shortened and an ectopic expression of the vegetative program is observed during the reproductive phase (Itoh et al., 1998). In addition, studies of the Arabidopsis pin1 mutant that possesses few leaves then a naked stem have confirmed the role of auxin in phyllotaxy. [PIN1 is a transmembrane protein with homologies to a family of auxin transporters and local auxin application restores leaf initiation from the naked stem (Reinhart et al., 2000; Vernoux et al., 2000a)]. How polar transport of auxin can control phyllotaxy has been recently demonstrated: auxin is transported upwards into the meristem through the epidermis and the outermost L1 layer; existing leaves act as sinks, redistributing auxin and creating its heterogeneous distribution in the SAM; auxin accumulation occurs only at a certain distance from existing primordia, defining the position of future primordia (Reinhart et al., 2003; Fleming, 2004). A control of phyllotaxy could be exerted upstream of the auxin transport mechanism by the cytokinin-inducible response regulator homolog ABPH1, indicating a role for cytokinins in setting the field size within which the auxin-patterning system can function (Giulini et al., 2004).

2.3.2. Genes involved in leaf organ identity

Leaf initiation involves an increased rate of proliferation of cells that are recruited from the SAM peripheral zone. All the SAM specific genes from the KNOX family have been found to be downregulated at sites where leaf initiation is in preparation (Fig. 8.4b), so they can be considered as negative markers of leaf determination. A range of genes that are positively regulated at the sites of leaf initiation have been also identified (Table 8.2). Appropriate expression of the CUC genes is necessary in the presumptive boundary cells to prevent the formation of fused organs but the mechanism by which these boundaries are set in relation to the predicted auxin maxima that define sites of leaf initiation is unknown. Early in leaf initiation, ANT1 (Elliot et al., 1996; Barton, 1998) and FIL (Sawa et al., 1999; Siegfried et al., 1999) genes start to be expressed in the leaf founder cells and appear as positive markers. Another Arabidopsis transcription factor gene, AS1, is expressed early during leaf initiation (Byrne et al., 2000) as are its homologs PHAN in Antirrhinum (Green, 1999) and RS2 in maize (Tsiantis et al., 1999). STM repressed the expression of AS1/PHAN which in turn represses the expression of KNAT1 in the developing leaf primordia (Ori et al., 2000). Close interactions between the SAM and its flanking regions seem to control the acquisition of leaf determination by the lateral cells (Fig. 8.4). This process is probably highly disturbed in some cases observed in vitro where leaf initiation seems to occur independently of the presence of organized SAMs.
Table 8.2 – Genes involved in leaf initiation and development. (genes identified in *Arabidopsis thaliana* when no indication of the species is given)

<table>
<thead>
<tr>
<th>Genes (genes, where present)</th>
<th>Gene products</th>
<th>Mutant phenotypes</th>
<th>Sites of expression</th>
<th>Gene function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYMMETRIC LEAVES
(AS1) ROUGH SHEATH
(RS2, maize)
PHANTASTICA
(PHAN, Antirrhinum)</td>
<td>ARP type of MYB-domain transcription factors</td>
<td>Ectopic expression of KNOTTED-like genes in the leaf primordia; altered leaf development</td>
<td>Sites of leaf initiation (leaf founder cells) in the SAM peripheral zone (in places where KN1 / STM are not expressed); developing vascular cells in the stem</td>
<td>Inactivation of KNOTTED-like genes; promotion of adaxial identity</td>
<td>Jackson et al. (1994); Waites et al. (1998); Tsiantis et al. (1999); Byrne et al. (2000)</td>
</tr>
<tr>
<td>ASYMMETRIC LEAVES
(AS2)</td>
<td>Cysteine-repeat family of leucine zipper domain transcription factors</td>
<td>Id AS1</td>
<td>Normal development of lamina; limitation of KNOX gene expression</td>
<td></td>
<td>Wakawa et al. (2002)</td>
</tr>
<tr>
<td>AINTEGUMENTA
(ANT)</td>
<td>Putative transduction factor (APETALA 2 class DNA binding)</td>
<td>Altered flower development, slight reduction of leaf size</td>
<td>Cotyledon primordia during embryogenesis; leaf and flower organ primordia</td>
<td>Rapid cell division and growth of peripheral SAM cells giving rise to leaf primordia</td>
<td>Long and Barton (1998)</td>
</tr>
<tr>
<td>LEAFY (LFY) = FLORICAULA (FLO, Antirrhinum)</td>
<td>Transcription factor</td>
<td>Prolonged vegetative phase</td>
<td>Expressed early in leaf and floral primordia</td>
<td>Mainly involved in identity of floral organs</td>
<td>Mandel et al. (1992); Weigel et al. (1992); Vernoux et al. (2000a)</td>
</tr>
<tr>
<td>UNUSUAL FLOWER ORGAN
(UFO)
FIMBRIATA
(FIM, Antirrhinum)</td>
<td>F-box proteins</td>
<td>Fused floral organs</td>
<td>Frontiers between floral organs, between floral meristems and according a SAM subregion</td>
<td>Organ separation</td>
<td>Ingram et al. (1995); Lee et al. (1997)</td>
</tr>
<tr>
<td>PIN-FORMED1 (PIN1)
PINOID (PID)</td>
<td>Transmembrane protein (PIN1) with role in auxin transport Serine-threonine kinase (PID)</td>
<td>Reduced number of cotyledons; fused organs; inflorescence axis without flower primordia</td>
<td>PIN: lateral organs PID: frontiers between organs</td>
<td>Initiation and separation of organs via CUC2 inactivation in the primordia</td>
<td>Galweiler et al. (1998); Vernoux et al. (2000a)</td>
</tr>
<tr>
<td>FILAMENTOUS FLOWER
(FLL)
YABBY3 (YAB3)</td>
<td>Zinc finger domain transcription factors with a HMG box-like domain (YABBY gene family)</td>
<td>SAM peripheral zone under young leaf primordia; sites of floral primordia initiation; peripheral zone; abaxial side of leaf primordia</td>
<td>Maintenance and growth of floral and inflorescence meristem; promotion of abaxial cell fate in lateral organs; inactivation of KNOX genes</td>
<td></td>
<td>Sawa et al. (1999); Siegfried et al. (1999); Kumaran et al. (2002)</td>
</tr>
</tbody>
</table>
Table 8.2 - continued

<table>
<thead>
<tr>
<th>Genes</th>
<th>Gene products</th>
<th>Mutant phenotypes</th>
<th>Sites of expression</th>
<th>Gene function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>KANADI1 (KAN1)</td>
<td></td>
<td>Gain-of-function mutations: abaxialization of the lateral organs and loss of meristem development</td>
<td>Developing phloem (abaxially), only in the root</td>
<td>Vascular patterning, antagonist to meristem function through interactions with HD-ZIP III genes</td>
<td>Eshed et al. (2001); Kerstetter et al. (2001)</td>
</tr>
<tr>
<td>KANADI2 (KAN2)</td>
<td></td>
<td>Loss-of-function mutations: adaxialization of lateral organs; alteration of vascular patterning in the stems; expansion of PHB, PHV and REV expression domain</td>
<td>Developing phloem (abaxially), throughout the plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KANADI3 (KAN3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHABULOSA (PHB)</td>
<td>HD-ZIP III family of homeodomain transcription factors; may be regulated by microRNAs</td>
<td>Gain-of-function mutations: Adaxialization of lateral organs; radialization of vascular bundles, ectopic SAMS on the abaxial side of leaves, loss of YABBY gene activity</td>
<td>Throughout the embryonic SAM, in adaxial region of the cotyledon primordia and in vascular precursors of hypocotyls and root, in all apical meristems, in developing vasculature, in adaxial domain of lateral organs.</td>
<td>Regulation of apical embryo patterning and of lateral meristem initiation, regulation of leaf polarity</td>
<td>McConnell and Barton (1998)</td>
</tr>
<tr>
<td>PHAVOLUTA (PHV)</td>
<td></td>
<td>Loss-of-function mutations: Abaxialized cotyledons and no primary apical meristem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVOLUTA (REV)/ INTERFASCICULAR FIBERLESS (IFL)/AMPHIVASAL BUNDLES (AVB)</td>
<td>Aberrant axillary and flower meristem formation; defects in leaf development, stem cell specification, vascular development and auxin transport</td>
<td></td>
<td></td>
<td></td>
<td>Talbert et al. (1995); Otsuga et al. (2001)</td>
</tr>
<tr>
<td>ATHB8 CORONA (CNA)/ATHB15</td>
<td></td>
<td>Loss-of-function mutations: No aberrant phenotype</td>
<td>Vascular tissues (developing xylem, positioned adaxially)</td>
<td>Vascular development</td>
<td>Baima et al. (1995)</td>
</tr>
</tbody>
</table>

2.3.3. Genes controlling leaf dorsiventrality and final shape

Leaves are determined organs that grow to specified size and specific shape. One common feature of most leaves is that they display a bilateral symmetry and a dorsiventrality, i.e. an abaxial-adaxial asymmetry (abaxial being away from the SAM and adaxial being adjacent). This suggests that common genetic programs are involved to establish these features (Table 8.2). Surgical incisions separating incipient leaf primordia from the SAM suggested that the SAM may be the source of a signal required for proper polar development of the leaf (Sussex, 1955). The genetic basis of regulatory relationships between the SAM and lateral organs has been revealed by the analysis the *Antirrhinum* mutant *phantastica* (*phan*), which displays needle-shaped abaxialized leaves. The *PHAN* gene encodes a MYB-related transcription factor expressed throughout
lateral leaf primordia (Waites et al., 1998). When grown under non-permissive conditions, the mutant plants develop radialized leaves with predominantly abaxial cell types and their SAM is arrested. The hb (handlebar) mutation enhances the effects of the phan mutation on dorsal fate in leaves, suggesting that both are additional (Waites and Hudson, 2001). In contrast, the Arabidopsis mutant phabulosa-1d displays enlarged SAM and produces leaves with adaxial cell types and ectopic buds (McConnell and Barton, 1998). The emerging picture is that factors both intrinsic and extrinsic to the leaf primordium contribute to the specification of cells as abaxial or adaxial (Fig. 8.4b). Genes form the YABBY family (genes encoding a helix-loop-helix/HMG-like region) including FIL and YAB 3 genes were shown to be expressed specifically in a polar manner in all the organs (vegetative or floral) produced by the SAM and to be responsible for the specification of abaxial cell fate (Siegfried et al., 1999). The KANADI 1 (KANI) gene is another of the key determinants of abaxial identity. KAN 1 encodes a putative transcription factor but little is known about its involvement in abaxiality. PHAN is needed to specify adaxial identity and to repress adaxial expression of YABBY (Golz and Hudson, 2002). Evidence is also reported that the PINHEAD gene is also involved, defining a domain comprising the adaxial face of young leaves, and that this domain is essential for SAM development (Lynn et al., 1999).

A correlation between the acquisition of adaxial leaf fate and the development of ectopic buds has been suggested (McConnell and Barton, 1998), that is in contrast with the common model in which axillary meristems are derived from remnant meristematic cells (so-called detached meristems) of the primary SAM. This possible link could have some relevance in tissue culture when bud regeneration is expected from a leaf explant. In the same way, somatic activation of an ipt transgene encoding cytokinin overproduction in tobacco led to transgenic lines provided with ectopic buds on the adaxial surface of their vascular strands (Estruch et al., 1991) and the leaf explants of transgenic tobacco overexpressing the KNAT1 gene give rise to a prolific bud regeneration along the veins of their adaxial surface (Pépin et al., in preparation).

Different rates of expansion and cell division influence final leaf shape that can be simple (Arabidopsis, tobacco) or complex (tomato). Misexpression of KNOX genes in tomato results in disruption of compound leaf development, with phenotypes ranging from multiply ramified to filamentous (Hareven et al., 1996; Kessler and Sinha, 2004). In tomato, but not in species with simple leaves, KNOX genes are expressed in the leaf primordia and play a role in compound leaf development. Surprisingly, a tomato homolog of PHAN is expressed in the SAM. In species that have simple leaves, expression of PHAN family members is excluded from the SAM, suggesting that interactions between KNOX genes and their regulators are different in species with compound leaves and in those with simple leaves. Formation of maize leaf margins is disrupted by the polar auxin transport inhibitor NPA together with the KNOX protein regulation (Scanlon, 2003). Another mechanism affecting compound leaf development involves the Arabidopsis floral meristem identity LEAFY (LFY) and its homologs UNIFOLIATA (UNI) in pea and FLORICAULA (FLO) in Antirrhinum. For example, in uni mutants, compound leaves are converted to simple (Höfer et al., 1997).

Except in the rare cases in which leaves can arise independently of meristems (Schichnes et al., 1997), interactions between the SAM and the developing leaf are required. The best example is the maintainance of silencing of KNOX genes in developing leaves by PHAN and its homologs. These genes may encode transcription factors required for maintaining epigenetic states; they also affect stem cell maintenance. In addition some of the genes involved in axis specification encode epigenetic regulators of gene expression such as RNAi or chromatin remodeling factors (Byrne et al., 2001). In this way, recent advances have indicated that miRNAs act in the abaxial domain of the leaf primordia by silencing adaxializing transcription factors (Kidner and Martienssen, 2004).

2.4. DEVELOPMENT OF AXILLARY AND ADVENTITIOUS MERISTEMS

2.4.1. Axillary buds and lateral branching

During post-embryonic development, reiterative SAM functioning produces repeated units, often referred to as phytomers. The components of each unit are a leaf with one or more axillary buds and a stem portion comprising a node and an internode. The axillary buds are secondary shoot meristems located at the junction between the stem and the leaf base and responsible for lateral branching. This axillary branching generally involves two developmental stages: the formation of axillary meristems and the subsequent growth of the axillary bud. Axillary meristems can originate either at the
same time as the leaf primordia from a subset of cells of the SAM that retain meristematic properties (Garrison, 1955) or later from already differentiated tissues that regain meristematic traits (Esau, 1965; McConnell and Barton, 1998). In any case, they develop from superficial cells and are therefore exogenous in origin; only a few species are able to differentiate axillary buds directly from the epidermis. The initiation of the lateral buds is usually characterized by a combination of anticlinal divisions in one or more of the superficial layers and by various types of divisions in the deeper layers (Esau, 1965). In situ hybridization indicates that expression of STM gene is associated with the formation of Arabidopsis axillary meristems during vegetative development (Grbic and Bleecker, 2000). Sometimes, a series of curved layers is established at the base of the early bud meristem, forming a “shell-zone”. This particular zone is characterized by high peroxidase and polyphenol oxidase activities (Brossard, 1975) but its physiological significance is not yet fully understood (Shah and Patel, 1972). This zone has been interpreted in terms of metabolic isolation of the developing axillary bud from the main SAM but also as an initial response of the axillary cells to the stresses that are set up in the axil due to the growth of the apex (Lintilhac and Vesecky, 1980).

Once initiated, the axillary shoot meristems may either develop into branches, or they may develop into an axillary bud in which growth arrests after a few leaf primordia have formed. The control of subsequent axillary bud growth is by the main shoot apex, the apical dominance of which becomes less as it grows on upward and becomes more distant from the bud. Apical dominance is also reduced when the plant enters the flowering process. When inhibited, pea axillary buds display a cell cycle arrest in a G0 presynthetic phase of the cell cycle (Nougarede et al., 1981) and lack mRNA corresponding to the ribosomal protein L27 which is highly linked to the growing state (Stafström, 1995). They are metabolically active as growing buds but two-dimensional gel electrophoresis has shown that certain proteins are specifically expressed in either growing or dormant buds (Stafström, 1995).

In recent years, work with transgenic plants has shown that the endogenous alteration of the auxin/cytokinin balance as a consequence of the introduction of single dominant transgenes, profoundly influences lateral branching (Klee and Estelle, 1991; Medford et al., 1989; Smigocki and Owens, 1989). This lends support to the so-called “hormone-balance theory” of apical dominance established by previous experimental treatments with exogenous phytohormones (Cline, 1994). Auxin and cytokinin appear to play a major role in controlling this process, with cytokinin as a key factor in promoting bud growth whereas auxin may have an inhibitory effect. In the succulent plant Graptopteratum, the lower residual meristem at the base of the leaf does not produce buds but buds can be induced there by exogenous cytokinin, the size of the bud being determined by the size of the treated area. This suggests that the responding cells are only those receiving the stimulus directly (Lyndon, 1990). Transgenic tobacco plants expressing locally the IPT gene encoding cytokinin biosynthesis at the level of axillary buds, display a reduced apical dominance (Hewelt et al., 1994; Guivarc’h et al., 2002). Also early work on tomato mutants with reduced branching, such as lateral suppressor (ls) and torosa, has correlated this trait with a reduced cytokinin content, the ls mutant being devoid of any axillary meristems (Malayer and Guard, 1964; Sossountzov et al., 1988). However, increased cytokinin production mediated by IPT gene transfer, failed to induce axillary bud formation on the ls mutant (Groot et al., 1995). It has been shown that ls phenotype is caused by a loss of function of the VHIID family of regulatory proteins. Schumacher et al. (1999) speculated that LS protein may regulate the gibberellin signal transduction pathway as do other known protein members of this family. In addition, periclinal chimeras consisting of a genetically recessive ls L1 layer and wild-type L2 and L3 layers produced axillary meristems (Szymkowiak and Sussex, 1993), suggesting that a functional LS gene is required only in specific cell layers of the meristem and confirming the existence of signaling between the cell layers (Napoli et al., 1999).

Only a few other mutants with altered axillary meristem development have been characterized. In maize, TEOSINTE BRANCHED 1 repressed the growth of axillary buds (Deebley et al., 1997). The pea ramosus mutants (rms 2 and rms 3) display an increased branching and the mutation affects the levels of graft-transmissible substances that inhibit branching, suggesting the involvement of a diffusible suppressor of axillary bud development (Beveridge et al., 1994). Studies with the rms mutant have revealed a more complex regulatory network involving long-distance novel signals in addition to auxin and cytokinins. In Arabidopsis, branchless phenotypes
are observed in plants homozygous for PINHEAD1 and REVOLUTA genes and in the auxin resistant 3 mutant (Leyser et al., 1996; McConnell et al., 1995, Talbert et al., 1995), while bushy phenotypes characterize the auxin resistant 1 and terminal flower 1 mutants (Alvarez et al., 1992; Lincoln et al., 1990). Whether or not hormones are involved in the control of all these phenotypes has not yet been determined but the altered meristem program (amp1) mutant, which has a decreased apical dominance, is characterized by increased cytokinin levels (Chaudhury et al., 1993). AXR1 acts after lateral bud formation to inhibit lateral bud growth (Stirmberg et al., 1999). Two other genes, MAX1 and MAX2, have also been shown to control lateral branching (Stirmberg et al., 2002).

Many of the genes expressed in the SAM are also expressed in lateral meristems but how the SAM-specific genes become reactivated in these locations is sparsely documented. A gene (REV) encoding a homeodomain-zip (leucine zipper) protein was found to have a role in activating meristem activity at lateral positions through activation of the expression of known meristem regulators (Otsuga et al., 2001). A supershoot (sps) mutant has been isolated, which is characterized by a massive overproliferation of axillary shoots due to an increase in the number of axillary meristems; the SPS gene encodes a cytochrome P450 and is involved in modulating hormone levels (Tantikanjana et al., 2001).

2.4.2. Adventitious Budding

De novo secondary shoot organogenesis can also occur in vivo through adventitious bud formation, reflecting the high potential of homeosis and flexibility in plants (Sattler, 1988). Adventitious buds can arise spontaneously on roots, hypocotyls, stems and leaves (Esau, 1965) following a process of cell dedifferentiation from partially or fully differentiated cells. Dedifferentiation corresponds to a regression of differentiated traits up to the recovery of a proliferative then meristematic condition. Experimentally, it is possible to induce the complete dedifferentiation of very diverse differentiated cells, including epidermis, cortical and leaf parenchyma, pith, and phloem (Buvat, 1989). The spontaneous ectopic formation of buds on leaves (Fig. 8.5; epiphyllly) has been extensively described (Dickinson, 1978). Such ectopic bud formation can be induced experimentally by overexpression of the maize KN1 or of the Arabidopsis KNAT1 homeobox genes in transgenic tobacco lines (Sinha et al., 1993, Pépin et al., in preparation). High expression of these genes induces bud formation associated with the leaf veins. Whether the natural production of ectopic shoots in other species results from expression of KN1 homologues in the leaf remains to be determined. The production of adventitious shoots on leaves has also been documented in transgenic tobacco lines that overexpress constitutively (Li et al., 1992; Estruch et al., 1991) or locally (Hewelt et al., 1994) a cytokinin biosynthetic gene. Recent results from several laboratories have suggested reciprocal links between cytokinins and homeobox genes (Frugis et al., 1999; Rupp et al., 1999). In this respect, the role of these parameters in the process of natural or experimental adventitious budding, including in vitro bud regeneration, should be determined. Interestingly, endogenous signals appear to modify the response elicited by genes of the KNOX family. Ectopic expression of KNAT1 gene in Arabidopsis directs the production of shoots on leaf margins but the vegetative or floral identity of these shoots varies based on the type of leaf from which they are derived (Chuck et al., 1996).

It could be hypothesised that chromatin structure in different tissues may make KNOX-binding sites differently accessible and/or that different tissues express some cofactors that modulate the DNA binding or activity of the KNOX gene products (Williams, 1998). In addition, there is also evidence suggesting a post-transcriptional regulation of KNOX gene expression; regulatory sequences within the KNOX gene transcripts could affect mRNA stability so that determinate organs that do not express normally the KNOX genes could have a system to degrade the transcripts (Williams, 1998). Ectopic bud formation on leaves has also been reported in a range of Arabidopsis transgenic lines overexpressing the CUC genes (Takada et al., 2001) which are required for embryonic SAM development. CUC1 gene would induce adventitious shoots through activation of SAM-related genes such as STM (Hibara et al., 2003). Although not involved specifically in SAM determination, the overproduction of the TATA box-binding protein also induces shoot proliferation in transgenic Arabidopsis (Li et al., 2001). So, a range of genes is already known to promote adventitious bud formation in planta when overexpressed in transgenic lines. Interestingly, explants from these lines also have an increased capacity to regenerate buds in vitro, and this could offer new tools for a better control of bud regeneration.
In the transgenic Arabidopsis line mentioned above, the ESR1 (ENHANCER OF SHOOT REGENERATION 1) gene which encodes an AP2/ERF (ethylene response factor) transcription factor, confers cytokinin-independent shoot formation when overexpressed in root explants (Banno et al., 2001). However, it has not yet been determined if this gene is involved in SAM identity and/or in cytokinin signaling. Other genes that promote adventitious shoot formation in culture have been identified in Arabidopsis. The first such gene is CYTOKININ INDEPENDENT1 (CKI1); it encodes a histidine kinase related to sensory receptors in two-component signaling pathway and has been proposed to be a cytokinin receptor (Kakimoto, 1996). Overexpression of ARABIDOPSIS RESPONSE REGULATOR2 (ARR2) also stimulates shoot formation in culture; this gene encodes a B-type response regulator that is thought to be a nuclear activator of cytokinin-responsive genes (Hwang and Sheen, 2001). Overexpression of CUC1 or CUC2 also promotes shoot regeneration from calluses in the presence of cytokinins but they do not bypass the requirement for cytokinins (Daimon et al., 2003). The wide variability in the potential to regenerate adventitious buds in tissue culture encountered among species, varieties and cultivars may be explained soon, when a better knowledge about the regulation and interrelationships of genes involved in lateral and adventitious SAM establishment will be acquired.

3. REPRODUCTIVE MORPHOGENESIS

While germ and somatic cell lines diverge very early in embryonic animal development, there is no germ line at all in plants and the decision for germ cell differentiation is put off usually until very late in development. The transition to flowering occurs in shoot apical meristems, which are reprogrammed to make inflorescence or floral organs rather than vegetative organs upon receiving appropriate environmental or developmental signals (Howell, 1998; Lyndon, 1990; Bernier et al., 1993). This change in determination of the SAM cells can be split into several successive steps. The first of these is the induction of flowering, i.e. the decision to switch from the vegetative to the generative phase. The second step is evocation, when the transition from the vegetative to the reproductive organization of the SAM takes place. The third step corresponds to the formation of inflorescence and flowers from the rearranged SAM. Later, the flower organs gain their characteristic forms and functions so that pollination and fertilization can take place. At the level of the whole plant, the SAM reprogramming towards flowering is probably also accompanied by the acquisition of new properties by the differentiated organs as shown by tissue culture experiments. Leaf stem or root explants excised from vegetative plants usually regenerate vegetative buds while explants excised from flowering plants may regenerate reproductive buds (Chouard and Aghion, 1961; Paulet and Nitsch, 1964; Brossard, 1979; Chuck et al., 1996).

3.1. STRUCTURAL REARRANGEMENTS OF THE SAM DURING THE REPRODUCTIVE PHASE

An increase in size and in growth rate of the SAM is characteristic of the commitment from making leaves to making flowers (Fig. 8.6). This phase change is usually accompanied by the loss of the cytophysiological zonation of the SAM due to the activation of cells of the central zone and in a more dome-shaped outline (Nougarede, 1967). The modified SAM can generate either a unique flower or an inflorescence meristem that will give rise to several flower meristems. The L1 layer contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules (endothelium) while the L2 and L3 layers contribute to different degrees, to the parenchyma and other internal tissues (Jenik and Irish, 2000). Germ cells usually derive from the L2 layer (Stewart, 1978) but the anticlinal divisions of the L1 and L2 layers and the divisions in all planes in the L3 layer must be coordinated in the inflorescence meristem and in the flower primordia. The role of floral homeotic genes APETALA 3 and AGAMOUS 1 (AG1) has been studied by clonal analysis. It was concluded that AG1 is required to maintain the layered structure of the floral meristem prior to organ initiation (Jenik and Irish, 2000).

Evidence for signaling between cell layers was provided in Camellia graft chimeras: the C. sasanqua stock has single flowers with a single whorl of petals and normal stamens and carpels; the C. japonica scion has a double-flowered form with sepals and many whorls of petals but no stamens or carpels. The chimera consists of an L1 layer from C. sasanqua and L2 and L3 layers from C. japonica and its flowers resemble those of C. sasanqua for the epidermal characteristics, but have also stamens and carpels, suggesting that a signal supplied in the L1 layer can move between cell layers to correct the developmental defect in the L2 and L3 layers.
(Stewart et al., 1972). As for vegetative SAMs, the possibility for movement of transcription factors between cells was also observed following studies of the localization of the snapdragon GLOBOSA and DEFICIENS proteins, both transcription factors, suggesting that movement of transcription factors may be a generalized phenomenon in planta. Much work remains to be done to detect such movements in systems grown in vitro and to demonstrate their involvement in regeneration processes under the influence of growth substances.

Fig. 8.5 – Adventitious budding, natural on Bryophyllum daigremontianum leaves under 16h photoperiod (a: morphology; b to d: three stages of bud establishment) and experimentally induced through transfer of a cytokinin-encoding IPT gene at the tip of a transgenic tobacco leaf (e).

Under inductive conditions, the switch to the flowering stage is first marked by a prefloral phase during which the SAM becomes enlarged and creates abundant cell material. The meristem changes in shape, increases in size and loses both its zonated structure and the plastochronic function. The prefloral phase is followed by a reproductive phase during which flower primordia organize and diversification occurs depending on the particular species. These changes have been reported following detailed examinations of the ontogenic development of numerous flowers and inflorescences (Lance, 1957). Some species such as Sinapis alba (Bernier et al., 1981) and Arabidopsis thaliana (Besnard-Wibaut, 1975) recover zonation during the prefloral phase.

Under non-inductive conditions, for example when long-day or short-day species are submitted to a photoperiod that is consistently unfavourable for entering the prefloral phase, the SAM continues to produce leaves. However, it is no longer structurally vegetative and acquires a new type of
structure, with a partial accentuation of the meristematic characteristics of the central cells, a periclinal stratification of the corpus and of the rib meristem. These new characteristics define the “intermediate phase” (Lance, 1957). During this phase, the orientation of the cell divisions typical of the normal ontogeny is modified, the L1 layer displaying a tighter control than others. This suggests that there must be genetic programs that control the patterns of cell division in a layer-specific manner.

3.2. CONTROL OF FLOWERING TIME

Adult SAMs become competent for flowering dependent on a range of environmental (day-length, temperature) and internal (developmental state) signals according to the species. In Arabidopsis, which is regulated by both long days and winter cold (vernalization), early and late flowering mutants have been isolated, allowing the identification of key genes controlling flowering time (Araki and Komeda, 1993; Araki, 2001). Genetic analysis of the control of flowering has identified four major floral promotion pathways (Fig. 8.7). The photoperiod and vernalization pathways mediate the response to environmental signals, whereas the autonomous and gibberellin pathways appear to act independently of these signals. In the photoperiod pathway are the CONSTANS (CO) and FT genes because mutations in these genes delay flowering in long days but not in short days. CO encodes a putative transcription factor whilst FT encodes a protein with similarity to RKIP proteins (Hepworth et al., 2002). The vernalization pathway appears to be controlled by the synergistic interaction of FLOWERING LOCUS C (FLC) and FRIGIDA (FRI) genes. Both the autonomous pathway and vernalization regulate negatively FLC which encodes a MADS domain-containing transcription factor that inhibits flowering in biennials unless they have been exposed to the cold winter (Michaels et al., 2005). This floral repressor would be up-regulated by FCA gene and has a down-regulated effect the SOC 1/AGL 20, factors involved in the floral transition.

The inactivation of the floral repressor has been suggested to lead to the activation of the floral meristem identity genes such as LEAFY (LFY) or its analogue FLORICAULA(FLO) in snapdragon, and APETALA1 (API), which specify the floral meristem identity of early lateral primordia produced by the SAM. The EMF (EMBRYONIC FLOWERING) genes appear also to play a role in repressing flowering because mutants of these genes flower without a preceding vegetative phase. This reinforces the hypothesis that flowering is a default pathway. The progression from vegetative to flowering phases appears to be regulated by multiple and complex genetic pathways (Fig. 8.7) to which must be added epigenetic effects. The similarity of some genes involved in repression of flowering, with animal genes of the Polycomb group (PcG) involved in homeobox gene expression, has suggested that they could act similarly. The PcG proteins act in altering chromatin structure, repressing reproductive development. There is also evidence that chromatin modelling can affect flowering by changing methylation patterns (Mouradov et al., 2002) and that miRNAs control genes involved in flowering time control via a translational repression mechanism (Aukerman and Sakai, 2003).

3.3. DETERMINATION OF FLORAL AND INFLORESCENCE MERISTEM IDENTITY

In addition to their role in promoting the floral transition, the LFY/ FLO genes play also a role in later stages (Fig. 8.7). The flower or inflorescence identity of the SAM after flowering induction is controlled by the opposite action of two sets of genes. The lfy mutation results in the production of inflorescences in place of flowers, while the tfl (terminal flower) mutation results in the conversion of the inflorescence meristem into a flower. The TFL gene is therefore required to promote inflorescence identity or suppress floral meristem identity in the inflorescence meristem (Coen and Carpenter, 1993). APETALA1 (API) gene is also necessary to specify floral meristem identity and functions downstream of LFY, itself required for the proper expression of floral organ identity genes during the late stage of the reproductive phase (Mandel and Yanofsky, 1995a and b).
Fig. 8.6 – Morphological and structural evolution of Coleus SAM after floral induction.

a,c,e: scanning election microscopy; b,d,f: corresponding longitudinal sections. At the prefloral phase (a,b), the SAM loses the cytophysiological zonation and becomes entirely meristematic, then, at the floral phase, the meristematic cells organize the floral primordia acropetally, building the inflorescence progressively (c, d then e,f). (courtesy of R. Saint-Côme, 1985).
Plants integrate multiple cues during the switch from the vegetative to the reproductive phase including the vernalization, autonomous, photoperiod and gibberellin pathways. Vernalization and the autonomous pathways promote floral transition by reducing the levels of the floral repressor FLC. The photoperiod pathways (under long days) act via a transcription factor, CO. The gibberellin pathway has an essential role in short-day conditions. These four pathways are integrated at the transcriptional regulation of two “flowering-time” genes, \(FT \) and \(SOC \): \(FRI = \) FRIGIDA; \(FCA = \) gene controlling the flowering autonomous pathway; \(FLC = \) FLOWERING LOCUS C; \(CO = \) CONSTANS; \(FT = \) FLOWERING LOCUS T; \(LFY = \) LEAFY; \(SOC = \) suppressor of overexpression of \(CONSTANS \).

3.4. DETERMINATION OF FLORAL ORGAN IDENTITY

Floral organs form in concentric rings, called whorls. Sepals form first, followed by petals, then by stamens, and finally by carpels. One of the best understood parameters of floral meristem determination concerns the floral homeotic genes that are responsible for specifying organ identities in the flowers (Fig. 8.8). In the fruit fly \(Drosophila \), homeotic mutations led to the identification of a set of homeotic genes encoding transcription factors involved in the determination of the location at which specific organs develop. In plants, such genes have been identified and belong to a class of related genes known as MADS box genes provided by a conserved DNA-binding domain, the acronym “MADS” being derived from the first letter of the first five members of this class of genes, including the plant floral organ identity genes \(AGAMOUS \) and \(DEFICIENS \).

There are three main classes of homeotic genes involved in flower organ identity, each class affects the identity of two adjacent whorls of organs. These classes of genes have been designated A, B and C. The class A genes are \(APETALA 1 \) and 2 (\(AP1 \) and \(AP2 \)) and their mutations cause the sepals and petals to form carpels and stamens, respectively. Two genes, \(APETALA 3 \) (\(AP3 \)) and \(PISTILLATA \) (\(PI \)) belong to class B and mutations in either \(AP3 \) or \(PI \) cause petals and anthers to form sepals and carpels, respectively. The class C gene is called \(AGAMOUS \) (\(AG \)) and \(AG \) mutations cause the stamens and carpels to form petals and sepals, respectively. A model named ABC (Fig. 8.8) was proposed where the overlapping action of these genes would specify organ identity (Coen and Meyerowitz, 1991). The model also predicts that A and C activities are mutually exclusive. \(LFY \) plays a pivotal role in regulating floral organ identity as it regulates the expression of A, B and C class genes (Parcy et al., 1998). In addition, ectopic expression studies indicate that the ABC genes are not sufficient to convert vegetative leaves into flower organs, so a new class of floral identity MADS box genes (\(SEPALATA \)) was recently described (Pelaz et al., 2001). In the revised model, \(SEP \) genes are referred to as E class while a D class specifying ovule identity completes the model (Colombo et al., 1995).
majority of ABCDE genes encodes MADS transcription factors but higher orders of complexity involving miRNAs are now expected (Jack, 2004).

In addition to Arabidopsis and Antirrhinum, the molecular genetics of flower development is now being extended to other species (Kyozuka et al., 2000) and the results suggest that the basic mechanisms have been conserved in evolution but further insights are still necessary to study genes that have no obvious counterparts among species. It is still unclear whether the products of the flower organ identity genes act directly on the effector genes for central cell function or whether additional steps are involved. Interestingly, the MADS-box gene phylogenetic tree reveals that gymnosperms lack the A-function gene, which is likely the reason why these plants do not have petals and sepals (Shindo et al., 1999).

![Fig. 8.8 Genes controlling floral organ specification according to the revised ABC model.](image)

The SEP genes play a crucial role in addition to the A, B and C genes in providing transactivation activity and serving as a scaffold between B and C proteins. AP – APETALA, AG – AGAMOUS, PT – PISTILLATA, SEP – SEPALATA

(redrawn and completed from Goto et al., 2001, by P. Rech, University P. M. Curie)

4. ZYGOTIC EMBRYOGENESIS

4.1. PATTERN FORMATION FROM THE ZYGOTE TO THE MATURE EMBRYO

Zygotic embryos develop within the embryo sac from the fertilized ovules on mother plants according to an orderly pattern. Embryogenesis in all flowering plants is more or less similar, even though the seedlings of monocotyledonous and dicotyledonous plants differ in their appearance and construction. The major difference between the two lies in the presence of one or two cotyledons flanking the future SAM. Double fertilization generates the diploid zygote and the triploid endosperm. The endosperm undergoes a series of developmental events and provides nutrients to the developing embryo (Lopes and Larkin, 1993) while the zygote divides several times to give rise to the embryo (Fig. 8.9). The generation of the embryo from a single cell requires the spatially coordinated acquisition of numerous cell identities.
Embyrogenesis can be divided into three phases. The first phase is one of morphogenesis during which the polar axis and the radial patterning of the plant body is defined with the specification of the shoot and root apex domains, and the embryonic tissues and organs are formed. The second phase is one of embryo maturation; it is characterized by the accumulation of storage material. During the final phase, the embryo becomes desiccated and enters a period of developmental arrest. At the beginning the zygote establishes an early polarity, with unequal distribution of cytoplasm and vacuoles (Schulz and Jensen, 1968), and elongates in the micropylar-chalazal axis, establishing the apical-basal axis of the future embryo. This coincides with a reorientation of microtubules to transverse cortical arrays (Webb and Gunning, 1991). The first division is an unequal cell division resulting in two cells of different developmental fates: a small and sparsely vacuolated apical cell that gives rise to the bulk of the embryo proper and a larger and vacuolated basal cell that develops into the hypophysis and the suspensor. Several embryonic types, according to more or less variable cleavage patterns, have been reviewed by Mordhorst et al. (1997) but most of these types develop through the same stereotyped morphological stages of globular, heart and torpedo (Pollock and Jensen, 1964).

In Arabidopsis, starting from the point of fertilization, the development of a mature embryo takes 9 days at 25 °C then the process of maturation requires two additional days. In this time, the embryo grows into approximately 20,000 cells and reaches a diameter of 500 μm, the initial zygote being only 20 μm in diameter (Jürgens, 1998). After the first asymmetric division of the zygote, the apical cell undergoes two longitudinal divisions to produce a 4-celled embryo proper. A transverse division follows to produce two tiers of cells in an octant stage. The next division of the octant stage is parallel to the embryo surface, establishing the first histologically detectable tissue, the protoderm (i.e. the future epidermis). The delineation of the protoderm establishes the globular stage embryo in which increases in size and cell number occur by anticlinal divisions of the protoderm, and longitudinal then transverse divisions of inner cells. At this time, the suspensor has reached maximal cell number and begins to senesce soon after, and the embryo proper is axialized but not yet asymmetrically polarized in the apico-basal dimension. This is achieved rapidly by successive oriented cell divisions that generate narrow cells in the center of the lower tier of the embryo. These cells generate longitudinal cell files corresponding to the future central cylinder. Soon afterwards, cell divisions occur in specific places of the lateral regions of the upper part of the globular embryo, resulting in two cotyledon primordia and the establishment of a heart-shaped morphology. The switch from radial to bilateral symmetry introduces delineation between the embryonic axis and the cotyledons. Following their formation, both the axis and the cotyledons elongate and give rise to the torpedo stage embryo. Domains corresponding to the future shoot and root meristems can be distinguished from the beginning of the heart stage. In the basal pole of the embryo, the quiescent centre and the initial cells of the root cap are derived from the hypophysis, while the initials of the root meristem derive from the lower tier of the octant pro-embryo (Scheres et al., 1994).

During the third phase (maturation), storage macromolecules accumulate in most of the cells, inducing a rapid increase in mass and size of the embryos and, in late embryogenesis, embryos also acquire the ability to withstand desiccation and enter metabolic quiescence until they encounter favourable conditions for germination. During the quiescent state, cells of the future apical meristems have been found to be arrested in the G1 state of the cell cycle (Rembur, 1972) while cells of the primary body of the embryo can display a more or less pronounced polyploidy (Nagl, 1979).

4.2. GENES CONTROLLING EMBRYOGENESIS

Embryogenesis in higher plants is a process dependent on coordination of specific genetic programs and proper communication between different parts of the developing seed. A precise order of events ensures the correct positioning of embryonic organs, i.e. the shoot and root meristems, the cotyledons and the hypocotyls (Berleth and Chatfield, 2002). A large number of embryonic mutants have been identified in Arabidopsis and in maize, including mutants altered in their pattern formation (Mayer et al., 1993; Berleth and Jürgens, 1993), meristem establishment (Barton and Poetig, 1993) and maturation programs (Keith et al., 1994; Meinke, 1992). Recently, a systematic expression analysis of a family of homeodomain-containing transcription factors that are homologous to WUSCHEL (WUS) has demonstrated that plant embryos are partitioned early into regions marked by
the expression of these factors, as in animal embryos (Haecker et al., 2004).

Among the genes identified as involved in the apico-basal patterning, it was shown that mutations in the three genes MONOPTEROS (MP), FACKEL (FK) and GURKE (GK) delete early specific embryo parts. Monopteros homozygotes lack both hypocotyl and roots. This gene seems to be required for the organization of the basal regions of the embryo. In fk embryos, the central region at the globular-stage is abnormal and the hypocotyl is missing such that the cotyledons are directly attached to the root; in gk embryos, the apical region is abnormal and embryos lack a shoot meristem and cotyledons (Jürgens, 1998) and the GURKE gene encodes an acetyl-CoA carboxylase which is required for partitioning the embryo into three subregions (Kajiwara et al., 2004).

The GNOM (GN) gene controls the asymmetric division of the zygote and the corresponding mutant has alterations in the entire apical-basal pattern; GN encodes a endosomal regulator of vesicle budding and has been shown to regulate auxin efflux (Geldner et al., 2003). HOBBIT (HBT) drives the normal division of the hypophysis in the globular embryo and is required for formation of the root meristem; HBT encodes a CDC27 homologue required for cell division and cell differentiation in the meristems. Hobbit mutants have no active root meristem and lack a quiescent center and root cap columella, they also show an accumulation of the AXR3/IAA17 repressor of auxin responses (Blilou et al., 2002). BODENLOS (BDL) is involved in the formation of the embryo axis through a defective response to auxin (Hamman et al., 1999). Mutations in the FACKEL (FK) gene, which encodes a sterol C-14 reductase, result in seedlings with very reduced hypocotyls (Schrick et al., 2000), indicating that defects in sterol synthesis also impinge on the embryo axis formation.

Concerning the radial patterning, SCARECROW (SCR) regulates separation between endodermal and cortical layers (Jürgens, 1998). The SCR gene, which encodes a putative transcription factor, may confer endodermal cell identity. The endodermis is also absent in short-root (shr) embryo mutants. The SHR gene is a member of the GRAS family of putative transcription factors; it is involved in correct radial patterning through SHR intercellular movement from the stele to the target initial cells of the endodermis (Sena et al., 2004). Radial pattern formation starts in the 8-celled embryo and involves two choices of oriented cell division: periclinal (radial) which gives tissue layers and anticlinal which increases the number of cells in a given layer. The KNOLLE (KN) gene affects cell division; the kn mutant embryo displays incomplete separation of the daughter cells and the epidermis is not separated from the inner cells by periclinal divisions. Specification of the protoderm appears very early in the octant-stage embryo with the expression of the Arabidopsis thaliana meristem layer 1 (AtML1) which encodes a homeodomain-containing putative transcription factor (Fig. 8.10). This gene is expressed in the apical daughter cell of zygote and in all the cells of the globular embryo during the early stages, then the expression becomes restricted to the epidermis, suggesting the existence of some outside-in signaling (Sessions et al., 1999). The protoderm also expresses the LIPID TRANSFER PROTEIN (LTP) gene at an early stage, and this continues to be expressed in the derivatives of the epidermal primordium throughout development (Thoma et al., 1994). Both genes are therefore tissue-specifically expressed and can be used as good markers of the epidermis.

Another class of embryo mutants has been described as shape mutants, as they produced seedlings with altered phenotypes such as growth retardation (mickey) or extreme compression along the axis of the body organs (fass). A detailed analysis of fs mutants revealed that all pattern elements originate at the appropriate location, although cell division planes were altered with a lack of microtubule preprophase bands (Traas et al., 1995). Specific genes are also required for the establishment of the future shoot and root meristems which are nearly inactive in mature embryos. As previously explained, the SHOOT MERistemLESS (STM) gene is expressed in the cells that will become the SAM and homozygous stm mutants do not form any SAM (Lincoln et al., 1994). STM expression is observed in one or two cells at the apical end of the mid-globular embryo. The STM gene has been cloned and shown to be a member of the KNOTTED class of homeoprotein genes (Table 1; Long et al., 1996). Expression of KNOTTED1 marks SAM formation during maize embryogenesis (Smith et al., 1995). At the heart stage, expression is confined to a few cells between the cotyledons. This gene is also required for the maintenance of the undifferentiated state of the SAM central zone in the adult plant. STM is turned off as cells are recruited towards the formation of lateral organs, the lateral founder cells being characterized by the expression of the MYB domain transcription factor ASYMMETRIC LEAVES 1 (AS1)(Byrne et al., 2000). The zwille mutation also
disrupts SAM establishment during embryogenesis but does not interfere with post-embryonic SAM formation (Jürgens et al., 1994). The CUP-SHAPED COTYLEDONS (CUC) genes may also participate in embryonic SAM establishment as they are expressed in the same domain as STM during embryo formation (Vroemen et al., 2003) and they interact with STM (Aida et al., 1999). The WUSCHEL (WUS) gene appears as an early regulator of stem cell identity; WUS transcripts are first detected in the 16-32 cell embryos in all the subepidermal cells of the apical domain, then they become gradually restricted to more central and deeper cells at the base of the future SAM (Fig. 8.10; Mayer et al., 1998).

The maturation program in late embryogenesis involves several specialized gene sets such as those encoding storage proteins and late embryo abundant (LEA) proteins that are activated transcriptionally during maturation then repressed before dormancy (Goldberg et al., 1994). A mutant gene class that causes defects in cotyledon, differentiation and maturation specific events, lec mutations transform cotyledons into leaf-like structures and the lec embryos fail to survive desiccation, do not accumulate storage proteins and germinate precociously. The LEC gene encodes a transcription factor sharing similarities with the VIVIPAROUS1/ABA INSENSITIVE3 genes (Stone et al., 2001). Cotyledon identity is also altered in the fusca 3 (fus3) mutants. Other Arabidopsis mutants are abscisic acid insensitive (abi) due to alteration in loci involved in abscisic acid synthesis and perception; the resulting phenotypes lacks desiccation tolerance, storage accumulation and embryo dormancy. Similarly, the viviparous 1 (vpi) maize mutant embryos are also hyposensitive to ABA. All these genes have now been cloned and correspond to transcription factors. The identification of protein that interacts with these factors and their functional analysis are in progress and it is clear that these genes will be of considerable interest in the manipulation of somatic embryogenesis.

4.3. PHYTOHORMONES AND EMBRYO FORMATION

The participation of phytohormones in seed development has been frequently reported and hormone analysis has revealed high levels of both auxin and cytokinins in developing seeds, abscisic acid being more particularly involved in seed maturation (Morris, 1997). Auxin has been implicated as at least one of the signals involved in apical-basal patterning of the embryo (Fig. 8.10). Inhibitors of auxin transport block both mono- and dicotyledonous embryos at the transition globular-heart stages and prevent cotyledon separation (Liu et al., 1993; Fischer and Neuhaus, 1996). The resulting phenotypes, with fused cotyledons, are reminiscent of the cup-shaped androgenetic embryos described in the past as being formed in the presence of high auxin concentration (Nitsch, 1969). They also resemble the Arabidopsis pm1-1 mutant embryos (Liu et al., 1993), which are defective in auxin efflux carriers. An auxin gradient is involved in the apical-basal axis formation (Fripi et al., 2003). The monopteros and gnom mutants are characterized by alterations in both embryo axis formation and vascular development and the MONOPTEROS (ARF5) and GNM (GN) gene encode an auxin response factor (Hardtke and Berleth, 1998) and a guanine nucleotide exchange factor required for the correct localization of the auxin efflux carrier PIN1 (Grebe et al., 2000). Auxin polar transport appears therefore necessary to determine the apical-basal axis formation (Steinmann et al., 1999). Other evidence of auxin signaling during embryogenesis includes the finding that the putative auxin receptor ABP1 is required for organized cell elongation and transition to bilateral symmetry (Chen et al., 2001).

In addition, mutations in CUC1 and CUC2 genes result in fused cup-shaped cotyledons, suggesting that CUC1 and CUC2 are involved in organ separation (Aida et al., 1997) but the possible control of these genes by auxin has not yet been studied. Lack of auxin polar transport is also responsible for the induction of poly-embryos (Fischer et al., 1997). Suspensor cells may have the potential to regenerate supernumerary embryos. This was demonstrated with the Arabidopsis raspberry and twin mutants but the nature of the muted genes is still unknown. One possibility is that the embryo proper transmits inhibitory signals to the suspensor that suppress the embryonic pathway; alternatively, the balance of growth regulators in the entire embryo may maintain the development states of both the embryo proper and the suspensor, and alteration of their balance may cause the suspension to undergo an embryogenic pathway (Goldberg et al., 1994).
Fig. 8.9 – Sequence of *Capsella* embryogenesis from the egg cell (a) to the final embryo (g).

Fig. 8.10 – Patterns of gene expression during zygotic embryogenesis. Sites of expression of genes involved in L1 layer specification (AtML1), auxin efflux (PIN1), SAM organization centre identity (WUS), RAM quiescent centre identity (WOX5), lateral organ formation (ANT) and auxin presence (DR5) are shaded. (redrawn and modified from Weijers and Jürgens, 2005, by P. Rech, University P. M. Curie).
Whether or not cytokinins are also involved in embryo patterning is not yet established but local expressions of the \textit{ipt} gene which encodes cytokinin biosynthesis promotes twin embryos (Offringa, personal communication), suggesting that this hormone could act together with auxin in embryogenesis as in other developmental pathways. Loss of function mutations in the \textit{CYTOKININ RESPONSE 1/WOODEN LEG} (\textit{CRE1/WOL}) gene result in reduced cell divisions in the root meristem and a lack of phloem formation in the hypocotyls and roots (Mähönen \textit{et al.}, 2000); this gene encodes a cytokinin receptor (Inoue \textit{et al.}, 2001), supporting the implication of cytokinins in cell division and cell differentiation within the vascular cylinder.

5. ASEXUAL EMBRYOGENESIS

The ability to form embryos that do not originate from a fertilized egg cell exists in some species. It may occur naturally in \textit{Malaxis}, where somatic embryos form spontaneously on the leaf tips (Taylor, 1967) or ovules by apomictic processes (Koltunow, 1993). Under \textit{in vitro} conditions, somatic embryogenesis is now a quite widespread phenomenon, as reviewed in Chapter 9. Curiously, genes that have been listed for their involvement in zygotic embryogenesis have been studied little for a role in somatic embryogenesis. It has only been reported that somatic embryogenesis is facilitated starting from immature zygotic embryos of mutants such as \textit{clv} that have an increased population of non-committed SAM cells (Mordhorst \textit{et al.}, 1998).

5. ROOT MORPHOGENESIS

During embryogenesis, opposite to the SAM pole, a root pole is differentiated with a future root apical meristem. There is no reliable report of direct interconversion of these meristems during normal development. However, differentiated cells of both shoot and root organs from many species may regenerate meristems of either type, both \textit{in planta} and in tissue culture. Phylogenetically, roots are more recent organs than stems and leaves and their emergence has constituted one of the important and determining parameters for the growth of plants on land. The finding that gene cassettes are providing some similar developmental functions in shoot and root should not come as a surprise to plant evolutionary biologists for whom it has always appeared likely that the root meristem evolved from an ancestral shoot meristem (Benfey, 1999a). Nevertheless, a range of processes appear to be only root-specific.

5.1. STRUCTURAL ORGANIZATION OF THE ROOT APICAL MERISTEM

5.1.1. General Organization

Angiosperm roots have a rather stereotypic anatomy with regular cylindrical layers representing the tissue types of the root (epidermis, cortex, endodermis, pericycle) which in turn enclose a central vascular cylinder. The root tip (Fig. 8.11a, b) consists of two groups of cells: a cap at the extreme apex, and the root proper which the cap surmounts. Both the cap and the root proper may be regarded as being composed of columns (or files) of cells. Longitudinal growth of the root is mediated by the root apical meristem (RAM). Unlike the SAM, the RAM elaborates a root cap that protects the root tip as it pushes through the soil. The root cap is made up of cells that continuously slough off as the root grows. Root cap cells (statocytes) also contain starch grains (statoliths) which are the sensors of the gravity stimulus.

In Angiosperms provided with a closed RAM type (\textit{Arabidopsis}, maize) the cell files that make up the cylindrical layers converge into the root apex. In species with open RAM type (pea, Java bean), the cell files do not converge but appear to constrict, then extend into the root cap (Doerner, 1998). Each cell file originates from initial cells located at its apical end and previously named histogens (Hanstein, 1870). In monocotyledonous plants, the dermatogen establishes only the external layer and the root cap has a separated origin; in dicotyledonous plants, the root cap is in continuity with the dermatogen. Roots develop by the extension of continuous tissue layers in which occurs channeled signaling (Scheres and Berleth, 1998). In addition to organization in cell files, the RAM displays also a zonation, as revealed by histautoradiography and microspectrophotometry (Cloves, 1961, 1965). The various zones are characterized by a more or less intense mitotic activity. The quiescent center, now renamed the RAM organizing center, has reduced mitotic activity with most cells arrested in the G1 phase of the cell cycle. This quiescent center controls stem cell differentiation. The proliferating zones, including the initials, are located above and below the quiescent center, the first one giving rise to the cortex and...
central cylinder and the other to the cap. The inherent organizing capacity of the quiescent center for root development was demonstrated by in vitro culture of isolated quiescent centers of corn that were able to form whole roots directly without intermediate callus formation (Feldman and Torrey, 1975). Beyond the RAM, cells elongate (elongation zone), then differentiate.

5.1.2. Origin of the primary root meristem

Very detailed studies of cell fates have been published for the embryonic origin of the Arabidopsis RAM (Dolan et al., 1993, 1994; Scheres et al., 1994). The RAM comes from two clonally distinct cell populations: the upper tier of stem cells is derived from the apical daughter cell of the zygote whereas the quiescent center and the lower tier of stem cells originate, via the hypophysis, from the basal daughter cell of the zygote. Cell lineage analysis was performed with transgenic plants expressing the 35S:Ac:GUS construct, the excision of the Ac transposable element activating the GUS expression in sectors of the RAM that serve as cell lineage markers. This approach confirmed cell fates predicted by the anatomical analysis. Common origin for external layer and lateral root cap cells was demonstrated as well as for cortical and endodermal cells. Despite the apparent rigid organization, the root tip was also demonstrated as capable of flexibility as revealed by laser cell ablation experiments (Van den Berg et al., 1995).

5.2. GENES INVOLVED IN PRIMARY ROOT IDENTITY AND PATTERNING

5.2.1. Control of RAM, quiescent center and initials identity

Root development initiates with root specification. The HBT (HOBBIT), BDL (BODENLOS) and AXR6 (AUXIN RESISTANT 6) genes are required during embryogenesis and appear to have a pivotal role in root formation (Weigel and Meyerowitz, 1994; Willemsen et al., 1998). Mutations in these three genes give seedlings that lack a primary root but are capable of forming roots post-embryonically. These genes appear to mediate auxin-dependant processes. Arabidopsis mutants homozygous for a mutation in the ROOT MERISTEMLESS (RML1) gene are unable to establish an active root meristem and are glutathiol depleted; this mutation abolishes cell division in the root but not in the shoot and the gene that codes for a gamma-glutamylcysteine synthetase involved in glutathiol synthesis, was found to affect root development only in the post-embryonic period (Cheng et al., 1995; Vernoux et al., 2000b).

Unfortunately, very few genes isolated up to now have been observed to be specifically involved in the determination of the primary root meristem as was the STM gene for the SAM. One gene, RCH1, which encodes a putative receptor kinase as the CLV1 gene in the SAM, have been shown to be RAM specific (Casamitjana-Martinez et al., 2003). The expression of other CLAVATA-like (CLE) genes, CLE19 and CLE40 was also detected in the RAM (Casamitjana-Martinez et al., 2003; Hobe et al., 2003). A WUS-related homeobox gene, WOX5, has been found to be expressed in the quiescent center of Arabidopsis root (Haecker et al., 2004) as does its rice homolog QHB (Kamiya et al., 2003). These findings suggest that a WUS-CLV pathway might exist in the RAM (Fig. 8.12) as in the SAM but the role of the genes must be investigated further (Birnbaum and Benfey, 2004).

Monopteros mutants lack root and hypocotyl in addition to their vascularization defects in the postembryonic phase; during embryogenesis, the first defect is observed at the octant stage with aberrant axialization of the lower tier of the embryo and aberrant hypophysis (Berleth and Jürgens, 1993). Interestingly, the MP protein is very similar to the AUXIN RESPONSE FACTOR 1 (ARF1), a transcription factor that binds auxin-responsive promoter elements, and is thought to mediate responses to auxin (Hardtke and Berleth, 1998). The use of ARF-binding elements (DR5) fused to reporter gene (GUS) to visualize free auxin, has revealed a maximum in the distal region of RAM and asymmetric auxin distribution was found to establish an organized pattern and polarity in the root meristem (Sabatini et al., 1999). Control of root growth and patterning would be exerted by the PIN auxin efflux protein (Blilou et al., 2005).

5.2.2. Control of radial patterning

Concerning the radial size of the RAM, a range of diverse root morphologies has been described in transgenic root clones expressing the rol genes from the root-inducing plasmid of Agrobacterium rhizogenes and/or bacterial genes involved in auxin biosynthesis such as tms1/tms2 from A. tumefaciens or their A. rhizogenes counterparts. Thick and ramified roots characterized the clones expressing genes for auxin synthesis and provided with high endogenous auxin levels, while roots expressing only the rol genes were thin and sparsely ramified (Prinsen et al., 1992; Chriqui et al., 1996; Guivarc’h et al., 1999).
These data pointed to the role of auxin in determining the diameter of the RAM and the subsequent root. The height of the RAM appears also to be regulated by hormones, as reduced levels of cytokinins induced by the overexpression of cytokinin oxidase genes lead to a reduced length of the cell division zone (Werner et al., 2003).

A range of root morphology mutants have also been reported that were affected either in their radial growth patterns and epidermal differentiation (Baskin et al., 1992) or other events (Scheres et al., 1996; Schiefelbein et al., 1997). In the inner part of the root, SHORT-ROOT (SHR), a member of the GRAS family of putative transcription factors, moves outward from the stele and specifies endodermal cell fate. This factor also induces SCARECROW (SCR) which mediates the division of the cortex/endodermal initial daughter cells (Di Laurenzio et al., 1996; Helariutta et al., 2000; Nakajima et al., 2001). In addition to the MONOPTEROS (MP) gene which is involved in root vascularization (Dolan et al., 1993), a number of Arabidopsis homeobox genes (Ath6, 8, 9, 12) whose expression patterns indicate that they are important for the differentiation of root vascular tissues. have also been identified (Topping et al., 1991). In the external part of the root, the epidermal cell fate that gives rise to hair and non-hair cells is now well known. At the position where non-hair cells normally form, high levels of WEREWOLF (WER) promote the expression of both GLABRA 2(GL2), which inhibits hair cell formation, and CAPRICE (CPC) which moves laterally to adjacent cells (Masucci et al., 1996; Wada et al., 2002). In the adjacent hair-cell position, high CPC level represses both WER and GL2, allowing the cells to differentiate into hairs. This negative feed-back involved an intercellular transmission of the inhibitory signal. Later, CTR1, a Raf protein kinase homolog, acts as a negative regulator of hair cell development (Duckett et al., 1994). Little is known about the role of hormones on all these regulatory processes, but global gene analysis has begun to provide a comprehensive inventory of genes which are expressed in roots (Birnbaum et al., 2003); this database will be useful in further understanding the mechanisms of root differentiation.

5.3. LATERAL AND ADVENTITIOUS ROOT FORMATION

5.3.1. Histological Events and the Influence of Auxins

Lateral and adventitious rhizogenesis are de novo processes that occur postembryonically from roots or stems. Understanding these issues would make possible a better manipulation of root initiation and architecture. Auxin has, for a long time, been considered as a key root-inducing factor (Haissig and Davis, 1994; De Klerk et al., 1999). It should clearly be interrelated with genes involved in root formation but the connections are not yet clear. It must also be pointed out that the auxin requirement for inducing lateral roots from non-excised roots is higher than from excised roots (Vuylsteker et al., 1998), and that the juvenile or mature state of the plant is critical, as it can condition differential organogenetic responses, in woody species (Hackett, 1987). In addition, nitrate and inorganic phosphate nutrition plays a major role in controlling the development of the root system. Embryonic root and lateral root formation occur via some similar mechanisms and share common factors, but lateral root formation is distinct, as shown by mutant analysis. Both monopteros and bodenlos mutants form normal lateral roots while lacking an embryonic root, and a number of other genes have been identified that affect specifically lateral root development, although most of them implicate auxin as having a crucial role.

Auxin seems to be required for the early steps of cell dedifferentiation and root initiation, then becomes no longer required and to have inhibitory effects on root growth (De Klerk et al., 1999). Lateral root primordia commonly originate endogenously some distance behind the main root apices from dedifferentiation of the parent root pericycle (Fig. 8.11); the endodermis is sometimes also involved. The site at which primordia are initiated is related to the pattern of the vascular system either opposite or adjacent to the protoxylem poles and periclinal division is one of the most common criteria used to define the onset of lateral formation (Esau, 1965; McCully, 1975; Peterson and Peterson, 1986). More exogenous origin can also be observed from the phellogen in tuberized roots. Vascular strands are probably important in determining the sites of primordium initiation through the allocation of trophic (sugars, vitamins), hormonal (auxin, cytokinins) and possibly other signaling factors necessary for primordium initiation (Barlow, 1997). The primordia themselves also interact to determine their relative spacing and a pre-existing primordium actively prevents initiation of a new primordium up to a certain distance along a same rank, perhaps by acting as a sink for nutrients (Charlton, 1982). Lateral root development is similarly submitted to correlative effects and is controlled by the primary root apex that exerts an api-
Fig. 8.11 – Structural organization of a root tip.

a – Longitudinal section of an Arabidopsis root tip: cell files defining the different cell types converge onto central cells that constitute the quiescent centre (QC). Cell division occurs above and below the QC, giving rise to cells that elongate to form the root proper, and to the root cap cells, respectively (Courtesy of D. Driss, University P. M. Curie).
b – Transverse section in the elongation zone showing the radial organization of the root (Courtesy of R. Atta, University P. M. Curie).
c – Organization of cell types in the root apical meristem: the QC cells are flanked by initials of the various root tissues including columellar initials (5) that permanently renew the root cap, epidermis and lateral root cap initials (4), cortex and endodermis initials (3), pericycle initials (1) and central stele initials (2) (drawn by E. Dubuisson, University P. M. Curie).

cal dominance, probably via cytokinins (Forsyth and Van Staden, 1994) and auxin transport (Muday and Haworth, 1994).

Functional distinction between pericycle cells in the xylem radius file (prerhizogenetic cells or root founder cells) and phloem radius files (non prerhizogenetic cells) is correlated with anatomical differences (Laskowski et al., 1995). The initial stage of lateral root formation begins with a transverse division of pericycle cells adjacent to a xylem pole, resulting in shorter cells that undergo radial expansion before a periclinal division gives rise to two cell layers. Further periclinal divisions of the outer tier of the inner cells increase the number of layers to 2–4 at which stage the lateral root primordium is observed as a bulge of cells. Following emergence through the endodermis and the cortex, cell expansion continues at the base of the
lateral root and the increase of mitotic activity at the lateral root apex indicates the presence of a functional meristem (Laskowski et al., 1995; Malamy and Benfey, 1997). A transgenic Arabidopsis line bearing a CYCLIN B1:1 promoter fusion with the GUS reporter gene, confirmed the unique capacity of pericycle cells adjacent to the protxylem to re-enter the cell cycle then to give rise to root primordia (Himanen et al., 2002). The pericycle was also shown to retain the expression of CDKA genes, demonstrating that extensive dedifferentiation is apparently not required for the formation of lateral roots (Hemerly et al., 1993; Martinez et al., 1992). In this way, the pericycle has been proposed to be a mono-layered extended meristem (Casimiro et al., 2003).

The histological origins of adventitious root meristems are more diverse. They can be initiated, mainly endogenously, from the phloem parenchyma, from the vascular cambium, from the recent derivatives of the vascular cambium (Barlow, 1986; Lovell and White, 1986) or from the perifascicular cell layer of aerial organs (Chriqui and Bercetche, 1986). The exogenous application of one of the three auxins 2,4-D, NAA and IAA to excised chicory roots induced the formation of lateral root meristems (Vuylsteker et al., 1998). Each of the three auxins induced the formation of new meristems but the subsequent elongation of the neoformed roots was more inhibited by 2,4-D than by NAA and IAA. Higher auxin concentrations seem to be required for adventitious rooting. Similar observations were made from excised Arabidopsis root and hypocotyl explants in tissue culture (Atta et al., in preparation)

5.3.2. Genes involved in lateral and adventitious rooting

Mutants that have alterations in endogenous auxin levels, in the auxin transport, or in the auxin-signaling pathway, are also modified in their root forming capacity. The superroot (sur 1 and sur 2) mutants of Arabidopsis over-proliferate lateral and adventitious root primordia, and contain elevated levels of free and conjugated IAA (Boerjan et al., 1995, Delarue et al., 1998), as do the rooty (King et al., 1995), hls3 (Lehman et al., 1996) and alf1 (Celenza et al., 1995) mutants that have been isolated independently. The SUR2 gene encodes a cytochrome that is a modulator of auxin homeostasis.

Fig. 8.12 – Intercellular signals that control the position and the size of the stem cell population (initials) in the root apical meristem.

a – SCR (2) is expressed in the quiescent centre (1), adjacent ground tissues initials and the endodermis(E). SHR (3) is expressed in the stele and is trafficked into the endodermis where it directs cell fate (arrows). QC cells express the WUS–like WOX5 gene that maintains the surrounding stem cells (4) expressing CLV3–like genes (CLE19, CLE40) in an undifferentiated state. It remains to be determined whether the CLV3 and WUS homologues in the RAM are connected by a regulatory loop similar to that seen in the SAM.

b – Auxin transport (arrows) and distribution (5) in a root tip: auxin is provided by PIN–dependent auxin transport in the central cells towards the tip, where it accumulates, particularly in the QC and in the root cap. From here, part of the auxin is redistributed by a PIN 2–dependent auxin route through the outer layers. (drawn by E. Dubuisson, University P. M. Curie).
(Barlier et al., 2000). In contrast, the aberrant lateral root formation alf4 Arabidopsis mutant lacks lateral and adventitious root primordia (Celenza et al., 1995) and the adventitious rooting-incompetent (rac) mutant of tobacco has phloem parenchyma unable to organize root primordia in response to exogenous auxin (Lund et al., 1996). The rac mutants are blocked in their capacity to activate the HRGP nt3 promoter which is normally activated by auxin during early root initiation (Lund et al., 1997). The HRGP nt3 gene encodes a hydroxyprolin-rich glycoprotein expressed in the initial step of lateral and adventitious root formation (Keller and Lamb, 1989). The induction of this gene is one of the initial steps in the sequential program of root initiation as it precedes completion of the first cell division during primordium formation (Vera et al., 1994). When AUX1, a gene responsible for auxin influx, is mutated, significant inhibition of lateral root initiation is observed. Genes from the PIN and PID families responsible for auxin efflux are also required for lateral root formation. Polar auxin transport from the shoot to the root tip is important for lateral root development at the whole plant level (Casimiro et al., 2001, Bhalerao et al., 2002). Genes from the AUX/IAA family, which encode proteins involved in auxin-responsive gene expression, are also required as shown by the strong expression of the DR5 element at pericycle sites involved in root formation; the high GUS expression driven by DR5 indicates auxin accumulation at the root forming sites (Himanen et al., 2002). Precise analyses of cell cycle events associated with Arabidopsis lateral root initiation have revealed a key role for the KRP2 gene, one of the recently identified CDK inhibitors of entry into the S phase of the cell cycle. KRP2 is highly expressed under root treatment with the inhibitor of auxin transport NPA and its expression dramatically declined upon auxin treatment. In situ hybridization shows that KRP2 transcripts accumulated in pericycle cells not involved in root formation and overexpression of KRP2 reduces lateral rooting. Consequently, auxin levels in the main root apex might control lateral root initiation via the transcriptional regulation of KRP2 (Himanen et al., 2002; Casimiro et al., 2003).

Some other genes with functions more or less identified, are also known to be involved in lateral and/or adventitious root formation. Among them, LRPI (LATERAL ROOT PRIMORDIUM 1) from Arabidopsis is activated only during lateral and adventitious root primordium formation and is turned off prior to emergence (Smith and Federoff, 1995). The RSI gene of tomato was activated in very early initials of lateral and adventitious roots, and persisted until shortly after the emergence from the parent tissue (Taylor and Scheuring, 1994). The rtcs maize mutants completely lack the formation of crown and lateral seminal roots (Hetz et al., 1996). The octopus (oct) mutant of Arabidopsis initiates lateral root primordia but cannot maintain meristematic activity, the activity of the primary root meristem being unaffected. The OCT gene has been tagged by a GUS-promoter trap construct and the GUS expression indicated that the OCT gene is expressed in the root vascular system (Ferreira et al., 1994).

Interestingly, some cell wall signals that stimulate root formation are also present during early development of somatic embryos (Pennell et al., 1995), suggesting common regulatory pathways in both morphogenetic events. However, little information is available on this topic. The listing of genes potentially involved in lateral root formation is in progress (Casimiro et al., 2003) but a full understanding of this morphogenetic event has not yet been achieved. Rapid advances are expected in the coming decade with the use of combined genetic-cell-biological approaches.

5.4. THE QUESTION OF ROOT AND SHOOT DETERMINATION

For some species, development of buds on roots (Peterson, 1975) makes possible natural vegetative propagation by root cuttings. Those buds frequently arise endogenously like lateral roots. They may originate from the pericycle in young roots, with strong similarities with root primordia (Bakshi and Coupland, 1959, Projetti and Chriqui, 1986a). From older roots, they may be initiated exogenously from callus arising from the phellogen (Murray, 1957) or directly from the phellogen (Projetti and Chriqui, 1986a). They often arise at the vicinity of lateral roots and may become connected to the lateral root trace. Conversely, development of adventitious roots on various aerial organs is also possible (Barlow, 1986). The occurrence of such adventitious shoots and roots indicates that some mature stem and root cells are not irreversibly determined. When the WUS gene is over-expressed in roots using a Cre-lox based expression system, the root tips formed ectopic shoots or auxin-dependent somatic embryo-like structures; this suggests that RAM cells can be redirected to at least two different developmental pathways (Gallois et al., 2004). Only a limited
number of experimental cases have been reported in which the same cell type was able to organize directly either a root or a shoot apical meristem in response to hormones added exogenously. This was the case for the root pericycle cells and for the leaf perifascicular cells of *Rorippa sylvestris* (Projetti and Chriqui, 1986a, b). Evidence for a common developmentally labile early stage from which shoot or root meristems would become determined is still lacking, but it could be expected that combination of *in vitro* cultures and molecular approaches, with the new tools offered by genes involved in shoot or root apical meristem identity, will allow advances in this field. The role of hormones in determining meristem identity is not yet understood, but data on cytokinin-deficient plants over-expressing cytokinin oxidases have indicated opposite functions of cytokinins in the regulation of SAM and RAM activity (Werner *et al.*, 2003).

6. SECONDARY MERISTEMS AND RADIAL GROWTH

In most dicotyledons and in gymnosperms, expansion growth of stems and roots occurs through the establishment and the functioning of 2 to 4 internal meristematic layers dividing periclinally. These are called secondary meristems or cambium. Cambia were formerly divided into vascular cambium giving rise to secondary xylem and phloem, and cork cambium that produces cork. The cork cambium is now usually named phellogen, and the term cambium is preferably used for vascular cambium.

6.1. ORIGIN AND FUNCTION OF THE VASCULAR CAMBIUM

The vascular cambium allows the development of tree-like forms and ensures the perennial life of trees through the regular renewal of secondary xylem and phloem. It is also present in many herbaceous dicotyledons. The origin of cambial layers is different in stems and in roots. At early stages of leaf initiation from the SAM, some L3 cells in the leaf founder regions establish a procambium (provascular strand) that will produce the primary xylem and phloem cells of the leaf, and consequently, of the stem. Part of the procambial cells subsist, recover secondarily a mitotic activity and divide periclinally, giving rise to the intrafascicular cambium. The signal for cell division spreads to the neighbouring parenchyma cells, changing them into interfascicular cambium, so that the cambium forms a complete ring of dividing cell layers and gives rise to cylinders of secondary tissues. In roots, strands of primary xylem and phloem are alternate, and the vascular cambium is initiated by divisions of the procambial cells that remained undifferentiated between the primary xylem and the primary phloem. Thus, at the beginning, the cambium has the form of strips whose number depends on the type of root organization. Subsequently, the pericycle cells located behind the xylem poles reactivate as a cambium, and then the cambium completely encircles the primary xylem core. As for the shoot cambium, the root cambium produces secondary phloem and xylem by periclinal divisions and increases in circumference by anticlinal divisions (Esau, 1965). Mature vascular cambium is usually constituted of two distinct cell types: the ray initials and the elongated fusiform initials, both contributing to the whole cambial fabric and to the horizontal and vertical systems of the secondary vascular tissues (Catesson, 1994).

In many trees, the cambium presents alternate periods of meristematic activity and arrested growth, the timing of which being under environmental and genetic control and giving rise to successive rings on the wood. The annual cycle of cambial activity is accompanied by an arrest of cells in the G1 phase of the cell cycle during winter arrest (Mellerowicz *et al.*, 1989).

Auxin is considered as the main phytohormone involved in the regulation of cambial activity. It has a stimulatory effect on cambial cell division (Zakrzewski *et al.*, 1983, Sundberg *et al.*, 1993). It also favours the formation of fusiform initials rather than radial initials (Lev-Yadun, 1995). Auxin concentration gradients, involving polar auxin transport through the AUX1-like family of influx and PIN1-like family of efflux carriers, regulates seasonal activity of the cambium as well as xylem maturation. The different fates of inside (xylem) and outside (phloem) cambial derivatives might originate from unequal auxin distribution (Schrader *et al.*, 2003). In addition, auxin is crucial in inducing procambial cell formation as demonstrated by the analysis of *pin1* and *gnom* mutants (Gälweiler *et al.*, 1998; Koizumi *et al.*, 2000). Cytokinin is also essential for promoting the division of procambial cells as revealed by the *wol/crel* mutants in which all procambial cells differentiate into protoxylem, the mutated gene encodes a cytokinin receptor (Mähonen *et al.*, 2000; Scheres *et al.*, 1995). However, little is known at the molecular level about how auxin and cytokinins induce procambium, then cambium formation.
Recently, a regulation by miRNA of the PHAVOLUTA gene, a gene involved in leaf adaxial identity, has been shown to be involved in vascular cambium cell determination (McHale and Koning, 2004). A number of other genes such as ATHB8 (Baima et al., 1995) are expressed in procambial cells but their precise role in procambium and cambium formation is not yet understood.

Active cambial cells in planta are provided by both auxin (Schrader et al., 2003) and cytokinins (Boucheron et al., 2001); they have been shown to express some of the cell cycle genes that are also expressed in the primary apical meristems (Boucheron et al., 2001). This inherent cell cycling capacity might explain the particular ability of cambium to form rapidly a callus both following wounding and in tissue culture without dedifferentiation processes. It could also explain the particular ability of cambial cells to be transformed by Agrobacterium strains (Chriqui et al., 1988; Guivarc’h et al., 1993).

6.2. PHELLOGEN ORIGINS AND PERIDERM FORMATION

In old stems of herbaceous dicotyledons, as in woody dicotyledons and conifers, the phellogen arises beneath the epidermis, in a subepidermal or in a deeper position, from cortical cells that re-enter a mitotic activity and divide periclinaly (Esau, 1965). The phellogen produces externally suberified cells (phellem), and internally, phelloderm cells. These tissues form the periderm which is either persistent, or is regularly sloughed off and renewed (the outer bark or rhytidome). In roots, phellogen has a deeper origin and arises usually from the pericycle cells that undergo periclinal and anticlinal divisions. Periclinal divisions cause an increase of the radial extent of pericycle layers. The combined increase in thickness of the vascular tissues and of the pericycle derivatives forces the cortex outward. The cortex does not undergo an increase in circumference but becomes ruptured and sloughed off together with the epidermis and endodermis. The phellogen layers stay in the outer part of the pericycle derivatives and produce phellem toward the outside and phelloderm toward the inside (Esau, 1940). Nothing is known concerning the genetic control of the differentiation of these tissues.

6.3. OTHER TYPES OF RADIAL GROWTH

Some plants, like monocots, lack secondary meristems but have intercalary meristems. These meristems are formed of actively dividing cells that differ from apical meristems and are located between more and less differentiated tissues at the base of each internode. Such intercalary meristems do not produce vascular tissues but participate in the radial growth of the stem. They are the result of a secondary meristematic activity that is not present in the embryo and originates from a process of natural dedifferentiation.

7. THE CELL CYCLE

7.1. CELL PROLIFERATION, POLYPLOIDY AND DEVELOPMENT

The various morphogenetic processes in plant development involve cell division activity, both in planta and in tissue culture. Cycling cells are found mainly in the primary shoot and root meristems, secondary meristems (vascular cambium and phellogen), and in specific cell types such as stomata, oil glands or glandular trichomes. Cells are also induced to divide at the onset of any type of adventitious organ formation and cell cycle reactivation is a prerequisite for callusing and regenerating processes in tissue culture. The eukaryotic cell division cycle is usually divided into four distinctive phases (Howard and Pelc, 1953): G1 (G for gap, time interval) during which the cell grows with a 2C DNA content, S (synthesis phase) during which the nuclear genetic information is replicated, G2 (4C DNA content), when further growth in preparation for division occurs, and M (mitosis), in which the cellular contents are partitioned between the daughter cells. The S and M phases require more energy for their completion than the G1 and G2 phases. Sucrose added to excised pea root tips rapidly stimulates the entry of G1 cells into S, and of G2 into M (Van’t Hof, 1973). This observation is probably important for understanding the effect of sucrose added in tissue culture medium to initiate cell dedifferentiation. It also points out that major controls operate at the transition points from G1 to S and from G2 to M.

The duration of S and M phases is rather constant for a given species under a standard set of conditions. Both the shoot and root meristems are mosaics of fast and slow cycling cells. Modulations of the total duration of the cell cycle are mainly due to variations in the duration of the G1 phase. The G1 phase in active shoot apical meristems is always longer than
the \(S + G2 + M \) phases (Nougarède and Rembur, 1985). Within meristems, once \(S \) phase is initiated, genes for the completion of mitosis are activated and cell division automatically follows.

In the vegetative shoot apical meristem of various species, quantitative data about the cell-doubling times in the central (CZ) and peripheral (PZ) zones indicate that the cell cycle duration is always shorter in the PF. Changes in the cell cycle are characteristic of developmental switches. For example, in *Chrysanthemum segetum*, the mean cell doubling time is 139 h in the CZ and 48 h in the PZ; at the switch to reproductive phase, the activation of the CZ is marked by a decrease of the cell cycle duration to 54 h and a loss of the cytophysiological zonation of the SAM (Nougarède and Rembur, 1977); this is achieved by a shortening of the G1 phase (Nougarède and Rembur, 1978). Cell sizes in the vegetative CZ are also significantly smaller than those in the CZ while they become more uniform across the prefloral shoot apices. It was hypothesized that cell size is a component of developmental programs and that a critical cell size is required to commit the cells to enter the S phase for a new round of division. A tissue-specific size control would operate at both late G1 and late G2 checkpoints (Francis, 1998), but the extent to which signal transduction chains impinge on the plant cell cycle with consequences for cell size is still to be analyzed.

During temporary arrests of meristematic activity such as bud winter dormancy, axillary bud inhibition or seed dormancy, cells were found to stop the cell cycle in a prolonged G1 (G0) phase (Rembur, 1972; Brossard, 1973; Nougarède and Rembur, 1977; Cottignies, 1979). At the transition to flowering, the cell cycle shortens (Miller and Lyndon, 1975; Nougarède and Rembur, 1978). It remains unclear whether changes in the cell cycle in planta cause developmental switches or whether they are consequences of developmental switching by other mechanisms. The same question arises concerning the various types of regeneration that can be induced in tissue culture that require cell proliferation.

In the non-cycling differentiated parts of plants, supernumerary rounds of DNA synthesis can occur in cells that have lost their mitotic ability (Fig. 8.13). This process of endopolyploidisation (endoreduplication) is rather frequent in higher plants. In such polysomatic species, nuclear DNA contents can reach very high levels, for example up to 32C in W38 tobacco pith (Brossard, 1975) and *Arabidopsis thaliana* leaves (Galbraith et al., 1991), and cases of polyteny have been reported in embryonic tissues (d’Amato, 1952). Endoreduplication also occurs in seed or plant tissues with high metabolic activity, suggesting that it might provide a mechanism whereby cells increase the availability of DNA template and thus increase the level of gene expression (Grafi, 1998). The presence of polyploid cells in initial explants is thought to have consequences for abnormal nuclear behaviour in tissue culture including somaclonal variation, aneuploidy and nuclear fragmentations (Nuti Ronchi et al., 1973; Brossard, 1975; Berceteche et al., 1993). In contrast, the non polysomatic species such as *Populus* spp. (Jehan et al., 1994), *Eucalyptus globulus* (Azmi et al., 1997) or *Crepis capillaris* (Brossard, 1978) are characterized by cell cycle arrest in a 2C level at the onset of cell differentiation. The ploidy levels of the various tissues can vary within a polysomatic species. For example, W38 tobacco mesophyll cells remain usually diploid, while mature pith tissue is a mosaic of ploidy levels from 2C to 32C. The biological significance of endoreduplication is still unknown. It has been hypothesized that it is a means whereby small genomes can correctly support rapid cell growth and that the final size of a cell is linked to its DNA content. In some cases, such as trichomes and hypocotyl cells of *Arabidopsis*, endoreduplication stops very early during cell differentiation when cells elongate (Melaragno et al., 1993) but the existence of non-polysomatic species contradicts the hypothesis. Whatever it may be, the current hypothesis is that endopolyploidization provides a mechanism for increasing cell size and gene transcription (Sugimoto-Shirasu and Roberts, 2003).

7.2. Molecular Control of the Cell Cycle

As in all eukaryotes, progression through the plant cell cycle (Fig. 8.14) is controlled by cyclin-dependent kinases (CDKs) that bind to positive regulators called cyclins and regulate the transition points from G1 to S and G2 to M. Intensive efforts over the past ten years have identified a range of genes encoding CDK-like proteins and cyclins in various plant species and detailed reviews have been published recently (De Veylder et al., 2003; Dewitte and Murray, 2003). Interestingly there is accumulative evidence that many of the controlling factors are highly conserved and similar in mammals and plants, including not only the CDKs and the cyclins, but also retinoblastoma-like proteins,
transcription factors E2F and D-type cyclin kinases (Huntley and Murray, 1999; Shen, 2002).

CDKs are serine/threonine kinases that control progression of the cell cycle in all eukaryotes. Their activity is regulated both by association with cyclin regulatory subunits and by phosphorylation/dephosphorylation events. They are characterized by specific motifs involved in cyclin- and ATP-binding and have been initially separated into two main classes:

- the PSTAIRE class containing the PSTAIRE sequence within a cyclin interaction motif. An example from this group is the CDK A protein from *Arabidopsis*;
- the non-PSTAIRE class having a variant motif (PPTALRE or PPTTLKE) at the equivalent position to that in the *Arabidopsis* CDK B proteins.

In *Arabidopsis*, the *CDC2a* gene (CDK A) was found to be expressed during both in G1-to-S and in G2-to-M transitions, i.e. in a cell-cycle-phase independent pattern, while the *CDC 2b* (CDK B) gene is more associated with the progression through G2 (Magyar et al., 1997; Menges and Murray, 2002) (Fig. 8.7). It has been reported that the *CDC2a* gene is expressed not only in cycling cells but also in cells showing competence for division (Hemerly et al., 1993; Martinez et al., 1992; Boucheron et al., 2001), suggesting that it could be a component of the cell totipotency. In addition, *CDC2a* was found to have some involvement in the orientation of cell division planes and cell size control (Hemerly et al., 1993). More recently, three other CDK classes (C, D and E) have been identified (Joubes et al., 2000) to which has been added the distantly related CDK activating kinase CAK1, renamed CDK F1 (Vandepoele et al., 2002).

The plant cyclins were initially put into groups reflecting their similarities with the mammalian cyclins A, B, C and D (Mironov et al., 1999), the C-type cyclins being sparsely documented. Recently, the number of cyclins defined in *Arabidopsis* has expanded to 49 distributed in 8 classes and 23 subgroups (Torres Acosta et al., 2004; Wang et al., 2004). The expression of the main cyclin genes has been studied, giving information on how their transcripts accumulate during the various phases of the cell cycle (Menges et al., 2002, 2003, 2005) (Fig. 8.14). The A- and B-type cyclin accumulation is mainly phase dependent. The B-type cyclins are mitotic cyclins correlated with the G2/M transition. Results are less strict for A-type cyclins, a group in which some cyclins are expressed uniformly throughout the cell cycle while others start accumulating at the end of the G1 phase or during the S phase. The majority of D-type cyclins display fairly constant expression levels throughout the cell cycle and, by analogy with their animal homologs, have been proposed to control the G1-to-S transition (Dahl et al., 1995; Soni et al., 1995). The genes encoding CYCD cyclins are induced at a specific time during cell cycle re-entry but generally remain expressed at a constant level in actively dividing cells (Huntley and Murray, 1999). However, the transcripts of two tobacco cyclin genes, *CYCD2* and *CYCD3*, accumulate during mitosis in synchronized BY-2 cells (Sorrell et al., 1999). The apparent discrepancies between results probably reflect the fact that only some of the genes controlling the cell cycle have been identified so far and that much work is still to be done in order to have a fully comprehensive understanding of the phenomenon. In addition, the abundance of cyclin mRNA and protein are sometimes not correlated with the level of the activity (Mironov et al., 1999). Another *CYCD2*-type cyclin from *Arabidopsis* is expressed only during lateral root formation (Mironov et al., 1999). Both CDK A and B can be partners of specific CYCD (Healy et al., 2001; Kono et al., 2003) and D-type cyclins show multiple patterns of expression and regulation, as shown by microarrays studies: during cell cycle re-entry, two distinct expression timing are observed: CYCD5;1 and CYCD3;3 accumulate early in G1v and decline markedly as cells move towards S, whereas CYCD4;1, CYCD4;2 and CYCD3;1 accumulate late in G1 and peak at the G1/S transition (Menges et al., 2005).

The destruction of cyclins at specific points of the cell cycle depends on the presence of either a destruction box motif (CYCA and CYCB) or specific sequences (PEST) which are thought to be signals for rapid proteolysis (CYCD). In addition to cyclins, other proteins have been isolated by their ability to interact with CDKs. In this category, CKS1 from *Arabidopsis* binds to both CDK A and CDK B; it is expressed during the mitotic and presumably also the endoreduplication cycles (De Veylder et al., 1997; Jacqmard et al., 1999). Protein inhibitors of CDKs (KRP, also known as ICKs for inhibitors of CDK) play an important role in modulating CDK activity. One of these inhibitors (KRP1/ICK1) interacts with both CDC2a and CYCD3 (Wang et al., 1998). *KRP1* is induced by ABA and leads to a decrease in CDK activity, suggesting that KRP1 may mediate the cytostatic effect of abscisic acid. The distinct KRP may have differential roles in regulating the mitotic cycle and/or the endomitotic process (Ormenese et al., 2004).
Newborn G1 cells can start another round of division when located within meristems or arrest during periods of dormancy. They can also differentiate either in a G1 state giving rise to non-polyploid tissues or undergo several rounds of DNA synthesis without dividing, giving rise to polyploid cells. The differentiated cells can re-enter the cell cycle given the appropriate signals (redrawn from Den Boer and Murray, 2000b, by E. Dubuisson, University P. M. Curie).

Concerning CDK phosphorylation as a control mechanism in plants, it was found that cytokinin-depleted cells arrested in G2 contained CDK complexes with reduced kinase activity and high phosphotyrosine content. They could be stimulated to re-enter the cell cycle upon addition of cytokinins or by expression of the CDC25 gene from fission yeast (John, 1998). Resumption of the cell cycle results in tyrosine dephosphorylation and kinase reactivation. The yeast CDC25 phosphatase being highly specific for the Tyr15 of CDKs, the results suggest that the triggering of Tyr15 dephosphorylation is an essential function of cytokinins in the plant cell cycle. The CDC25 gene has also been expressed in transgenic tobacco plants and root cultures, and in both cases the cells were found to divide at a reduced size (McKibbin et al., 1998), supporting the importance of Tyr15 phosphorylation in the timing of mitosis. Recently, the first CDC25 phosphatase was characterized in plants (Landrieu et al., 2004a and b). Growing evidence suggests that pRB-like proteins are also among the important factors in the plant cell cycle. The pRB (retinoblastoma protein) is central to the G1-to-S transition in mammals. Phosphorylation of pRB by cyclin D-dependent kinases renders it inactive as a repressor of the S phase but promotes DNA replication. pRB proteins have been also found in plants (Huntley et al., 1998; Vandepoele et al., 2002). The observation that a pRB protein in maize leaves is highly produced in differentiating but not in proliferating cells suggests that it could be involved in the suppression of cell division during differentiation (Huntley et al., 1998). Other cell cycle partners are E2Fa, an activator of gene expression stimulating cell division (De Veylder et al., 2002) and controlling CDK B expression (Boudolf et al., 2004), as well as the WEE1 kinase which is a candidate to inhibit M-phase specific CDK activity during endoreplication (Sun et al., 1999). At least one inhibitor (KRP1) can block entry into mitosis but allow S-phase progression, causing endoreplication (Weinl et al., 2005). Among genes encoding conserved and plant-specific cell cycle regulators identified so far in Arabidopsis, there are 29 CDKs, 49 cyclins, 7 KRPks (inhibitors of the CDK-cyclins complex) and 2 CDK subunits (Menges et al., 2005). The considerable advances made in recent years in understanding the basic mechanism that regulate the cell cycle have made it possible to propose a model (Fig. 8.14) that integrates current knowledge. However, a number of important questions have still to be solved to understand how cell division is initiated, how endoreduplication is regulated and how cells exit the cell cycle to differentiate. The importance of all the cell cycle
parameters identified so far in plant development has only recently begun to receive attention. Manipulation of cell cycle genes to modify plant growth and development has started recently (Doerner et al., 1996; den Boer and Murray, 2000b; Wyrzykowska et al., 2002) but how the cell cycle regulators are linked to genes that co-ordinate meristem function is not yet understood. A change in shoot apical meristem structuration has recently been found in transgenic tobacco lines overexpressing the CYCD3 genes, suggesting that at least this gene interacts with genes involved in the identity of the central zone of the SAM (Boucheron et al., 2005).

Concerning tissue culture, the presence of pre-existing cycling cells in the explants has considerable consequences for the ability of both dedifferentiation (Boucheron et al., 2001) and integration of foreign DNA (An et al., 1985; Guivarc’h et al., 1993).

Visualizing cell cycle activity can be helpful for several aspects of tissue culture. In such cases, in situ hybridization or the use of transgenic lines harbouring promoter: GUS gene fusion can be done with some of the main cell cycle genes. The well-characterized marker is CYCB, whose promoter activity correlates well with the corresponding mRNA localization and marks cell cycle progression through late G2 to M phase. Histone H4, E2FA and CYC D3 are good candidates to mark the G1 to S transition. In addition, while CDKA promoter activity reflects a state of competence for cell division, CDKB is identified as a G2 to M phase-dependent kinase.

7.3. HORMONAL CONTROL OF THE CELL CYCLE

The growth regulators auxin and cytokinin are regarded as essential for cell division although their precise role in this process is not yet fully understood (den Boer and Murray, 2000a). Evidence for their involvement derives largely from work with callus and suspension cultures and the extrapolation of the conclusions from these systems to organized meristems is little documented. Auxin has for a long time been considered to be involved in the initiation of DNA synthesis and in cell enlargement, allowing

![Fig. 8.14 – Key events in cell cycle progression.](image)
the cells to reach the critical size required to initiate a new cycle. Cytokinins were mostly considered to be involved in the process of mitosis and a combination of auxin and cytokinin is frequently required to reinitiate cell proliferation in tissue culture (Skoog and Miller, 1957). Auxin alone increases the level of a CDK protein in cultured tobacco cells but a cytokinin is required for activation of this kinase (John et al., 1993). The CDC2A promoter is inducible by auxins and, to a lesser degree, by cytokinins (Hemerly et al., 1993). Involvement of cytokinins at the G2-to-M transition has been demonstrated by analyses of endogenous hormones during the cell cycle of synchronized tobacco BY-2 cells. Peaks of zeatin and dihydrozeatin were observed at the end of the S phase and during mitosis; the cell cycle blocked in G2 by lovastatin, a cytokinin biosynthesis inhibitor, can be reversed by addition of exogenous zeatin (Laureys et al., 1998). It has been suggested that cytokinin-depleted cells accumulate CDK-cyclin complexes that are inactive due to phosphorylation of Thr 14 and/or Tyr 15 regulatory residues of the CDK, addition of cytokinins of tyr dephosphorylation being able to restore the kinase activity (Zhang et al., 1996). Cytokinins seem also to regulate the G1-to-S transition. In Arabidopsis cell cultures, it has been found that CYCD3 is induced at the end of the G1 phase by cytokinins and sucrose (Riou-Khamlichi et al., 1999 and 2000).

The value of Arabidopsis as a model plant together with the systematic genomic approaches now combined with functional genomic analysis have begun to shed light on the massive changes in gene expression that occur at each developmental stage. Recent molecular genetic studies have shown that many results with Arabidopsis are largely applicable to other eudicots or grass plants. Furthermore, a number of developmental genes, including various genetic (transcription factors) and epigenetic (microRNAs, RNAi, chromatin remodeling factors) regulators have already been identified. In the future, the careful combination of new technologies will produce high-resolution information allowing us to start probing the complexity of the gene regulation network in plant development. There is no doubt that such findings will also be helpful in understanding the behaviour of excised tissues or organs placed in tissue culture and the role of culture medium components in controlling developmental genes.

8. CONCLUSION

REFERENCES

D’AMATO F. 1952 Polyplody in the differentiation and function of tissues and cells in plants. Caryologia 4, 311-358.

FRANK M., RUPP H.M., PRINSEN E., MOTYKA V., VAN ONCKELEN H. & SCHMÜLLING T. 2000 Hormone autotrophic growth and differentiation identifies mutant lines of...

regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21 16, 4327-4337.

JACKSON D.P. & HAKE S. 1999 Control of phyllotaxy in maize by the abphy1 gene. Development 126, 315-323.

JACMQARD A., DE VEYLERD L., SEGERS G., ENGLER J.D., BERNIER G., VAN MONTAGU M. & INZÉ D. 1999 Expression of cks1 At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and endoreduplication cycle. Planta 207, 496-504.

LEV-YADUN S. 1995 Differentiation of the ray system in woody plants. Bot. Rev. 61, 45-84.

formation and defines a new class of homeobox genes. Plant Cell 8, 2155-2168.

MAD box gene is expressed in inflorescence meristems and is required for position dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122, 1253-1260.

RUPP R.M., FRANK M., WERNER T., STRNAD M. & SCHMÜLLING T. 1999 Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin over-producing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J. 18, 159-179.

TALBERT P.B., ALDER H.T., PARKS D.W. & COMAI L. 1995 The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121, 2723-2735.

Chapter 8

VAN'T HOF J. 1973 The regulation of cell division in higher plants. Brookhaven Symp. 25, 152-165.

ZHANG K., LETHAM D.S. & JOHN P.C.L. 1996 Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200, 2-12.
Chapter 9
Somatic Embryogenesis

1. INTRODUCTION

During the course of evolution, many plant species have evolved different methods of asexual embryogenesis, including somatic embryogenesis, to overcome various environmental and genetic factors that prevent fertilization. Somatic embryogenesis is a process whereby somatic cells differentiate into somatic embryos. Somatic embryos resemble zygotic embryos morphologically. They are bipolar and bear typical embryonic organs. However, they develop via a different pathway. Somatic embryogenesis occurs to a limited extent under natural conditions, within ovules (e.g., Paeonia) and more rarely on leaves (e.g. Asplenium and Kalanchoe). Since the first observation of somatic embryo formation in Daucus carota cell suspensions by Steward et al. (1958) and Reinert (1958) the potential for somatic embryogenesis has been shown to be characteristic of a wide range of tissue culture systems in plants. During the past 40 years, somatic embryogenesis has been described in a large number of plant species. New species and modified methods are continuously reported and described and their number continuously increases. Methods for bringing about this kind of morphogenesis are also steadily being modified and improved. Somatic embryogenesis can probably be achieved for all plant species provided that the appropriate explant, culture media and environmental conditions are employed. In this chapter we shall highlight important aspects of somatic embryogenesis. We shall not give details for different species since this field of research is developing very fast and it is important to search for the latest information; this can easily be done on the web. Somatic embryos are used as a model system in embryological studies. However, the greatest interest of somatic embryos is centred in its practical application for large-scale vegetative propagation, particularly because of the possibility to scale up the propagation by using bioreactors (see Chapter 1). In addition, in most cases, somatic embryos or embryogenic cultures can be cryopreserved, which makes it possible to establish gene banks. Embryogenic cultures are also an attractive target for gene transformation.

2. PLANT EMBRYOGENESIS

Before starting to work with somatic embryogenesis, it is crucial to have a basic knowledge about the embryology of the species of interest. Plant embryogenesis begins with the zygote and passes through a stereotyped sequence of characteristic stages. Although considerable morphogenesis occurs after seed germination, the embryonic phase is crucial as it is here that meristems and the shoot-root body pattern are specified. Angiosperms and gymnosperms became separated about 300 million years ago. Since their embryology differs in many aspects we shall briefly describe embryology in one angiosperm, Arabidopsis, and one gymnosperm, Pinus (Fig. 9.1).

2.1. FERTILIZATION

One of the characteristics of angiosperms is the process of double fertilization, where both male gametes participate in an act of fusion: one unites with the egg cell to form the diploid zygote from which the embryo develops, while the other gamete fuses with the central cell of the embryo-sac which then develops into the triploid endosperm. The egg cell is polarized, having a nucleus at the cytoplasm-rich chalazal pole while the micropylar pole is highly vacuolated (Russell, 1993). The microtubular cytoskeleton and the location of actin microfilaments within the cytoplasm are also polarised (Dodeman et al., 1997). The cytoplasm is predominantly maternally inherited in angiosperms, although there are species with uniparental, paternal or biparental cytoplasmic inheritance (Dumas et al., 1998). Typically, an angiosperm zygote is briefly quiescent after karyogamy. The endosperm is first syncytial and later becomes cellular in most taxa (Otegui and Staehelin, 2000). The endosperm plays a role in embryo nutrition as it accumulates reserves of starch, proteins and lipids. Genetic analysis suggests that maternal and endosperm tissues may regulate each others’ development (Lopes and Larkins, 1993).

Gymnosperms display single fertilization since only the larger male gamete migrates through the egg cytoplasm and fuses with the egg nucleus in the centre of the egg cell while the smaller male gamete degenerates. The zygote is surrounded by neocyttoplasm consisting of a large fraction of the egg and
male nucleoplasm, and some of the male cytoplasm (Singh, 1978). Typically, in gymnosperms, cytoplasmic inheritance has a biparental character with paternal inheritance of chloroplasts and maternal inheritance of mitochondria (Neale and Sederoff, 1989). The megagametophyte originates from the megaspore and undergoes development prior to fertilisation. The first phase of megagametophyte development is characterised by an extensive series of cell-free nuclear divisions. Then, wall formation begins at the periphery and proceeds towards the centre until the entire megagametophyte is cellular (Gifford and Foster, 1987). As the embryo begins to differentiate, the cells of the megagametophyte accumulate reserves of starch, proteins and lipids. In the early stages of development, the embryo is nourished by the egg cytoplasm through the suspensor and it is only later that it begins to draw upon the cells of the megagametophyte. However, the bulk of these reserves are held over by the megagametophyte for use by the germinating embryo (Raghavan and Sharma, 1995).

Fig. 9.1 Schematic overview of angiosperm (Arabidopsis) and gymnosperm (Picea) embryo development. The illustrations are not to scale. Drawings were prepared based on Goldberg et al. (1994) and Gifford and Foster (1987). Abbreviations: EP - embryo proper, pU - primary upper tier, pE - primary embryonal tier, E - embryonal tier, S - suspensor tier, U - upper tier, EM - embryonal mass, sS - secondary suspensor.

2.2. STAGES DURING EMBRYO DEVELOPMENT

Embryo development in angiosperms can be divided into two main steps (Dodeman et al., 1997):

1. Embryogenesis sensu stricto, beginning with the zygote and finishing at the cotyledonary stage.

The development through the globular, heart, torpedo and cotyledonary stages can be divided into a sequence of different stages representing three major events (Goldberg et al., 1994):
i. Asymmetric division of the zygote, giving rise to a small apical cell and a large basal cell.

ii. Specific pattern formation, which takes place in the globular embryo.

iii. Transition to the cotyledonary stage which coincides with the initiation of the root primordium, followed, in dicots, by the shoot primordium.

2. Maturation of the embryo followed by germination.

The sequence of embryo development in gymnosperms can be divided into three phases (Singh, 1978):

1. Proembryogeny - all stages before the elongation of the suspensor.

2. Early embryogeny - all stages after elongation of the suspensor and before establishment of the root meristem.

3. Late embryogeny - intensive histogenesis including establishment of the root and shoot meristems.

These three steps in gymnosperm embryo development correspond to the stages described above for embryogenesis sensu stricto in angiosperms and are followed by the period of embryo maturation.

2.3. ASYMMETRIC DIVISION OF THE ZYGOTE/PROEMBRYOGENY.

In angiosperms, the zygote divides a few hours after fertilisation at which time it already has a highly polarized appearance, displaying uneven distribution of organelles and metabolites (Goldberg et al., 1994). Such cytological and physiological polarity in the zygote affects the ultrastructure of the daughter cells. The first division is almost invariably asymmetric and transverse, cutting off a large vacuolated basal cell and a small, densely cytoplasmic terminal cell. The organogenic part of the embryo is derived from the terminal cell with little or no contribution from the basal cell. The asymmetric pattern of the first division is an important feature for the initiation of the embryogenic developmental pathway. It has been suggested that asymmetrical division is probably the consequence of nuclear migration from the central region of the cell to the periphery (Duditis et al., 1995).

There are four types of proembryogeny in gymnosperms, of which the conifer type is the most common and is interpreted as a basal plan for gymnosperm embryogeny (Wehmeyer et al., 1993). A common feature of gymnosperm embryo development is the free nuclear stage which, with the exception of the dicotyledonous genus Paeonia (Yakovlev and Yoffe, 1957), is not seen in any other plant group. The number of free nuclei differs among species. In Picea and Pinus, which represent the conifer type of embryogeny, four nuclei are present at the free nuclear stage. Proembryo development begins when the fertilised egg nucleus divides into two, then four, free nuclei contained within a dense region of cytoplasm (neocytoplasm). The four free nuclei are arranged in a tier at the chalazal end of the archegonial sac. After division, two tiers of four nuclei each are formed, the primary embryonal tier and the primary upper tier which soon become cellular. Internal divisions of these two tiers produce four tiers of four cells each. The lower two tiers constitute the embryonal tier, the tier above it is called the suspensor tier. Cells of this tier may elongate to form the primary suspensor; they are often dysfunctional but can show some meristematic activity. The uppermost tier degenerates. The upper four cells of the embryonal tier elongate to form a functional suspensor (called an embryonal suspensor) and the lower four cells of the embryonal tier form the embryonal mass. The proembryo stage lasts approximately one week.

2.4. PATTERN FORMATION IN THE GLOBULAR EMBRYO/EARLY EMBRYOGENY

In angiosperms the divisions of the zygote up to the globular stage embryo are in predictable planes (Raghavan and Sharma, 1995). When first formed, the embryo proper consists of a mass of relatively undifferentiated cells. Soon, however, changes in the internal structure of the embryo result in the initial development of the tissue system of the nascent plant. Two critical events take place after the embryo proper is formed (Goldberg et al., 1994):

1. the specification of the radial pattern with three primordial tissue layers, and

2. the differentiation of the regions along the apical-basal axis from which embryonic organ systems generate.

The first tissue to differentiate is the protoderm which is formed by periclinal divisions of cells of the early globular embryo. The formation of the protoderm, which restricts cell expansion, is essential for the remaining developmental phases (Dodeman et al., 1997). Subsequent cell differentiation events within the embryo proper result in the production of an inner procambial layer and a middle layer of ground meristem cells. Differentiation of these three
tissue layers establishes a radial axis in the globular embryo (Goldberg et al., 1994).

Three major regions can be distinguished along the axis of apical-basal polarity: an apical region giving rise to the shoot meristem and the cotyledons, a central region including hypocotyl, embryonic root (radicle) and the initials of the root cap and a basal region corresponding to the hypophysis, which gives rise to the quiescent centre of the root meristem and the central root cap (Jurgens et al., 1994).

During early embryogeny in gymnosperms, cells of the lower embryonal tier divide, creating an embryonal mass. The basal cells of the embryonal mass continue to divide predominantly in a transverse plane and elongate, contributing to the thick secondary suspensor. The lack of the restriction of cell divisions means that even the surface layers continue to divide periclinal as well as anticlinally, preventing differentiation of a distinct protoderm (Singh, 1978). However, this outer cell layer does function as a protoderm (Romberger et al., 1993). The club-shape early embryo enlarges rapidly filling the corrosion cavity that forms in the female gametophyte (Owens and Molder, 1984).

2.5. ESTABLISHMENT OF ROOT AND SHOOT MERISTEMS/ATE EMBRYOGENY.

In dicotyledonous species, the root primordium emerges at the end of embryo pattern formation. Cotyledons are specified from two lateral domains at the apical end. The formation of cotyledons results in the characteristic heart stage. At the same time the hypocotyl region of the axis begins to elongate. Morphogenic changes during this period are mediated by differential cell division and expansion (Goldberg et al., 1994). The shoot meristem forms later in embryogenesis from cell layers localised in the upper axis between the two cotyledons. In monocotyledonous species both the root and the shoot meristems are laid down in a lateral fashion rather than distally. As a result, the axis of the mature embryo does not correspond to the axis of the proembryo (Mordhorst et al., 1997). The distal region above the shoot meristem greatly expands to form the scutellum. Late embryogenesis in gymnosperms is a period of histogenesis and organogenesis. Early during this period, the root and shoot apical meristems are delineated and the plant axis is established. The root apical meristem forms near the centre of the embryo first as a root-organisation centre. The shoot meristem originates at the distal part of the globular embryonal mass and it is relatively superficial compared to root organisation centre. The cotyledon primordia arise in a ring around the distal end of the embryo. At this stage provascular tissue and cortex also differentiate. In Pinaceae, the protoderm covers only the shoot/hypocotyl region but in other gymnosperms it covers the entire surface of the embryo (Romberger et al., 1993).

2.6. MATURATION.

A remarkable change occurring during this period is that the developmental programme switches from pattern formation to storage product accumulation in order to prepare the young sporophyte for dormancy and postembryonic development. Following the previous period of cell division and histodifferentiation, there is a period of embryo development in which the major cell expansion and storage product deposition occur called the maturation phase. The maturation program is responsible for:
1. synthesising large amounts of storage products,
2. inducing water loss,
3. preventing premature germination, and
4. establishing a state of dormancy (Goldberg et al., 1994).

The rate of synthesis and deposition of storage proteins, lipids and starch increases and results in cell expansion in both cotyledons and axis. Cell vacuoles exhibit a specialised behaviour during maturation in that they split up and dehydrate to give rise to protein bodies and aleurone grains (Dodeman et al., 1997; Bethke et al., 1999). At the end of the maturation phase seeds enter dormancy (Goldberg et al., 1989). An essential regulator of the process is ABA. The concentration of ABA peaks in abundance during late embryogenesis (Bewley and Black, 1994), modulating gene expression, at least at the transcriptional level. The mature seeds are classed as orthodox or recalcitrant (Engelmann, 1991). The embryos of orthodox seeds undergo maturation drying while recalcitrant seeds do not and are generally dessication intolerant. The majority of angiosperm and conifer seeds are of the orthodox type. Orthodox seeds can be further divided into quiescent or dormant type (Bewley and Black, 1994). Quiescent seeds can germinate after addition of water while dormant seeds require additional factors to germinate. Orthodox seeds are more resistant to diverse conditions and can survive in more extreme environments.
2.7. SUSPENSOR SYSTEMS

The suspensor is a dynamic temporal structure with important functions during embryogenesis (Yeung and Meinke, 1993). The suspensor functions early in embryogenesis and it then undergoes programmed cell death (Nagl, 1976; Meinke, 1995). It appears from extensive structural, biochemical, and physiological studies with a variety of angiosperms that the suspensor plays an active role early in development by promoting continued growth of the embryo proper. Being active nutrient transporters and important sources of plant growth regulators such as auxins, gibberellins, cytokinins and ABA (Raghavan and Sharma, 1995), during early stages of embryogenesis, suspensor cells often display increased transcriptional activity (Marsden and Meinke, 1985; Forino et al., 1992; Yeung and Meinke, 1993). Compared to the cells of the embryo proper, suspensor cells contain more RNA and proteins and synthesise them more efficiently than embryo cells of the same age.

At the same time as the suspensor promotes growth of the embryo proper, suspensor growth is inhibited by the embryo proper (Mardsen and Meike, 1985; Yeung and Meinke, 1993). The developmental potential of the suspensor is often greater than its normal developmental fate. This potential is revealed only when the inhibitory effect of the embryo proper is disturbed, which leads to misregulation of programmed cell death in the suspensor, as evidenced from two Arabidopsis embryo specific mutants. One mutant (twin) displays abnormal proliferation of suspensors giving rise to multiple embryos (Vernon and Meinke, 1994; Zhang and Somerville, 1997), while another mutant (raspberry) fails to undergo the transition from globular to heart stage and continues to proliferate both in suspensor and embryo proper regions (Yadegari et al., 1994).

However, somatic embryogenesis can sometimes occur without simultaneous development of a normal suspensor suggesting that either the suspensor does not play a crucial role in embryo development or components in the culture system replace the need for a suspensor. The non-embryogenic single cells present in embryogenic cultures of Daucus carota have been shown to have a stimulating effect on embryogenesis. Thus the suspension-cultured cells that have retained certain aspects of suspensor cells may possibly take over the role of the suspensor cells in vitro.

3. REGULATION OF EMBRYO DEVELOPMENT

3.1. ESTABLISHMENT OF CELL FATE IN THE EMBRYO

There are two mechanisms for generating cell fate diversity: unequal division of a polarized cell and position-dependent cell fate determination (Laux and Jurgens, 1997). Both these mechanisms operate during embryo development. The correct cell division planes play a crucial role during embryogenesis since division of a polarised cell partitions the cytoplasm and any regulatory molecules contained therein. As a result of asymmetrical divisions the daughter cells may inherit different cytoplasmic determinants and thereby acquire different fates. One transcription factor encoded by the SHORT-ROOT (SHR) gene, which is required for the asymmetric cell division responsible for formation of ground tissue (endodermis and cortex) as well as specification of endodermis in Arabidopsis roots, has been suggested to participate in a radial signalling pathway (Helariutta et al., 2000).

The final cell fate is determined by positional information and/or by events established earlier on and transmitted down cell lineage. However, except for the early epidermal cell fate, no evidence has been
found for the existence of a rigid cell lineage in plants. Irish and Sussex (1992) suggested the term “probability map” rather than “fate map” to emphasise the absence of a rigid cell lineage. Cell position rather than previous developmental history is considered to be essential for the formation of somatic tissues (Dawe and Freeling, 1991). Therefore, in general terms, the establishment of cell fate during embryo development involves localised activity of specific regulatory proteins, as a consequence of the localised expression of particular genes (Lindsey and Topping, 1993). Although cell-cell communication is thought to play an important role in patterning of the plant embryo, the underlying molecular mechanisms is not understood. Two mechanisms have been proposed: signalling across the cell surface via leucine-rich repeat receptor serine-threonine kinases, and exchange of molecules through plasmodesmata (see review by Mayer & Jurgens, 1998).

Clonal analysis has indicated that stem cell fate is specified by positional information and imposed on the cells that currently reside at the summit of the shoot meristem. Only the progeny of the stem cells that stay at this position remain pluripotent, whereas daughter cells that leave this position differentiate (Mayer et al., 1998; Bowman and Eshed, 2000). Molecular mechanisms co-ordinating these two antagonistic processes in the Arabidopsis shoot meristem are now known to be controlled by a regulatory loop between the CLAVATA and WUSCHEL genes (Schoof et al., 2000).

3.2. EMBRYO MUTANTS

Mutagenesis and the subsequent identification and analysis of mutants have yielded several classes of mutant forms arrested at different stages of embryo development (Lotan et al., 1998, with refs.). Most screens have been done in Arabidopsis. Genetic analysis of different mutants leads to the conclusion that three basic elements of embryonic development, viz. pattern formation, morphogenesis and cytodifferentiation, are regulated independently.

Many of the mutants arrested early in development are likely to be affected in basic housekeeping functions that first become essential during early stages of development. Those which have been characterised are involved in basic functions such as biotin biosynthesis (bio 1, Shellhammer and Meinke, 1990), cell division and cell expansion (EMB30, Shevell et al., 1994) and intron splicing (sus2, Meinke, 1995). Other mutants are likely to be defective in genes that play a more direct role in plant growth and development. However, in some cases it may not be possible to make a clear distinction between housekeeping and regulatory functions because many genes are likely to perform cellular functions which are directly related to both growth and morphogenesis.

One class of mutations includes the suspensor mutants (twin, raspberry), which are an indirect consequence of altered balance between suspensor and embryo proper development (Vernon & Meinke, 1994; Yadegari et al., 1994; Zhang & Somerville, 1997). Disruption in signals between suspensor and embryo proper causes the suspensor to take on an embryo-like fate. Analysis of raspberry mutants, which are blocked at the globular stage but still differentiate tissue layers in their correct spatial context, indicates that tissue differentiation can take place independently of both organ formation and morphogenesis (Yadegari et al., 1994).

During embryo development three spatial domains are formed along the longitudinal axis: the apical domain composed of the cotyledons, shoot apex, and upper hypocotyl, the central domain including the majority of the hypocotyl and the basal domain consisting primarily of the root (West and Harada, 1993). Evidence for these domains was obtained by analysis of several apical-basal mutants, such as gurke, jackel, monopteros or gnom lacking one of the embryonal domains. Moreover, these domains can develop independently of each other (Goldberg et al., 1994). Although detailed mechanisms of this apical-basal axis formation are not yet clear, it has been postulated that they may originate from an intrinsic polarisation of the zygote, with the surrounding tissue possibly influencing the orientation of the axis (Mayer & Jurgens, 1998).

Analysis of gnom and monopteros mutants sheds light on the importance of auxins in pattern- and organ formation. The MONOPTEROS gene encodes a transcription factor, possibly involved in auxin signalling. A model was proposed in which a gradient distribution of auxins in the globular embryo is essential in mediating the transition from radial symmetry to bilateral symmetry, finally leading to shoot meristem formation (Fisher and Neuhaus, 1996). The GNOM protein was proposed to regulate vesicle trafficking required for the coordinated polar localisation of auxin efflux carriers which in turn determines the direction of auxin flow (Steinmann et al., 1999).
Nine recessive mutations derived from four independent loci causing the deletion of the shoot apical meristem (SAM), have been characterised in rice (Satoh et al., 1999; Chapter 8). Analysis of these mutants showed that differentiation of radicle and scutellum is regulated independently of SAM but that of coleoptile and epiblast may depend on SAM.

The formation of a SAM is the outcome of a successive patterning process initiated very early in embryo development. Once the SAM is established, expression of the WUSCHEL gene defines a group of cells that function to specify overlying neighbours as stem cells (Mayer et al., 1998). The CLAVATA (CLV1 and CVL3) and the SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STM have opposite functions: clv1 and cvl3 mutants accumulate excess undifferentiated cells in the shoot meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development (Clark et al., 1996, with ref.). CLV1, which encodes a receptor kinase (Clark et al., 1997) acts together with CVL3 to control the balance between meristem cell proliferation and differentiation (Fletcher et al., 1999).

Arabidopsis mutants with enlarged SAMs such as clv and primordia timing (pt) give rise to stable embryogenic cultures (Mordhorst et al., 1998). The authors suggest that an increased population of noncommitted SAM cells are responsible for facilitated establishment of somatic embryogenesis. Genetic studies have revealed that, in Arabidopsis, the ABA-SENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON1 (LEC1) loci play major roles in regulating maturation (Kurup et al., 2000). All three promote embryo-specific processes and simultaneously repress germination. They interact to regulate several processes during seed maturation, including accumulation of chlorophyll, desiccation tolerance, sensitivity to ABA and expression of storage proteins (Parcy et al., 1997; Wehmeyer & Vierling, 2000). FUS3 and LEC1 regulate abundance of the ABI1 protein. However, the lcl1 mutation is pleiotropic and by analysing the effects of the lec1 mutation on embryo development it was shown that LEC1 is an important regulator of embryo development that activates the transcription of genes required for both embryo morphogenesis and cellular differentiation (Lotan et al., 1998).

3.3. GENE EXPRESSION DURING EMBRYOGENESIS

Although the newly formed zygote contains both maternal and paternal genetic information, it seems that the activity of many genes acting during early embryo and endosperm formation may depend solely on transcription from the maternally inherited alleles since the paternal genome is initially silenced (Vielle-Calzada et al., 2000).

The general feature underlying the expression of embryo-specific mRNA sequences is that they appear and decay at various times during embryogenesis. This indicates that the expression of each set of genes is controlled by specific regulatory signals. What causes the activation of specific genes at specific stages of embryogenesis is not well understood.

The involvement of plant homeobox genes in embryogenesis was first demonstrated by the analysis of the Arabidopsis stm mutant. STM encodes a KNOTTED1 (KN1)-type homeodomain protein and is expressed in the region of SAM during embryogenesis (Smith et al., 1995). Localised expression of other KN1-type homeobox genes has also been observed around the region in which the SAM develops early in embryogenesis (Sentoku et al., 1999). Another example is the ATML1 gene, belonging to the homeodomain-leucine zipper (HD-Zip) transcription factors, which is expressed specifically in the apical cell after the first division of the zygote. Later, at the globular stage, the expression of ATML1 is restricted to the protoderm (Lu et al., 1996). Furthermore, a family of HD-Zip genes with cell-layer-specific expression patterns defining subdomains of the embryo and certain meristems have been isolated from maize (Ingram et al., 2000).

An embryo-specific zinc finger protein gene, PEI1, plays an important role for the globular to heart-stage transition (Li and Thomas, 1998).

Characterisation of gene expression during embryo development, maturation and germination has led to the identification of distinct classes of developmentally regulated genes in angiosperms (Dure III 1985; Goldberg et al., 1989). These genes can be divided into five major classes as follows:

- **Class 1.** Constitutively expressed genes whose products are present at all stages and have functions required during normal plant growth. These genes have housekeeping functions essential for many plant cells, including those in the embryo.
- **Class 2.** Embryo-specific genes whose expression is restricted to the embryo proper, and ceases prior to or at germination.
• **Class 3.** Genes highly expressed during early embryogenesis until the cotyledonary stage.
• **Class 4.** Genes representing seed protein genes, expressed during the expansion of cotyledons and seed maturation.
• **Class 5.** Genes expressed abundantly in later stages of embryogenesis until seed maturation. The genes are activated by ABA.

Seed proteins, class 4, are encoded by several multigene families and are very abundant during the maturation stage of embryogenesis – representing up to 50% of the embryonal mRNAs at the midpoint of maturation. In the embryo the expression is localised within specific cells of the cotyledons and axis and is absent from the surrounding non-embryogenic seed tissues. Seed protein genes are regulated by both transcriptional and post-transcriptional processes (Goldberg *et al.*, 1989).

Among class 5 genes, late embryogenesis abundant (LEA) protein genes predominate (Dure III *et al.*, 1989; Thomas, 1993). LEA proteins share several common characteristics. They are all hydrophilic and contain a large number of uncharged and hydroxylated amino acids. They are thought to protect cellular membranes and proteins during desiccation and the subsequent period of dormancy. Since these genes can be induced in other parts of the plant by ABA or application of various stresses, their expression is not embryo-specific.

4. GENERAL ASPECTS OF SOMATIC EMBRYOGENESIS

Somatic embryos can either differentiate directly from the explant without any intervening callus phase or indirectly after a callus phase (Williams and Maheswaran, 1986). Explants from which direct embryogenesis is most likely to occur include microspores (microsporogenesis), ovules, embryos and seedlings.

A special case of direct somatic embryogenesis, is the process which usually is classified as secondary embryogenesis. Secondary embryogenesis is termed continuous, recurrent or accessory, when the first formed somatic embryo fails to develop into a plant but instead gives rise to successive cycles of embryos, secondary, tertiary etc. Secondary embryos develop directly from epidermal and subepidermal cells of the cotyledons or hypocotyls (Thomas *et al.*, 1976). In some cases the formation of secondary embryos is of significant importance for increasing the yield of plants regenerated. If directly formed somatic embryos are converted into plants, no further multiplication is possible. However, it is often difficult to stop the process and consequently no, or only a few, normal plants can be regenerated. The distinction between direct and indirect somatic embryogenesis is unclear except for secondary embryogenesis. The main problem is that according to older hypotheses direct embryogenesis should take place from embryogenic pre-determined cells. In contrast, indirect somatic embryogenesis should take place from undetermined cells and an undifferentiated callus should first be formed. However, in reality the callus formed is either embryogenic or not. It is usually easy to distinguish between embryogenic and non-embryogenic callus based on morphology and colour. Embryogenic callus is composed of proembryogenic masses (PEMs). At present it is not known if the first formed PEM actually is an embryo which deviates from the normal embryonic development in response to plant growth regulators (PGRs) and proliferates. Owing to the difficulty in strictly separating direct and indirect somatic embryogenesis, we will focus on what would be classified as indirect embryogenesis, where embryogenic callus is formed first (see Chapter 1). To execute this pathway efficiently, a number of critical physical and chemical treatments should be applied with proper timing. Although great progress has been made in the development of these treatments and understanding of their mechanism of action, it has also been revealed that some maturation treatments, coinciding with increased yield of somatic embryos, may cause adverse effects on embryo quality, thereby impairing germination and *ex vitro* growth of somatic embryo plants. Consequently, *ex vitro* growth of somatic embryo plants is under a cumulative influence of the treatments provided during the *in vitro* phase.

Plant regeneration via somatic embryogenesis includes five steps:

1. **Initiation of embryogenic cultures by culturing the primary explant on medium supplemented with PGRs, mainly auxin but often also cytokinin.**
2. **Proliferation of embryogenic cultures on solidified or in liquid medium supplemented with PGRs, in a similar fashion to initiation.**
3. **Pre-maturation of somatic embryos in medium lacking PGRs; this inhibits proliferation and stimulates somatic embryo formation and early development.**
4. Maturation of somatic embryos by culturing on medium supplemented with ABA and/or having reduced osmotic potential.
5. Regeneration of plants on medium lacking PGRs.

4.1. INITIATION OF EMBRYOGENIC CULTURES

Somatic cells within the plant contain all the genetic information necessary to create a complete and functional plant. The induction of somatic embryogenesis must then consist of the termination of a current gene expression pattern in the explant tissue and its replacement with an embryogenic gene expression programme. One possible mechanism for downregulation of current gene expression is DNA methylation, which is influenced by auxins (Lo Schiavo et al., 1989). It has also been proposed that PGRs and stress play a central role in mediating the signal transduction cascade leading to the reprogramming of gene expression. This results in a series of cell divisions that induce either unorganized callus growth or polarized growth leading to somatic embryogenesis (Dudits et al., 1995). The initiation of the embryogenic pathway is restricted only to certain responsive cells which have the potential to activate those genes involved in the generation of embryogenic cells. Only a few cells in the primary explant are competent for embryogenic induction, which according to Dudits et al. (1995) may be the result of varying auxin sensitivity of these cells. Alternatively it may be due to the presence of different auxin receptors, one responsible for cell division as such, and another responsible for the asymmetric division that generates an embryogenic cell (Lo Schiavo, 1994). Two mechanisms appear to be important for in vitro formation of embryogenic cells: asymmetric cell division and control of cell elongation (De Jong et al., 1993; Emons, 1994). Asymmetric cell division is promoted by PGRs that alter cell polarity by interfering with the pH gradient or the electrical field around cells (Smith and Krikorian, 1990). The ability to control cell expansion is associated with polysaccharides of the cell wall and corresponding hydrolytic enzymes (De Jong et al., 1993; Emons, 1994; Fry, 1995).

Somatic embryogenesis has been described as being genetically determined. There are major genotype or cultivar differences for this trait. The choice of explant can in some species be of paramount importance for obtaining embryogenic cell-lines (Lo Schiavo, 1995, with references). Plant species which are capable of expressing their embryogenic potential regardless of the explant include Daucus carota and Medicago sativa, while for many other species embryonic or highly juvenile tissue has to be used as the explant. The pattern of the developmental response of cultured tissue is epigenetically determined and is influenced by the stage of development of the plant, the nature of the explant etc. (Litz and Gray, 1995).

Requirement for auxin or other PGRs for the initiation of somatic embryogenesis is largely determined by the developmental stage of the explant tissue. Usually an embryogenic callus is formed in the medium containing auxin. A nodular tissue is produced by the proliferation of PEMs, the process resembling a callus-like growth. Synthetic auxins are usually used for initiating embryogenic cultures. One mechanism whereby auxin may regulate embryogenesis, is through acidification of the cytoplasm and cell-wall (Kutscher, 1994). Most commonly used is 2,4-D (2,4-dichlorophenoxyacetic acid) at a concentration of one to ten micromolar. However, in some cases it is necessary to combine different auxins (see Chapter 5). Initiation of embryogenic cultures by cytokinin alone is relatively rare, but for many species it is important to combine auxin and cytokinin. In most species a low concentration of cytokinin (e.g. 0.1 to 1.0 μM) in the culture medium tends to stimulate the initiation of embryogenic cultures. At higher concentrations cytokinins may have a negative effect. Initiation can often be stimulated by either altering the concentration of exogenous applied auxins or the molar ratio of auxins to cytokinins. However, thidiazuron (TDZ) alone has been found to substitute for both auxin and cytokinin in many species (Murthy et al., 1998, with refs.). It was suggested that TDZ induces somatic embryogenesis by modulating the endogenous level of both auxin and cytokinin. In some cases a higher rate of somatic embryogenesis is obtained with TDZ than with other PGRs. Only in a few instances has ethylene been reported to stimulate somatic embryogenesis. For example, ethylene promoted somatic embryogenesis from leaf disks of Coffea cultured in the presence of isopentenyladenine as the sole exogenous PGR (Hatanaka et al., 1995).

More recently the application of the new generation of growth regulators such as oligosaccharides, jasmonate, polyamines and brassinosteroids (see Chapter 7) has proved to be useful for initiating somatic embryogenesis in many plant species.

In some species a remarkable stimulation of initiation of somatic embryogenesis has been
achieved with compounds other than PGRs. Reduced forms of nitrogen supplied to the medium are important; ammonium or amide nitrogen often stimulate somatic embryogenesis (see Chapter 4). The type of carbon source has also been reported to affect initiation in many species (see Chapter 4).

Wounded zygotic embryos of *Daucus carota* can initiate embryogenic cultures on hormone-free medium. The cultures can be maintained as unorganized embryogenic cell masses on hormone-free medium at pH 4.0, containing NH$_4^+$ as the sole nitrogen source (Smith and Krikorian, 1990).

4.2. PROLIFERATION OF EMBRYOGENIC CULTURES

Once embryogenic cells are formed, they continue to proliferate forming PEMs. Auxin is required for proliferation of PEMs but is inhibitory for the development of PEMs into somatic embryos (De Vries *et al.*, 1988; Nomura and Komamine 1985; Filonova *et al.*, 2000a). The degree of embryo differentiation which takes place in the presence of auxin varies in different species. It should be noted that depletion of auxin in the culture medium starts after only a few days. Consequently, if the cultures are not transferred to fresh medium each week, somatic embryos will start to develop.

Embryogenic callus is maintained in a medium similar to that used for initiation. The cultures can be maintained and increased on semi-solid medium. However, for large-scale propagation it is usually better to establish suspension cultures. In addition to the fact that proliferation rate is higher in suspension cultures, another advantage is that the cultures become more synchronized. In suspension cultures single cells and cell aggregates develop as separate structures. Thus, the cells can easily be separated by sieving or centrifugation and thereafter subcultured and manipulated as required. Low pH is essential for maintaining cultures in the proliferation phase. During each subculture period the pH of the medium drops, frequently from 5.8 to around 4. When preglobular stage PEMs of *Daucus carota* are subcultured on hormone-free medium buffered at pH 5.8 they promptly continue their development to globular, heart, torpedo and cotyledonary stage embryos (Smith and Krikorian, 1990). Embryogenic cultures of some species and some genotypes can be subcultured for a prolonged period on medium containing PGRs, and still retain their embryogenic potential i.e. the capacity to produce mature somatic embryos which can develop into plants. However, the risk of increasing the rate of somaclonal variation and diminishing the embryogenic potential accumulates with prolonged culture. In our laboratory we do not use embryogenic cultures which have been proliferating for more than six months. As soon as the embryogenic cell-lines have been established they are cryopreserved and successively thawed for use in different studies.

4.3. PRE-MATURATION OF SOMATIC EMBRYOS

Comprising a link between proliferation of PEMs and organized embryonic development, and at the same time separating these stages, PEM-to-embryo transition plays an important role. It seems likely that the inability of many embryogenic cell lines to form well-developed somatic embryos is to a great extent associated with disturbed or arrested PEM-to-embryo transition. Until the embryos have reached the appropriate developmental stage they should not be exposed to maturation treatments. Synthetic auxins, such as 2,4-D, which are particularly effective for promoting establishment and proliferation of embryogenic cultures, are usually not metabolized by the cells to the same extent as natural auxins. Hence, for stimulating further growth of the somatic embryos it is necessary to transfer the embryogenic cultures to medium lacking auxin. With the depletion of auxin the block on the expression of those genes required for the transition to the heart stage is removed (Zimmerman, 1993).

When cultures are transferred from proliferation medium to medium stimulating embryo development they consist of a mixture of single cells and cell aggregates. To synchronise the development, the cells can be washed and/or sieved.

4.4. MATURATION OF SOMATIC EMBRYOS

During the maturation stage somatic embryos undergo morphological and biochemical changes. The storage organs, the cotyledons, expand concomitant with the deposition of storage materials, the repression of germination and the acquisition of desiccation tolerance (Thomas, 1993). Somatic embryos accumulate storage products that exhibit the same characteristics as those of the zygotic embryos. The storage products are also targeted to the correct subcellular compartments (Merkele *et al.*, 1995). However, the amount of a particular storage product, as well as the timing of its accumulation can differ between somatic and zygotic embryos (Merkele *et al.*, 1995; Yeung, 1995). The synthesis and deposition of storage and late embryogenesis abundant (LEA) proteins during somatic and zygotic embryogenesis
are usually regulated through ABA- and water-stress-induced gene expression (Dodeman et al., 1997).

In some species it is necessary to treat the embryogenic cultures with ABA, usually at concentrations of 10 to 50 μM, to stimulate maturation; for reasons unknown, this is especially the case for conifers. In other cases ABA is used for reducing the process of secondary embryogenesis or for inhibiting precocious germination. In general, treatment for one month is optimal. Prolonged treatment usually increases the number of mature embryos formed. However, long exposure to ABA can have a negative after-effect on plant growth (Bozhkov and von Arnold, 1998). Many other factors such as ethylene, osmotic stress, pH and photoperiod have been reported to influence somatic embryo maturation in different species.

Maturation of seed embryos is generally terminated by some degree of drying, which results in a gradual reduction of metabolism as water is lost from the seed tissue and the embryo passes into a metabolically inactive, or quiescent, state. The lapse into metabolic quiescence resulting from desiccation is important; in addition to conferring tolerance to extreme environmental stresses, it permits broad dispersal of seeds through time and space (Kermode, 1990). Hydration of the orthodox seed leads to its germination, which is an immediate response to a switch from the maturation programme to the germination programme. In contrast, recalcitrant embryos are unable to survive desiccation and do not cease development during maturation.

Somatic embryos of the recalcitrant-type seed do not naturally enter a period of developmental arrest. They germinate precociously but the resulting plants have a low survival rate. It is possible to induce quiescence in somatic embryos of orthodox seed type species by dehydration treatment. Numerous attempts to improve the quality of somatic embryos have shown the stimulatory role of low osmotic potential in the maturation medium in embryo development, both in angiosperms (McKersie and Brown, 1996) and gymnosperms (Attree and Fowke, 1993). The effect mimics water stress naturally imposed on orthodox seeds during later stages of maturation. This allows embryos to survive severe dehydration when moisture content can diminish to as low as 5% (Bewley and Black, 1994). Different osmotic agents, including low (e.g., inorganic salts, amino acids and sugars) and high molecular mass compounds [e.g., polyethylene glycols (PEG) and dextran] can provide low osmotic potential medium. However, in vitro osmotic stress induced by PEG with a M₉ >4000 most closely approaches water stress observed in cells of embryos and plants subjected to dehydration conditions (Rains, 1989). The reason is that larger molecules of PEG are not able to pass through the cell wall while water is withdrawn, leading to a reduced turgor pressure and more negative intracellular water potential. Although the addition of PEG to the maturation medium in many cases has been shown to stimulate maturation, there are also reports showing adverse effects of PEG on embryo germination and early post-germinative root growth (Bozhkov and von Arnold, 1998). In Picea abies we found that PEG-treatment exerted a deleterious effect on embryo morphology and root meristem development.

In some species, the maturation treatment is followed by partial desiccation which substantially enhances somatic embryo germination frequency. It has been suggested that the desiccation reduces endogenous ABA content (Kermode et al., 1989) or changes the sensitivity to ABA (Finkelstein et al., 1985). It is well known that the sensitivity of seeds to imbibitional stress is controlled by the initial moisture content of the seed and the rate at which water is taken up (e.g. Pollock, 1969). The interaction of these factors has a dramatic effect on germination and subsequent seedling vigour. Usually, a high rate of water uptake i.e. quick imbibition has a deleterious effect on germination (Vertucci, 1989). Therefore, it is important to keep the initial rate of water uptake at a low level. Different methods are used for desiccation (see for example Roberts et al., 1990). The easiest way is to place the mature embryos individually in empty petri dishes and keep the humidity of the surrounding air at such a level that the embryos are first dehydrated and then hydrated at an appropriate rate.

4.5. REGENERATION OF PLANTS

Somatic embryogenesis is a complex process where the quality of the final product, i.e. survival and growth of regenerated plants, depends on the conditions provided at earlier stages, when mature somatic embryos are formed and germinate. Therefore, in order to develop mass propagation of somatic embryo plants, a dissection of critical factors that might contribute to ex vitro performance of plants is required. Only those mature embryos which have accumulated enough storage materials and acquired desiccation tolerance at the end of maturation develop into normal plants. Somatic
embryos usually develop into small plants, comparable to seedlings, on culture medium lacking PGRs. However, there are cases when auxin and cytokinin stimulate germination. Furthermore, a marked alteration in basal medium is often required. For some species, inclusion of extra compounds, like glutamine and casein hydrolysate, is also required. When the plants have reached a suitable size they can be transferred ex vitro. In many reports it has been shown that somatic embryo plants grow in a similar way to plants derived from true seeds. However, for some species somaclonal variation is a problem. In general, the use of 2,4-D and/or a prolonged callus phase are responsible for inducing genetic as well as epigenetic variation.

5. CONDITIONING FACTORS REGULATING SOMATIC EMBRYOGENESIS

The mechanism that controls cell differentiation in plant somatic embryos is far from clear, although there is evidence that soluble signal molecules are involved. It has long been observed that conditioned medium from embryogenic cultures could promote embryogenesis. For example, conditioned growth medium from highly embryogenic cultures can induce embryogenesis in non-embryogenic cultures (Hari, 1980). Growth medium preconditioned by a high-density suspension culture can also induce embryogenesis in cells cultured at a low cell density (Smith and Sung, 1985; de Vries et al., 1988). This ability of conditioned medium to sustain or stimulate somatic embryogenesis implies that secreted soluble signal molecules are important.

5.1. EXTRACELLULAR PROTEINS

Secretion of proteins into the growth medium of suspension cultures has been reported in several species. However, only a few reports show that some specific secreted proteins can influence the development of somatic embryos. One of the proteins that promoted somatic embryo development in embryogenic cultures of Daucus carota was identified as a glycosylated acidic endochitinase (de Jong et al., 1992). The authors studied the temperature sensitive variant ts11 where somatic embryogenesis at the non-permissive temperature is blocked at the globular stage. Addition of the endochitinase to ts11 embryogenic cultures rescued embryogenesis and promoted embryo formation. In similar experiments, an endochitinase from sugar beet stimulated early development of somatic embryos in Picea abies (Egertsdotter and von Arnold, 1998). In embryogenic cultures of Daucus carota, expression of an endochitinase gene was related to a certain population of cells that might have a nursing role in embryogenesis (van Hengel et al., 1998). The exact role of the chitinases in somatic embryogenesis is not clear, but it has been suggested that chitinases are involved in the cleaving off of signalling molecule(s) from an as yet unknown substrate.

5.2. ARABINOGALACTAN PROTEINS

Arabinogalactan proteins (AGPs) have also been found to be important for the development of somatic embryos. AGPs are a heterogenous group of structurally complex macromolecules composed of a polypeptide, a large branched glycan chain and a lipid (Majewska-Sawka and Nothnagel, 2000). They are distinguished by their high carbohydrate-to-protein ratio, often more then 90% carbohydrate. AGPs are present in cell walls and plasma membranes, and commonly found in culture media. Perturbation of AGPs was found to alter somatic embryogenesis, indicating the importance of AGPs for embryo development. For example, addition of Yariv reagent, a synthetic phenyl-glycoside that specifically binds AGPs, to the culture medium blocked somatic embryogenesis in Daucus and Cichorium (Thompson and Knox, 1998; Chapman et al., 2000). Precipitating AGP molecules with an anti-AGP antibody had a similar inhibitory effect on somatic embryo formation (Butowt et al., 1999). Furthermore, addition of AGPs to the cultures was found to promote somatic embryogenesis. AGPs isolated from Daucus seeds restored the embryogenic potential in old cell lines of Daucus that had lost the ability to develop somatic embryos (Kreuger and van Holst 1993). Similarly, AGPs isolated from seeds of Picea promoted formation of more developed somatic embryos in low embryogenic cell lines of Picea (Egertsdotter and van Arnold, 1995). AGPs isolated from seeds of Daucus were fractionated using their binding to the antibodies ZUM15 and 18 (Kreuger and van Holst 1995). The ZUM15-reactive AGPs were inhibitory for somatic embryogenesis, while the ZUM18 reactive AGPs drastically increased the percentage of embryogenic cells and subsequently the number of embryos. Furthermore, ZUM18-reactive AGPs from Daucus enhanced the frequency of somatic embryos in Cyclamen (Kreuger et al., 1995), and AGPs from Lycopersicum promoted somatic embryogenesis in Daucus (Kreuger and van Holst 1996). JIM4-reactive epitopes of AGPs were
found in embryogenic cells of *Daucus carota* and *Zea mays* (Kreuger and van Holst, 1996; Samaj et al., 1999). On the other hand, JIM8-reactive AGP-epitopes were found in a subpopulation of *Daucus carota* cells with specific “nursing” function during somatic embryogenesis (McCabe et al., 1997). Using JIM8 antibodies, McCabe et al. (1997) found two types of cells in embryogenic cultures of *Daucus carota* - those that have JIM8-reactive AGP-epitopes (JIM8-positive cells) and cells devoid of JIM8-reactive epitopes (JIM8-negative cells). Further studies revealed that JIM8-negative cells in an unfractionated suspension develop into somatic embryos. At the same time, an isolated subpopulation of JIM8-negative cells could not form embryos. However, isolated JIM8-negative cells developed into embryos when supplemented with media conditioned by JIM8-positive cells. The data indicate that an active compound is released from JIM8-positive cells into the medium. Analysis of the chemical structure of this compound revealed the presence of both carbohydrate and lipid parts (McCabe et al., 1997). It has been suggested that in embryogenic cultures of *Daucus carota* AGPs give rise to an oligosaccharin(s) with signalling functions (Darvill et al., 1992). The presence of a glycosyl-phosphatidylinositol lipid anchor on some AGPs supports the possibility that AGPs are putative precursors of signalling molecule(s) (Svetek et al., 1999). Although the chemical structure of the oligosaccharin(s) remains obscure, an increasing amount of data implicates lipochitooligosaccharides (LCOs) as signalling molecules in somatic embryogenesis.

5.3. LIPOCHITOOLIGOSACCHARIDES

Lipochitooligosaccharides (LCOs) are a class of signalling molecules that promote division of plant cells. It has long been known that LCO signals, Nod factors, secreted by *Rhizobium*, induce cell divisions in the root cortex, leading to the formation of nodules that can then be colonized (Spaïnk et al., 1991, Truchet et al., 1991). Nod factors produced by different *Rhizobium* species uniformly consist of an oligosaccharide backbone of 1,4-linked N-acetyl-D-glucosamine (GlcNAc) residues varying in length between 3 and 5 sugar units, and always carry an N-acyl chain at the non-reducing terminus. This basic structure is essential for the infection leading to nitrogen-fixing nodules. At the same time, several lines of evidence suggest the involvement of LCOs in regulating somatic embryo development. Rhizobial Nod factors were found to stimulate somatic embryos of *Daucus carota* to proceed to the late globular stage (De Jong et al., 1993) and promoted the development of larger PEMs from small cell aggregates and further somatic embryo development in *Picea abies* (Egertsdotter and von Arnold, 1998; Dyachok et al., 2000). More detailed studies showed that Nod factors could substitute for auxin and cytokinin to promote cell division. Furthermore, the Nod factor-like endogenous LCO compound(s) have been found in the conditioned medium from embryogenic cultures of *Picea abies*. A partially purified fraction of LCOs stimulated formation of PEMs and somatic embryos in *Picea abies* (Dyachok et al., 2002). Remarkably, both in *Daucus carota* and *Picea abies* embryogenic systems, rhizobial Nod factors could substitute for chitinases in their effect on early somatic embryo development (De Jong et al., 1993; Egertsdotter and von Arnold, 1998), indicating convergence of the activated signalling pathways. Evidence for concerted action in somatic embryogenesis of AGPs, chitinases and GlcNAc-containing oligosaccharides has been obtained. GlcNAc-containing AGPs were isolated from immature seeds of *Daucus carota*. The addition of AGPs increased the number of somatic embryos in embryogenic cultures of *Daucus carota*, and preincubation of the seed AGPs with endochitinases further increased the frequency of embryo formation (van Hengel, 1998). Taken together, the data support a hypothesis that endogenous LCOs analogous in structure to rhizobial Nod factors are released from AGPs by the action of endochitinases and act as signal molecules stimulating the development of somatic embryos.

6. TRACKING OF SOMATIC EMBRYOGENESIS

In order to efficiently regulate the formation of plants via somatic embryogenesis it is important to understand how the somatic embryo develops. Ideally, such knowledge should be gained through the construction of a fate map representing an adequate number of morphological and molecular markers specifying distinct developmental stages within the whole process (Irish and Sussex, 1992, Strehlow and Gilbert, 1993). When constructed, the fate map showing the correct progression of somatic
embryogenesis would provide the basis for further analyses of specification, induction and patterning of the embryonic tissues and organs.

6.1. CONSTRUCTION OF FATE MAPS

Construction of a fate map in somatic embryogenesis can be based on two alternative approaches either using synchronous cell-division systems (Nomura and Komamine, 1985; Tsukahara and Komamine, 1997; Osuga et al., 1999), or time-lapse tracking of the development of individual protoplasts, cells and multicellular structures (Golds et al., 1992; Toonen et al., 1994; Filonova et al., 2000a; Somleva et al., 2000). The second approach usually yields more consistent data, because there is no need to use cell-cycle-affecting drugs and centrifugation treatments which otherwise might interfere with embryonic development. Another potential advantage of the time-lapse tracking technique is that the starting individual cell, or cell aggregate, can be pre-selected based on certain criteria, and that it is possible to perform simultaneous analysis of dynamics and distribution of injected molecular probes conjugated with low molecular weight fluorochromes or fused to green fluorescent protein.

6.2. ANGIOSPERMS

In angiosperms, *Daucus carota* is the best understood species in terms of developmental pathways of somatic embryogenesis and their molecular mechanisms. This fact is not altogether surprising since *Daucus carota* embryogenic cell suspensions are highly amenable to both synchronization treatments and time-lapse tracking analysis (Zimmerman, 1993; Toonen and de Vries, 1997). By using the latter approach, Toonen et al. (1994) have studied three important aspects of somatic embryogenesis:

1. cell types which possess embryogenic potential, (i.e. able to develop into somatic embryos),
2. major stages of somatic embryogenesis in common for different initial cell types, and
3. variations and similarities between the pathways of somatic embryogenesis initiated from different cell types.

Based on shape (spherical, oval or elongated) and the density of cytoplasm (i.e. distinction between cytoplasm-rich and vacuolated cells), the authors have classified single cells isolated from embryogenic *Daucus carota* suspensions into five types, and found that cells of all types can develop into somatic embryos, albeit with a different frequency (varying between 19 and 100 somatic embryos per 10,000 cells). Embryo formation, in all cases, proceeded through the same stereotyped sequence of stages, i.e., state-0, and 2 cell clusters, according to Komamine et al. (1990). Auxin is required for the formation of a state-0 cell cluster, while subsequent stages, state-1 and 2 cell clusters, occur following withdrawal of auxin. Interestingly, depending on initial cell type, embryogenesis could occur via three different pathways distinguished by a lack or presence of geometrical symmetry of cell clusters at all three above-mentioned developmental stages. Oval and elongated cells, which were always vacuolated, developed into somatic embryos via asymmetrical cell clusters. Spherical cells which were either vacuolated or cytoplasm-rich, developed via symmetrical cell clusters into somatic embryos. Cells of a more variable initial morphology first developed aberrantly shaped cell clusters which then transformed into somatic embryos (Toonen et al., 1994). These observations imply that organised growth and polarity may not always occur during in vitro somatic embryogenesis, suggesting that in somatic embryogenesis, auxin-induced PEMs may be intermediates between unorganised growth and conservative embryonic pattern formation.

6.3. GYMNOSPERMS

A time-lapse tracking technique has been used to analyse developmental pathway of somatic embryogenesis in *Picea abies* (Filonova et al., 2000). A representative example of how *Picea abies* somatic embryos form and develop is shown in Fig. 9.2. It is noteworthy that, in contrast to *Daucus carota*, when a single cell fraction was obtained through fractionation of crude suspensions of *Picea abies*, neither densely cytoplasmic nor vacuolated cells on their own could develop into somatic embryos. Therefore the tracking began with a few-celled aggregates, called PEM I-cell aggregates. They are composed of a small compact clump of densely cytoplasmic cells adjacent to a single vacuolated cell. When immobilised in a thin layer of agarose, under appropriate trophic conditions and an initial supply of auxin and cytokinin, a PEM I-cell aggregate formed an additional vacuolated cell, thereby progressing to the next stage, PEM II (day 3; Fig. 9.2). Evans blue staining intensity of the primary vacuolated elongated cell increased by day 3 and was higher compared to newly formed additional vacuolated cells. In one of the vacuolated cells within PEM II it was possible to detect, by using the terminal deoxynucleotidyl
transferase-mediated dUTP nick end labelling (TUNEL) assay, the first signs of nuclear DNA degradation during the somatic embryogenesis pathway (Filonova et al., 2000b). Successively, PEM II enlarged in size by producing more cells of both types, while maintaining a bipolar pattern (days 5-10; Fig. 9.2). The polarity and the distinct centre of densely cytoplasmic cells were lost after day 10 owing to the increased proliferative activity of densely cytoplasmic cells. This process continued from day 15 onward leading to formation of PEM III (days 15, 20; Fig. 9.2), followed by transdifferentiation of somatic embryos from PEM III (day 25; Fig. 9.2). Coincidentally, with somatic embryo formation, the primary structure, viz. PEM III, degenerates through massive PCD. Withdrawal of plant growth regulators (PGRs) dramatically activates both embryo formation and PCD in PEMs (Filonova et al., 2000b). In cell tracking analysis, embryos started to develop in PGR-free medium, which supported embryonic development through almost the entire period of early embryogeny (day 25-45, Fig. 9.2). For further embryo development and maturation, agarose layers with early somatic embryos must be replenished with ABA-containing medium. The first visible response of early somatic embryos to ABA is that the embryonal mass became opaque (day 4 ABA; Fig. 9.2). This response was accompanied by the elimination of the suspensor through PCD (Filonova et al., 2000b). Thereafter embryos started to elongate (days 7-14 ABA; Fig. 9.2) and differentiate cotyledons (days 20-35 ABA; Fig. 9.2). The tracking was terminated when fully matured somatic embryos resembling their zygotic counterparts had formed (day 45; Fig. 9.2).

![Fig. 9.2 Time-lapse tracking of somatic embryo formation and development in Norway spruce. The tracking was performed in a thin layer of agarose, first under gradual depletion of auxin and cytokinin and then following addition of ABA (for details see Filonova et al., 2000a). Arrowheads denote somatic embryos (SE) transdifferentiating from PEM III. Bars = 250 µm.](image-url)
6.4. MODEL FOR SOMATIC EMBRYOGENESIS

Based on the knowledge gained from studying the developmental pathway of somatic embryogenesis it is possible to construct a model of the process. The model has to be specific for each system. Below we give an example of a model for somatic embryogenesis in Norway spruce. Schematically shown in Fig. 9.3, somatic embryogenesis in *Picea abies* involves two broad phases, which in turn are divided into more specific developmental stages. The first phase is represented by proliferating PEMs,– cell aggregates which can pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages PEM I, II and III), but can never develop directly into a real embryo. The second phase encompasses development of somatic embryos. The latter arise *de novo* from PEM III, and then proceed through the same, stereotyped sequence of stages as described for zygotic embryogeny of Pinaceae (Singh, 1978).

Auxins and cytokinins are necessary during the first phase to maintain PEM proliferation, whereas embryo formation from PEM III is triggered by the withdrawal of PGRs. Once early somatic embryos have formed, their further development to mature forms requires ABA (Fig. 9.3). Each developmental stage within this fate map should be further characterised by a set of adequate molecular markers. What is emerging from our recent studies is that certain epitopes of arabinogalactan proteins and a lipid transfer protein are candidate markers (Dyachok *et al*., 2000; Filonova *et al*., 2000a, Sabala *et al*., 2000). Furthermore, a number of recently-described cytological and biochemical hallmarks of cell dismantling recruited during two waves of developmental PCD, viz. responsible for degradation of PEMs and elimination of suspensor (Filonova *et al*., 2000), will be an important adjunct to the fate map of *Picea abies* somatic embryogenesis.

![Fig. 9.3](image)

A schematic representation of the developmental pathway of somatic embryogenesis in Norway spruce. Shown as dashed lines in the last but one stage of the pathway are the remnants of the degenerated suspensor in the beginning of late embryeny.

REFERENCES

HARI V. 1980 Effect of cell density changes and conditioned media on carrot somatic embryogenesis. Z. Pflanzenphysiol. 96, 227-231.

signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122, 1099-1108.
YAKOVLEV M.S. & YOFFE M.D. 1957 On some peculiar features in the embryogeny of Paeonia L. Phytomorphology 7, 74-82.
Chapter 10
Adventitious Regeneration

1. INTRODUCTION

New organs such as shoots, roots or embryos can be induced to form on plant tissues lacking pre-existing meristems. Such freshly originated organs are said to be adventive or adventitious. The creation of new form and organisation, where previously it was absent, is termed adventitious organogenesis, or, in the case of embryo-formation, somatic embryogenesis.

Adventitious formation of shoots is referred to as caulogenesis and of roots as rhizogenesis.

From explants, structures may be formed that are similar to the embryos found in true seeds. Such embryos often develop a region equivalent to the suspensor of zygotic embryos and, unlike shoot or root buds, come to have both a shoot and a root pole. To distinguish them from zygotic or seed embryos, embryos produced from cells or tissues of the plant body are called somatic embryos and the process leading to their inception is termed somatic embryogenesis (see Chapter 9). The word ‘embryoid’ has been especially used when it has been unclear whether the embryo-like structures seen in cultures were truly the somatic equivalent of zygotic embryos. Somatic embryogenesis is now such a widely observed and documented event that somatic embryo has become the preferred term.

Somatic embryogenesis is not such a widely observed and documented event that somatic embryo has become the preferred term. The word ‘embryoid’ has been especially used when it has been unclear whether the embryo-like structures seen in cultures were truly the somatic equivalent of zygotic embryos. Somatic embryogenesis is now such a widely observed and documented event that somatic embryo has become the preferred term. The word ‘embryoid’ has been especially used when it has been unclear whether the embryo-like structures seen in cultures were truly the somatic equivalent of zygotic embryos. Somatic embryogenesis is now such a widely observed and documented event that somatic embryo has become the preferred term. The word ‘embryoid’ has been especially used when it has been unclear whether the embryo-like structures seen in cultures were truly the somatic equivalent of zygotic embryos. Somatic embryogenesis is now such a widely observed and documented event that somatic embryo has become the preferred term.

Caulogenesis, rhizogenesis and somatic embryogenesis are essential for plant multiplication in vitro. New plants are seldom obtained in culture by the union of shoots and roots independently formed in callus. The production of complete plantlets by adventitious regeneration is achieved from adventitious shoots, which are subsequently rooted, or from somatic embryos. Shoots, roots and somatic embryos arise from single cells, or groups of cells, which become induced by the cultural conditions to become centres of active cell division (adventitious meristems), each capable of producing an organ of the one kind.

Regeneration has now been observed in vitro in numerous plants of many genera, but it cannot yet be induced universally. Even within a single species, varieties can be found, which are recalcitrant. Moreover, the capacity for regeneration can be lost after transformation e.g. the callus of *Pisum sativum* that becomes recalcitrant on transformation (Nauerby *et al.*, 1990;1991)

Adventitious meristems can theoretically occur in either of two distinct ways:
- Directly from the differentiated cells in a newly-transferred piece of whole-plant tissue, without intermediate proliferation of undifferentiated tissue;
- Indirectly from the unspecialised, unorganised and dedifferentiated cells of callus tissues or suspension cultures.

Hicks (1980) described these two methods of regeneration as direct and indirect organogenesis respectively. In practice, it is not always possible to distinguish between the two methods. Directly-formed meristems destined to become shoots or somatic embryos may proliferate to form a regenerative tissue similar in appearance to callus. Such meristems may also become surrounded by dedifferentiated callus so that it is difficult to ascertain their origin. A type of callus bearing superficial shoot-forming meristems can often be separated from this kind of culture. Alternatively, shoot meristems may form within callus which is still attached to, or within the tissues of the primary explant, or may be produced simultaneously from such callus and from superficial cells of the explant (Bigot *et al.*, 1977).

1.1. COMPETENCE AND DETERMINATION

Highly specialised cells of the intact plant are never observed to change from their existing differentiated state. In addition, there are some cells, which retain the capacity to divide yet never form organs and are considered to be recalcitrant. Similarly, from some cells new organs are never formed so they are thought to have lost the capacity
to form new plants. Cells, which have retained the capacity for a particular kind of cellular differentiation or regeneration, or have acquired it in response to an appropriate stimulus, are said to be competent.

Competence may be defined as the state of a cell in which it is able to respond to extra-cellular signals. Determination then becomes the state of a previously competent cell that has responded to the external signal so committing it to a differentiation pathway which will include organogenesis. If cells of an explant are not already competent at the time of excision, they may be induced to become so in vitro. They are then enabled to respond to the organogenetic stimulus provided by a particular combination of growth regulators (possibly different to those required for the induction of competence) added to the medium.

1.2. REGENERATION AND CELLULAR DIFFERENTIATION

Thus, development of competence is the first step in the dedication of one or more cells (Fig. 10.1, Stage 1) towards regeneration, or some other kind of specialised development (Fig. 10.1, Stage 2). In this scheme, a cell in the ground state will have maintained its original capacity either of competence or recalcitrance. If the latter, competence will need to be induced. The second stage of dedication is then said to be the induction of determination in competent cells. Individual cells or groups of cells are said to be determined when they have become irreversibly committed to follow a particular genetically-programmed developmental pathway, for example a particular kind of regeneration (Fig. 10.1, Stage 3) and can continue towards that outcome without the further influence of growth regulators required during the previous induction stage (Christianson, 1987). Determined cells differentiate to become the specialised component tissues of mature plants.

Although growth regulators may also help to induce direct regeneration, cells in some parts of a plant appear to be partially pre-determined to a particular morphogenetic pathway so that it takes only a slight change in environment to induce the tissues of some explants to form an adventitious meristem instead of progressing to become a differentiated cell within the intact plant. This is clearly seen in tissues that are already embryogenically committed. There is a high probability that somatic embryogenesis can be initiated from such tissues when they are explanted, either directly, or indirectly after some initial cell proliferation.

Regeneration from cells, which are already committed to such development has been called permissive, while that from cells induced to become morphogenetic by endogenous or exogenous growth regulators, inductive (Smith and Krikorian, 1988). Thus, permissive and inductive regeneration have been considered to be almost synonymous with direct and indirect regeneration.

Morphogenetic centres arise from only a relatively small proportion of the total number of cells in a culture. It is not known why this should be. In many circumstances it would clearly be advantageous to be able to obtain increased numbers. The extent of pre-determination or commitment to regeneration varies between different tissues of the whole plant; that of any given tissue will differ according to the plant’s genetic background and the position of the tissues within that plant.

Some observers believe that the cells from which organ-producing meristems are formed, are the only ones in a cell population that are competent. An alternative hypothesis was put forward by Street (1977), who suggested that although many cells may have the capacity to become competent, newly formed meristems may preferentially accept essential metabolites from surrounding cells which would then be less likely to follow the same developmental pathway. There is also evidence (for example, Cassells, 1979) that additional meristems are primarily inhibited from developing by growth substances produced by the first meristems to be initiated in the tissue. This would indicate that cells that preferentially give rise to meristems, do so because they become induced to differentiate slightly before their competitors. They may, for instance, be at an appropriate phase of the cell cycle at the time an inductive stimulus is applied. It is likely that cells will have exited from the cell cycle on differentiating (specialising) and can be considered to be in G0. In this state, they will not be able to receive signals inducing them to differentiate in a particular direction. They must re-enter G1 during which period of the cell cycle there is a window of time in which they may receive a signal to become competent/differentiate (Roberts et al., 1988). It is possible that the process of re-entry to the cell cycle constitutes the process of acquiring competence in that such cells can then respond to the signals for differentiation. Not all cells will be able to re-enter...
the cell cycle at G1. Thus, within the concept of differentiated cells in the explant are those which are fully differentiated (highly specialised) e.g. xylem and phloem, and those which are differentiated in the sense that they are specialised for a particular function yet retain the capacity for cell division e.g. cortical parenchyma, collenchyma. The latter cells will be able to re-enter the cell cycle and so become competent and be determined for an alternate form of differentiation, the former will not.

1.3 THE EPIGENETIC NATURE OF COMMITMENT

A commitment to progress towards a defined developmental objective, means that a cell will follow a defined programme of development. Commitment is self-maintained in that it can be passed on to daughter cells and later cell generations. The message is not immutable though, and may be lost or changed by subsequent stimuli (Wolffe and Matzke, 1999). Determination usually results in differentiated cells (Fig 10.1, Stage 4), which retain the developmental determination of their parents, and with their differentiated state being replicated during cell division. When morphogenetic determination or cell differentiation becomes fixed, or irreversible, it is said to have become canalized.

Several kinds of morphogenetic determination are possible. Cells may become committed to produce root, shoot, embryo, leaf or floral meristems. Once canalization has occurred, progress through a single development pathway is then usually inevitable unless the cells are capable of being stimulated to divide under conditions which promote dedifferentiated growth.

Fig. 10.1 Progressive steps in the capacity of a cell to become differentiated and/or morphogenic. Competence can be one step on the pathway to determination, but it is not clear whether cells in the ground state always have to pass through this stage as they are committed to development.

However, at an early stage of development, leaf and floral meristems can sometimes be induced to differentiate into shoots without dedifferentiation occurring. Some kinds of canalized development (e.g. the formation of tracheids) are irreversible.

The mechanisms by which the growth regulators influence cells in explants may be considered at five levels. They are:
1. the amounts of endogenous growth regulators present in the explants,
2. the amounts of the exogenously applied growth regulators entering the explant,
3. the pathways by which the growth regulators pass through the cells of the explants,
4. the point at which they may signal events in the cells concerned and
5. the pathways by which these signals may reach the genes and so have their effect.

Some measurements have been made to determine the amounts of endogenous growth regulators present in explants and can vary from femtomol to picomol levels per unit of measurement (e.g. per cell, per µg protein), depending upon the type of explant measured (Gahan et al., 1995, 1996; Wyndaele et al., 1988; Reuther et al., 1996). However, such measurements from whole explants do not indicate the distribution of the growth regulators between cells and even the levels in each cell at particular stages of the cell cycle although studies by Redig et al. (1996) have shown the mean values for levels of each type of cytokinin to vary at each stage of the cell cycle in single cell cultures of synchronized tobacco BY-2 cells.

Although the literature contains many methods for the induction of organogenesis for many explants, the optimal amounts of growth regulators added to the culture medium are comparatively large, yet there are very few measurements as to how much of the applied auxin or cytokinin actually enters the explant with time of culture. Those that have been made indicate that a low amount of the growth regulator enters the explant and may even reach an equilibrium at these low levels (e.g. Gahan et al., 1995, 1998; Wang et al., 2001; Reuther et al., 1998; Ross and Zoglauer, 1998).

Having entered the explant, the growth regulators move through the cells and tissues, presumably creating gradients. Although it would be expected that they would pass through the tissues via the apoplastic pathway (in between the cells), it is possible that both the apoplastic and symplastic pathways (through the cells) are initially involved. This has a bearing on the signalling mechanisms that might be involved. Thus, if the growth regulators move by the apoplastic pathway, then signal transduction might be expected to pass via the plasmalemma. If the symplastic pathway is involved, it is possible that signalling may occur directly in the nucleus. Evidence from tomato cotyledon explants indicates that the initial movement of cytokinin and auxin from the medium into the explant may be via both pathways (Wang et al., 2001) when apoptotic changes are induced in the epidermis and subepidermal cells adjacent to the medium. In this case, the signalling by cytokinin may be directly in the nucleus, nuclear cytokinin-binding has been shown to occur in Nicotiana tabacum (Dewitte et al., 1999) with the cytokinin acting as would an oestrogen in an animal cell. Having passed through the initial cell layers of the explant, an apoplastic pathway could then take over which would involve signalling pathways via the plasmalemma (see Francis et al., 1998; Sitaramaya, 1999).

Plasmamembrane signalling by auxin is problematic. The auxin-binding protein, ABP1, was shown to be present in a number of species, the ABP1s from both maize and tobacco being immunologically related, present on the exterior face of the plasmamembrane, and coupled to an H⁺ ATPase (Macdonald 1997; Venis and Napier, 1997). They appeared to be essential for the auxin response and have been linked to G-protein signalling, possibly via IP3, (Macdonald, 1997; Hobbie, 2003). Protein kinases have also been implicated in auxin signal transduction (Hobbie, 2003). Although there is a functional pool of ABP1 on the outer surface of the plasmamembrane, there appear to be too few receptor molecules for there to be adequate signalling sites for auxin action. More recently (Dharmasiri, et al., 2005; Kepinski et al., 2005; Woodward et al, 2005) have shown that auxin binds directly to a protein, TIR1, which in turn is triggered to bind to a class of proteins Aux/IAA. The latter are known gene repressors. The auxin-TIR1 complex initiates the attachment of ubiquitin to Aux/IAA proteins so identifying them for destruction when the genes they repress are activated.

Cytokinin signalling systems are more clearly defined. The data of Hooley (1998) and Plakidou-Dymock et al. (1998) have shown that the BA could be signalling via GCR1, a plant homologue of the animal cell GPCR, a seven-pass plasmamembrane-linked protein, through the G-protein signalling pathways. The components of the G-protein linked secondary messenger systems known for animal cells have been demonstrated to be present, in the main, in higher plant cells. Furthermore, the identification of an histidine kinase gene CKII which induces typical cytokine responses (Kakimoto et al., 1996) has led to the isolation of a cytokinin receptor gene CRE1 from Arabidopsis thaliana (Inoue et al., 2001). CRE1 codes for an histidine kinase which appears to initiate phospho-relay signalling (see in Francis et al., 1998; Sitaramaya, 1999; Nogué et al., 2003) (For more information on signalling see Chapters 5 to 7).
2. WOUNDING

In the natural environment the wounding of plants by pruning, grazing or mechanical abrasion often stimulates callus formation and/or regeneration. All explants transferred to culture are subjected to wounding during their isolation. The smaller the explant, the greater the proportion of wounded surface. In many instances, damage causes the release of inhibitory substances (see Chapter 11), but it also induces the natural production of the gaseous hormone ethylene, which frequently provides a stimulus to the formation of unorganised tissue or adventitious shoots and roots. The physiological changes in tissues, which bring about these responses (the so-called wound reaction) are discussed in other sections of the book. The advantage to be gained from wounding can be such that explants are sometimes given additional damage, above that induced by excision (e.g. leaves of Coronaria varia scratched or peeled before incubation to induce callus formation - Mariotti and Arcioni, 1983).

2.1. WOUNDING DURING ISOLATION

Regeneration frequently occurs at the cut surface of explants. On cotyledons from Pyrus malus seed embryos which were cut into halves, the production of a small amount of callus, followed by multiple adventitious shoots, occurred more frequently from the distal cut surface of proximal sections, than on the proximal end of distal sections (Browning et al., 1987; Fig. 10.2). Although the cut edges of Ipomoea batatas leaves did not form embryogenic callus, it was formed on the cut edges of stem and leaf explants (Liu and Cantcliffe, 1984). Fragmentation of young expanding leaves of Malus into 14 sections improved the capacity of the leaf tissue to form adventitious shoots and embryo-like structures (Welander, 1988).

![Fig. 10.2 The polarity of adventitious shoot formation on Pyrus malus cotyledon pieces [after Browning et al., 1987].](image)

If cultured intact, all embryo axes of the apple cultivar ‘Delicious’ and 55% of those of cv. ‘Winesap’ formed only callus, but if cut into 3 roughly equal sections (root, hypocotyl and plumule), a high proportion of the plumule and hypocotyl pieces of both cultivars formed adventitious shoots. None of the embryo root sections of ‘Delicious’ formed shoots and only 11% of ‘Winesap’ ones. Korban and Skirvin (1985) suggested that sectioning had either removed a factor, which was inhibiting regeneration (possibly one contained in the root
zone), or had increased the activity of a promotory substance.

Some explants are insensitive to treatment with growth regulators unless they are damaged or sectioned. Axillary buds (areoles) of the cactus *Opuntia polyacantha* were insensitive to auxin or cytokinin in the medium unless they were wounded in some way. Then the majority formed adventitious roots in response to 10 mg/l NAA and shoots in response to 10 mg/l BA (Mauseth and Halperin, 1975). In some species, splitting a shoot tip explant in half along its longitudinal axis can practically double the number of axillary shoots produced (e.g. in *Yucca elephantipes*, Bentz et al., 1988).

2.2. ADDITIONAL WOUNDING

Inflicting further wounds to an explant after excision can often increase regeneration. For example, cuts across the leaf lamina and main veins of mature phase leaf explants of *Liquidambar styraciflua* var. ‘Mariane’ significantly increased the number of adventitious shoots produced per explant. The treatment was not effective in the variety ‘Variegata’ which was naturally highly organogenetic (Brand and Lineberger, 1986).

Regeneration usually occurs at the site of the wounds. Thus the increased adventitious shoot formation on wounded leaves taken from proliferating shoot cultures of *Vaccinium corymbosum* mainly occurred along points of injury (Callow et al., 1988). Park and Son (1988) noted that leaves removed from cultured shoots of *Populus nigra* and *P. maximowiczii*, formed adventitious shoots or roots on their outer surfaces, depending on the growth regulators in the medium. However, if the leaves were punctured in several locations (five was optimal) with a pin, regeneration occurred at the margins of the perforations. The authors suggested that wounding promoted the transfer of endogenous hormones to the location of the scarring, causing there to be a more suitable level of growth promoters for regeneration. This hypothesis seems to agree with results of (Norizaku et al., 1985): although injury did not increase the uptake of BA into leaf sections of *Torenia fournieri*, transverse cuts across explants cultured in the presence of this regulant, significantly increased the formation of buds within 0.5 cm of the site. Longitudinal (transverse) cuts caused buds to be produced over the entire surface of the explant: without wounding they occurred mainly at its cut ends. However, wounding clearly permits an increased amount of exogenously applied growth regulators to enter via the wound. This can be seen when cotyledons of *Solanum aviculare* and tomato are kept in the dark so decreasing endogenous levels of both IAA and cytokinins. This results in the cells adjacent to the wounds forming vessels when in contact with 2,4D and BA (Gahan et al., 1995, Wang et al., 2002).

In some *Lachenalia* hybrids, bud formation on the adaxial surface of leaf sections was promoted by two superficial transverse cuts in the centre of either the adaxial or abaxial sides. Buds invariably occurred on the distal side of the cut (Niederwieser and Vcela, 1990).

2.3. ROOT FORMATION

The improved formation of adventitious roots on cuttings, which can result from wounding is described in Chapter 11.

3. THE INDUCTION OF DETERMINATION

The commitment of cells is usually modified through alterations in the *in vitro* environment, particularly by changing the availability of plant growth regulators. For regeneration to be possible, cells must be able to respond to growth regulating chemicals, that is to say they must be competent. The nature of the internal information factors governing cell competence are largely unknown. These may include natural growth substance levels within cells at the time of excision and the capacity of cells to synthesize growth substances or essential metabolites, though they may still being influenced by exogenously applied growth regulators.

3.1 COMPETENCE

In tissues of some plants, competence can be demonstrated by having two media, one without growth regulators (basal medium, BM) and the other containing growth regulators known to cause shoot formation (shoot inducing medium, SIM). In the experiments of Attfield and Evans (1991), after a varying period of culture on BM, *Nicotiana tabacum* leaf segments were transferred for induction on SIM for a specified time, and were then cultured (or re-cultured) on BM for 15 d until shoots could be counted. Explants never produced shoots if left on BM, but the longer they were on this medium (MS medium), the shorter was the period they required on
SIM (MS medium plus 5 µM BA) for shoot induction to occur.

The most rapid way to induce any given degree of shoot formation was to place the explants directly onto SIM, or give them a short 1-2 day exposure to basal medium first of all (Fig. 10.3). This indicates that 2 days was the minimum time the explants required to gain competence and that growth regulators were not required during this period. Keeping them on basal medium longer than this to begin with, lessened the exposure to BA, which was necessary to induce determination, but increased the total medium plus growth regulator induction time for determination. However, competence can be gained on media with or without growth regulators: e.g. BM, SIM, a root-inducing medium, or a callus-inducing medium (Christianson and Warnick, 1985). Thus, the induction of regeneration seems to depend on the combined effect of the medium, with or without added growth regulators, (competence) and the presence of the correct combination of growth regulators (determination). Hence, if competence requires the cell to be in the cell cycle for determination to occur, then the initial culture period (either in the presence or absence of applied growth regulators) must involve processes which result in cells moving from G0 to G1 (Roberts et al., 1988).

![Fig. 10.3](image)

Fig. 10.3 The development of competence in *Nicotiana tabacum* leaf segments [after Attfield and Evans, 1991]. The total time to induce shoot formation was shortened by preculture on BM for more than 2 days, indicating that the tissues became competent during the initial 2-day period.

Tissues of different plants vary in their competence. Direct or indirect regeneration occurs readily only in some plant species, or may even be restricted to certain varieties within species. Changing the medium, and/or the growth regulators added to it, may induce regeneration in recalcitrant tissues, but there are still some kinds of plants in which it has not been satisfactorily achieved. An alternative explanation may lie in the silencing of relevant genes in the heterochromatin. Thus, in competent cells and tissues, the standard growth regulator treatment will signal cells to re-enter the
cell cycle from G0 (if necessary) and to proceed to G1 where they can receive the signals to differentiate. In some cases there may be a need for a pretreatment to aid the movement from G0 to G1 (e.g. an auxin shock), the relevant genes being in the euchromatic region of the chromatin. However, in recalcitrant tissues, the genes required for the passage from G0 to G1 and from G1 to S in the cell cycle will be locked in the heterochromatin and so silenced (Gahan, 2006). In this way, in the former situation, there is no recalcitrance and the cells respond directly to the growth regulators, with or without a pretreatment. In the latter situation, the genes are silenced and unable to respond until they can be removed from the heterochromatic arrangement to the euchromatin.

The part of a plant from which an explant is derived has a major influence on direct organ formation or on the capacity of derived callus tissues to undergo regeneration. This indicates possible mechanisms for genetic control, i.e. that competence: results from the cells moving from G0 to G1 of the cell cycle when they are able to receive signals affecting genes involved in determination.

Several callus strains differing both morphologically and with regard to morphogenetic capacity may sometimes arise from one explanted piece of tissue (Fig. 10.4). Street (1979) suggested that this might happen either because cell layers or tissues varied in their morphogenetic competence as they occurred on the plant, or because competence was induced during callus formation in only certain cells. In these circumstances, callus cultures may consist of morphogenetically competent and non-competent cells or zones. Failure to isolate a competent cell line may result in its disappearance by the overgrowth of non-competent tissues.

![Fig. 10.4 Callus with different morphogenic potential is often isolated from a single explant.](image)

It has also been shown that adjacent tissue layers can have correlative effects on each other. When intact stem segments of *Torenia fournieri* were cultured by Chlyah (1974), the sub-epidermal parenchyma showed no organogenetic capacity; root initials arose from cells surrounding the vascular bundles. However, if cultured alone in an appropriate medium, the sub-epidermal layers were able to initiate roots, and if they were cultured when only in contact with the stem epidermis (the other tissues having been removed), they formed shoot primordia.
3.2. DETERMINATION

Morphological determination is found not to be an ‘all or nothing’ event: the longer tobacco explants of Attfield and Evans (1991) were kept on SIM (up to 12 days) before transfer to BM, the more shoots they produced. Either more cells became determined as the treatment was continued or determined cells were more able to proliferate (Fig. 10.5). Shoot formation in Pinus strobus cotyledons was also increased the longer they were exposed to BA (5-50 µM) (up to 21 days), but with these explants a marked reduction in shoot formation occurred when they were pre-cultured for even 3 days on a basal medium and after 14 days of pre-culture they had lost their competence to produce shoots (Biondi and Thorpe, 1982; Flinn et al., 1988). In this case the cells of the explant were already competent when transferred to the medium. The commitment of the Nicotiana explants of Attfield and Evans (1991) to produce roots was also reduced the longer they were cultured on basal medium before being transferred to a root-inducing medium (RIM). A progressively smaller number of roots was initiated, presumably because a smaller number of sites was influenced, due to a progressive decrease in the number of competent cells. Thus, although determination took place on RIM after 10 days pre-culture in basal medium, only ca. 4 roots were produced per explant, compared with 35-40 roots when the explants were placed into RIM immediately they were excised.

![Fig. 10.5](image-url) The effect of period of exposure of Nicotiana tabacum leaf segments to SIM on the number of shoots produced [after Attfield and Evans, 1991]. The longer shoot segments were retained on BM, the shorter was the subsequent exposure to SIM necessary to induce any given degree of shoot formation.
4. DIRECT REGENERATION

When relatively large pieces of intact plants are transferred to nutrient media, new shoots, roots, somatic embryos and even flower initials are often formed without the intermediate growth of callus tissue. Small explants show organogenesis only rarely, although some exceptions have been reported. The part of the original plant from which the explant is taken is important in influencing its morphogenetic potential. Many species give rise to adventitious shoot buds on explants taken from a variety of organs including those derived from petioles, stems, roots, leaves and cotyledons. By contrast, adventitious embryos are directly formed much less commonly. They are produced on the leaves of a few plant species, and more frequently on nucellus tissue, or on pre-formed somatic embryos and on the seedlings derived from somatic embryos. Methods of inducing regeneration directly in explanted tissues are being discovered in an increasing number of plant species and direct shoot regeneration is an important means whereby several different kinds of plants may be propagated. It should be noted that plants originating from adventitious shoot or embryo meristems have an increased incidence of somaclonal variation. Direct root formation from non-root explants is relatively common, e.g. Brassica (Kartha et al., 1974); Petunia (Rao et al., 1973); Capsicum (Gunay and Rao, 1978) and Abelmoschus esculentus (Mangat and Roy, 1986).

4.1. ORIGIN OF ADVENTITIOUS BUDS

Shoot meristems formed directly on explanted tissues are often initiated by the commencement of cell divisions after about 48 hours in nutrient culture. Each preliminary mitosis is rapidly followed by further division, so that new adventitious primordia are formed, each comprised of a number of cells. These primordia appear to arise in a polar manner in morphogenetically competent explants or parts of explants, and often tend to be spaced equidistantly. Sometimes each meristem appears to originate from one cell, but this is not always the case. There are a number of papers, which describe how such meristems can arise from single epidermal cells (Table 10.1): in the cotyledons of conifers, meristems arise in subdermal mesophyll (Sommer et al., 1975; Cheah and Cheng, 1978; Jansson and Bornman, 1981; Flinn et al., 1988).

Table 10.1 Plants in which adventitious shoots may arise from single epidermal cells

<table>
<thead>
<tr>
<th>Genus</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achimenes</td>
<td>Broertjes (1972)</td>
</tr>
<tr>
<td>Begonia</td>
<td>Doorbenbos & Karper (1975); Mikkelsen & Sink (1978)</td>
</tr>
<tr>
<td>Chrysanthemum</td>
<td>Roest & Bokelmann (1975); Roest (1977); Broertjes et al., (1976)</td>
</tr>
<tr>
<td>Linum</td>
<td>Murray et al., (1977)</td>
</tr>
<tr>
<td>Kalanchoe</td>
<td>Broertjes & Leffring (1972)</td>
</tr>
<tr>
<td>Lilium</td>
<td>Broertjes et al., (1976)</td>
</tr>
<tr>
<td>Peperomia</td>
<td>Broertjes et al., (1976)</td>
</tr>
<tr>
<td>Saintpaulia</td>
<td>Arisumi & Frazier (1968); Broertjes (1972); Grunewaldt (1977)</td>
</tr>
<tr>
<td>Streptocarpus</td>
<td>Broertjes (1969)</td>
</tr>
<tr>
<td>Nicotiana</td>
<td>De Nettancourt et al., (1971)</td>
</tr>
</tbody>
</table>

During direct organogenesis, adventitious buds may not all be immediately derived from cells of the explant. There is evidence that a single epidermal cell may sometimes give rise to meristematic centres from one of which up to 22 identical shoots may arise (Broertjes et al., 1976).

The single cell origin of shoots can be confirmed by the high incidence of ‘solid’ mutant plants, which occurs when suitable organs are subjected to mutagenic treatments. Single cells are mutated and each individual cell may have a different type of mutation from its neighbours. If meristems were initiated from several cells, a high proportion of chimeras would appear. Results such as these have led Broertjes and Van Harten (1978) and Broertjes and Keen (1980) to suggest that directly-regenerated adventitious shoot meristems may always be formed from one or a few daughter cells that originate from a single cell. This was confirmed by Nauerby et al. (1991). Others though do not share this view.

Thomas et al. (1979) cautioned that extensive histological work is necessary to tell whether
adventitious structures arise from single cells. Following such histological studies, a single cell origin for shoots was found in the basal cells of hairs from *Kohleria* (Geier and Sangwan, 1996). Nevertheless, from a study of shoot regeneration from the leaves of *Saintpaulia* chimeras, Norris and Smith (1981) concluded that the initiation of shoot meristems involves the association and the possible inclusion of cells beneath the epidermis. Adventitious bud meristems which formed between twin bulb scales of onion, arose from many cells in sub-epidermal layers (Falavigna et al., 1980). Similarly, shoots on cultured explants of *Nicotiana tabacum* leaves were found to arise indirectly from nodules at the edges of the explant. The nodules were mainly formed by divisions of palisade parenchyma, but the number of cells which participated in their origin was not ascertained. That adventitious root formation is also likely to be multicellular in origin can be seen on rooting from shoot segments of *Pisum sativum* transformed with the GUS gene (Madsen, 1994) that the chimeric shoots are likely to be formed from at least one transformed and one untransformed cell.

In contrast, Attfield and Evans (1991) found that roots in the *Nicotiana tabacum* leaf explants were produced directly from the bundle sheath and vein parenchyma, but the number of cells which participated in their origin was not ascertained. That adventitious root formation is also likely to be multicellular in origin can be seen on rooting from shoot segments of *Pisum sativum* (Gahan and Doré, unpublished data) and from shoot explants of *Malus domestica* var. Jork 9 (Auderset et al., 1994). Roots are seen to arise from parenchymal cells adjacent to, and between the existing vascular tissue. There appears to be a direct influence on these cells arising from the existing vascular tissue and it is possible that IAA or other plant growth regulators diffuse to the adjacent cells and initiate vascularisation and rooting. The procambial tissue is frequently identifiable at the same time as the cells of the initiated root apex. The influence of the existing vascular tissues can be seen on cultivating root segments when the cortical parenchymal cells adjacent to the xylem poles in e.g. *Pisum sativum*, will form tracheids prior to the differentiation of the remaining parenchymal cells (Rana and Gahan, 1982).

4.1.1. Meristemoids.

At an early stage of regeneration, a spherical mass of small meristematic cells is formed. The cells are filled with densely staining cytoplasm and contain large nuclei. Such specialised cell groups were called meristemoids by Torrey (1966). Other workers have taken up the term, although the stage at which meristematic cells come to constitute a meristemoid, or the ultimate size of these structures, has not been precisely defined. The word promeristemoid has been used to indicate small organised groups of meristematic cells, less complicated than meristemoids, which are the sites from which organs, or meristemoids, are formed (Villalobos et al., 1984; Flinn et al., 1988).

Meristemoids may be comprised, at least initially, of undetermined cells. Thus, meristematic cell clusters consisting of 6-7 cells formed from pericycle cells adjacent to protoxylem within *Convolvulus* roots, at this stage were considered by Bonnett and Torrey (1966) to be capable of developing into either roots or shoots. Meristemoids formed in other plants have also been considered to be undetermined and capable of developing into either roots or shoots. Meristemoids formed in other plants have also been considered to be undetermined and capable of developing into either roots or shoots. Meristemoids or the ultimate size of these structures, has not been precisely defined. The word promeristemoid has been used to indicate small organised groups of meristematic cells, less complicated than meristemoids, which are the sites from which organs, or meristemoids, are formed (Villalobos et al., 1984; Flinn et al., 1988).

4.1.2. Predetermination.

According to one hypothesis advanced by Sharp et al. (1980); Evans et al. (1981) and Sharp and Evans (1982), direct embryogenesis occurs in vitro only from cells within the explant, which are predisposed (predetermined) to become embryo-producing before their transfer to culture: nutrient media and other in vitro conditions serve only to enhance the process. Such cells are said to be pre-embryogenically determined (PEDCs). An explant will normally contain several types of tissue, not all of which may have this capacity. As an alternative hypothesis, Hepher et al. (1988) have suggested that the embryogenic potential of tissues, is related to their active role in nutrient transport: they say that many embryogenic tissues (e.g. nucellus, scutellum, synergids, the abaxial epidermis of soybean cotyledons) have this capacity. These two considerations may not be mutually exclusive since the metabolism of nutrient transporting cells may result in their metabolic status being programmed in a way which is in concert with the predisposition to form embryos.
The parts of a whole plant, which are capable of supporting direct embryogenesis, can give rise, in vitro, to tissue of similar appearance to callus, but which has an immediate capacity for embryo regeneration. This tissue can sometimes also be used to initiate suspension cultures with a similar morphogenetic potential (Smith and Krikorian, 1988, 1989). Although such cultures are described in the section on indirect embryogenesis that follows, they probably represent an extended form of direct embryogenesis.

5. INDIRECT REGENERATION

5.1. SEPARATE ROOT AND SHOOT FORMATION

Media and growth regulators that favour rapid cell proliferation and the formation of callus from an explant, are not usually conducive to the initiation of the adventitious meristems, which give rise to roots or shoots. However, in cultures of some plants, organogenesis becomes inevitable when callus is maintained on a medium for a prolonged period, but may be prevented if the tissue is subcultured. In other cases, unorganised callus initiated on one medium needs to be transferred to another of a different composition, with different combinations of growth regulators (a regeneration medium), for shoot initiation to occur.

Organs are formed in callus tissues in a fashion comparable to that observed directly within explanted tissues. Cells from which organs are formed, have arisen from the reprogramming of dedifferentiated cells or, more commonly, have retained a commitment to regeneration which existed in the explanted tissues e.g. shoots from nodal explants of *Pisum sativum* (Nauerby et al., 1990; 1991). This may explain why highly organogenetic cultures are most frequently obtained from young actively dividing parts of plants in which the cells are cycling and so are able to receive signals during G1. Sometimes it appears that meristemoids may have a different origin to other cells of the callus. Callus cultures derived from sections of sweet potato tubers developed meristematic centres of this kind from the cells of anomalous cambia within the tissue of the explant (Hwang et al., 1981). Here, it is possible that the callus has developed from cells not competent for organogenesis, which are adjacent to the competent cells of the anomalous cambia.

The position of meristematic centres may have some relation to the organisation of the explant in newly-initiated callus; but after some while, although roots and shoots do develop within the interior of callus, they commonly occur superficially. This may be related, in part, to the availability of nutrients and to any nutrient gradients set up within the callus. In some plants (e.g. *Convolvulus*) the two different kinds of organ have been shown to arise in different parts of the tissue, roots from cells in the upper part of the callus and shoots from those in contact with the medium (Christianson and Warnick, 1985). Again, it is not clear whether meristemoids are always formed with the capacity to give rise to one specific type of organ, i.e. whether the conditions, which lead to their formation also decide the type of organ that will be produced, or whether meristemoid formation and organ development are separately and sequentially decided. One possible factor for rhizogenesis may relate to the ability to form vascular tissue at an early stage of development. This is supported by quantitative cytochemical analysis of competent to root (M27) and recalcitrant calluses (Cox) of apple. The competent calluses showed the presence of early markers in the parenchymal cells for the formation of vascular tissue whilst the recalcitrant calluses did not (McGarry, 1988; Gahan et al., 1996).

Sometimes adventitious shoots are thought to have arisen by caulogenesis, when in reality they have developed from somatic embryos. Pro-embryos cultured in a medium containing inappropriate growth regulators, produce shoots lacking roots (Sidavas et al., 1990).

5.2. OCCURRENCE OF EMBRYOGENESIS

In the past, somatic embryos have generally been obtained unreliably in tissue culture and their formation has been much less common than the separate formation of roots or shoots. Somatic embryo formation was at first induced in relatively few plant species (Tisserat et al., 1979), but its incidence is steadily being increased as controlling factors become better understood (Williams and Maheswaran, 1986). In many species, indirect embryogenesis was originally noted only fortuitously, but may have occurred more frequently than was suspected. For example, when organogenesis occurred in clover callus cultures, Phillips and Collins (1980) were only able to deduce that somatic embryos had been formed. This was because the first and second leaves on shoots were cotyledon-like and unifoliate respectively: if separate adventitious shoot formation had taken place, all leaves would have
been trifoliate. In other species a difference in leaf shape might be less easily detected.

5.3. DIRECT SOMATIC EMBRYOGENESIS.

Direct embryogenesis, that is to say, the formation of somatic embryos on explanted tissues without any intervening callus phase, is observed much more frequently in vitro than is the formation of adventitious embryos in vivo. Reports of direct embryogenesis in vitro have mainly described its occurrence on gametophyte (the gamete-producing generation) tissues, sporophytic (normal plant) tissues closely associated with the gametophyte, or tissues which have recently arisen in consequence of the fertilisation of gametes. Explants from which direct embryogenesis is most likely to occur include pollen microspores within the anther and tissues of all or part of the ovary [including the ovary wall (or carpels) Smith and Krikorian (1988)], ovule (especially the nucellus), zygotic embryo or young seedling. Physiologically, these explants are all very juvenile. Instances of direct embryo formation are discussed in Chapter 2.

5.4. INDIRECT SOMATIC EMBRYOGENESIS

Somatic embryos can also be produced indirectly in otherwise unorganised cell and tissue cultures. True indirect embryogenesis requires the differentiated cells of an explant to be induced to divide as undifferentiated callus and then for certain cells to become committed or redetermined on an embryogenic pathway. In the terminology of Sharp et al. (1980), cells derived from previously differentiated tissue, which have been newly induced to embryogenic determination are called IEDCs (induced embryogenic determined cells) (c.f. PEDCs in Section 4.1.2.).

5.5. CELLULAR ORIGIN OF SOMATIC EMBRYOS

Because embryogenesis is often difficult to observe, there has been some controversy over its origin in unorganised cultures, but the developmental anatomy (ontogeny) of embryos has been studied in detail in several different species, e.g. *Daucus carota* (McWilliam et al., 1974; Nomura and Komamine, 1985), *Ranunculus scleratus* (Konar et al., 1972) and *Pennisetum americanum* (Vasil and Vasil, 1982).

Embryos can be distinguished from adventitious shoots because they are bipolar, having both a shoot and a root pole, a shoot axis and cotyledons (or a coleoptile and a scutellum in monocotyledons) of a similar venation to that in zygotic embryos. They also have no vascular connections with the underlying parental tissue. This is not as in axillary or adventitious buds which can induce the formation of procambial conducting strands in maternal tissue. In whole plants, these strands establish a connection between the young shoot and the vascular system of the mother plant.

Unlike the meristems that give rise to separate root or shoot initials (which may also be produced internally), somatic embryos nearly always arise superficially on callus and are detached easily from the surrounding cells. They may float free in suspension cultures from the globular stage onwards. It is generally agreed that somatic embryos are formed from cells that are characteristically meristematic and therefore unlike the usual vacuolated parenchymatous cells found in callus and suspension cultures: they have dense cytoplasm and large nuclei and contain many starch grains. However, it is not clear that these cells, and hence somatic embryos, always originate from single determined cells.

5.6. SINGLE CELL ORIGIN

A plant embryo, whether it be zygotic, somatic, directly- or indirectly-initiated, has been defined as a new individual arising from a single cell and having no vascular connection with the maternal tissues (Haccius, 1978). However, the developing embryos in vivo e.g. *Pisum sativum*, can be seen to be influenced by the maternal vascular tissue with which there is an early link in vivo (P.B. Gahan & M.A. Rana unpublished). It has been clearly shown that somatic embryos can arise directly from a single cell in explanted tissue (Dubois et al., 1990; Alizedah and Mantell, 1991); in both callus and suspension cultures (e.g. in carrot; Backs-Husemann and Reinert, 1970; Nomura and Komamine, 1986: in pear; Mehra and Jaidka, 1985: in fennel; Miura and Tabata, 1986, and in rice; Jones and Rost, 1989); from protoplasts (Miura and Tabata, 1986); and from mechanically-isolated cells (Uragami et al., 1990). Tracking single embryogenic cells also showed the very small number of cells capable of forming embryos (Somleva et al., 2000).

A change in the regular plane of cell division is one of the first indications of the formation of an embryogenetic tissue (Hepher et al., 1988). Where embryos originate from a single cell, an unequal periclinal division results in one small cytoplasmically-rich cell (the terminal cell) and another large vacuolated cell (the basal cell). In some
cultures, the basal cell does not divide further, but in normal circumstances it can be seen to be the source of a suspensor (Fig. 10.6).

5.7. POLYEMBRYONY.

Somatic embryos can often be seen to arise, not from single cells, but from globular clumps of tissue. Haccius (1978) suggested that such pro-embryonal cell complexes still have their origin in single embryogenically-dedicated cells and that formation of embryos from the globular tissue was the equivalent of the cleavage polyembryony which sometimes occurs in vivo (i.e. the division of the zygote or pro-embryo into two or more units). In Dactylis glomerata it has been proposed that pro-embryonal cell complexes or abnormal embryos are produced instead of normal somatic embryos, if the division of single embryogenically-determined cells proceeds in an anticlinal or random fashion (Trigiano et al., 1989; Fig 10.6). Somatic embryos with both uniseriate and multiseriate suspensors were produced later from pro-embryonal cell masses by cleavage polyembryony.

The emergence of embryos from a globular embryogenic tissue of Picea was called polyembryogenesis by Gupta and Durzan (1986; 1987: Durzan and Gupta, 1987) because of its analogy to the cleavage polyembryony which occurs during zygotic embryogenesis in the Pinaceae. In some genera of this family, a group of cells which would usually be expected to form a single embryo, divides (cleaves) into files of cells each of which begins to form an embryo. The genetically identical embryos compete and usually only one survives (Fig 10.7). The very long suspensors produced during zygotic embryogenesis in the Pinaceae are also observed during somatic embryogenesis in this family, so that embryogenic tissue in vitro has been called embryonal suspensor masses (Gupta et al., 1988). A review of the terminology in zygotic and somatic embryogenesis in conifers is given by Tautorus et al. (1991) (See Chapter 9).

Fig. 10.6 Proembryonal cell complexes result from abnormal planes of cell division during embryo formation from single embryogenic cells [after Trigiano et al., 1989].
Clumps of embryogenic tissue may arise in other ways. In rice it has been noted that many more embryos are initiated from single cells of the scutellum of zygotic embryo explants, than complete their development. Competition for resources (such as occurs during the maturation of one out of several embryos during cleavage polyembryony in gymnosperms) leads to many embryos proliferating, from the globular stage onwards, as parenchymatous ‘callus’ tissue. Clusters of embryos and related embryogenic callus tissue may form an epithelium similar to that of the scutellum, from which new somatic embryos may be originated (Jones and Rost, 1989). Globular cell clumps (pro-embryonal cell complexes) have also been observed to give rise to somatic embryos from single cells in both callus and suspension cultures of other species (e.g., by Button et al., 1974; Kohlenbach, 1977).

5.8. MULTICELLULAR ORIGIN.

Several authors have maintained that embryos can have a multicellular origin. Maheswaran and Williams (1985) concluded that the initiation of somatic embryos in *Trifolium repens* was predominantly multicellular. The first sign of embryogenesis in immature zygotic embryos was a change in the normal plane of cell division. This was followed by the formation of a file of cells that developed into a meristem. Somatic embryos could arise from single meristematic cells, but they were usually produced by multicellular budding. Proliferation of the meristem resulted in a distinctive globular tissue.

A multicellular origin for somatic embryos by folding or budding of embryogenic tissue has also been recognised in other plants (e.g. *Sorghum bicolor* - Wernicke et al., 1982). Williams and Maheswaran (1986) suggested that it may occur when neighbouring cells are in the same stage of embryogenic induction: a group of adjacent cells may then associate and act conjointly in the process of embryo formation. The presence of broad suspensors on somatic embryos is thought to be indicative of a multicellular origin (Halperin, 1966; Armstrong and Phillips, 1988).

5.9. RATE OF EMBRYOGENESIS

Some callus cultures may produce somatic embryos slowly and so contain only a small number at any given time. The appearance of isolated somatic embryos in coffee calluses was called ‘low frequency somatic embryogenesis’ by Sondahl and Sharp (1977a, b, c, 1979) and Sondahl et al. (1979a,b). Embryogenic callus that comes to contain proliferating pro-embryonal tissue is usually different in appearance to non-embryogenic tissue: it can give rise to large numbers of somatic embryos. Such callus sometimes arises directly upon an explant, and on other occasions from non-embryogenic tissue, or tissue giving rise to a small number of embryos, after a period of culture. Appearance of a recognisably different globular embryogenic tissue from a high proportion of coffee calluses previously disposed to low frequency embryogenesis was termed ‘high frequency somatic embryogenesis’ by Sondahl et al. (loc. cit.).

5.10. PSEUDOBULBILS AND PROTOCORMS

Some calluses can be highly embryogenic and may consist entirely of globular cell masses from which new ones continually arise by budding. In other cultures, clumps of embryogenic meristematic cells form spherical nodules on the surface of callus, or cellular aggregates in suspension cultures. Globular bodies tend to reach a larger size under conditions that are not fully conducive to embryogenesis and are then sometimes called pseudobulbils (La Rue, 1954; Ranga Swamy, 1958; 1961).

Similar globular bodies, which frequently form on callus cultures of orchids, are not pseudobulbils, but protocorm-like bodies. These are the *in vitro* equivalent of the protocorms formed during the germination of orchid seeds.

5.11. PROLIFERATION OF PRE-EMBRYOGENICALLY DETERMINED CELLS

As explained in the section on Direct Embryogenesis, some explants (such as the nucellus of poly-embryonic *Citrus* species - see review by Rangaswamy, 1982), capable of direct embryogenesis, are invariably able to give rise to an embryogenic tissue or callus. Usually it occurs together with a simultaneous outgrowth of truly unorganised tissue. In grapevines, a white tissue (which the authors said did not look like callus because it consisted of a mass of tiny individually organised units) appeared from the shoot apices and cotyledon regions of seed embryos and was accompanied by a creamy yellow unorganised friable callus. Immature polyembryonic zygotic embryos of conifers can be stimulated *in vitro* to proliferate a white embryonal tissue (an embryonal suspensor mass) from the suspensor region at the radical end, in conjunction with green non-embryogenic callus from other regions.

In cases such as those instanced above, indirect embryogenesis might be said to have occurred because somatic embryos did not appear on the
primary explant. On the other hand, the embryogenic tissues appear to originate directly from pre-embryogenically determined cells and are not undifferentiated. The embryonal suspensor masses of *Picea* can be converted into somatic embryos through a change of medium composition (e.g. the addition of boron [Zoglauer et al., 1998] and growth regulators [Krogstrup et al., 1988]). The distinction between direct and indirect embryogenesis is clearly blurred, especially as in many reports of embryogenesis, it is not obvious as to whether or not the explant was embryogenically determined.

The embryogenic determination of tissues from different sites on a single plant, or from similar explants derived from different genotypes, clearly varies. Culturing explants on a simple medium without growth regulators occasionally produces highly embryogenic callus. However, the induction of embryogenesis usually requires explanted tissues to be placed on a medium containing an auxin. Growth regulators of this kind stimulate cell division and cause cells to become committed to embryo formation. In callus that has been grown for some while in an unorganised state without the induction of regeneration, the dedifferentiated cells require to be completely redetermined into an embryogenic condition before they can give rise to somatic embryos. Auxins are once again primarily responsible for bringing about this altered commitment.

5.12. STAGES OF EMBRYO DEVELOPMENT

The close structural similarity between somatic and zygotic embryos has naturally created much interest. Although within somatic embryos there is not an orderly pattern of cell division planes (once thought to be important for the eventual designation of cell function in zygotic embryos), variation in these segmentation patterns probably only reflects the different environment in which the cultured cells were contained and is, in any case, also known to occur sometimes during zygotic embryo growth (Street and Withers, 1974). As additionally, the later stages of development of zygotic and somatic embryos are very similar, it may be supposed that the processes of zygotic and somatic embryogenesis are essentially the same. The various stages in the development of somatic embryos in dicotyledons are shown diagrammatically in Fig. 10.8

They are usually described as follows
- pro-embryos: small clusters of meristematic cells from which somatic embryos will arise,
- globular stage: larger groups of cells not yet having a definite embryo-like shape,
- heart stage: a characteristic three-lobed stage where cotyledonary initials are separated from the root pole,
- torpedo stage: an elongated form of the heart-shaped embryo,
- plantlet: discernable small ‘seedling’ with primary root and shoot.
The stages in monocotyledons are somewhat different; at the globular stage, somatic embryos are easily confused with spherical shoot meristems and it can be difficult to be sure that embryogenesis has taken place. However, the embryos of monocotyledons give rise to shoots from discrete globular bodies, which, as they grow, develop structures resembling a scutellum and coleoptile (Fig. 10.8); adventitious shoot buds form a clump of leaves. Somatic embryos also typically develop root and shoot poles and are discontinuous with the underlying callus.

Pro-embryos of both dicotyledons and monocotyledons typically have a number of cells at the root pole end, which are equivalent to the suspensor of zygotic embryos; these cells may not be apparent in embryos which arise by multicellular budding, where the somatic embryo can be closely associated with the parent tissue.

Fujimura and Komamine (1980) found that in carrot, very different rates of cell division occur at different stages of somatic embryo formation. A marked increase in rate occurs after the pro-embryo stage and precedes the formation of globular embryos. In maize, the start of both zygotic and somatic embryogenesis can be detected through changes in isoenzymes (Everett et al., 1985).

![Fig. 10.8 Stages of somatic embryogenesis in dicotyledons (left) and in monocotyledons (right).](image_url)

Although there may be only a small change in the total population of proteins during embryogenesis (Sung et al., 1988), somatic embryos do contain some specific proteins not found in other tissues (Hahne et al., 1988). The amounts and nature of these may change as growth proceeds (Zee and Wu, 1979); storage proteins accumulate which are not normally found in somatic tissues (Crouch, 1982; Stuart and...
Nelsen, 1988). Electrical currents have been found to move through globular bodies of embryogenic callus, pro-embryos and early stage embryos demonstrating that a distinctive polarity exists in these structures from a very early stage (Brawley et al., 1984).

5.13. GERMINATION.

Somatic embryos which have been suitably matured can be germinated in vitro and sometimes ex vitro to produce normal seedlings. Very large numbers of somatic embryos can be produced in some cultures, but normally only a small percentage of these ultimately gives rise to plants. The proportion which does, has been termed the conversion frequency by Redenbaugh et al. (1986, 1987)

6. THE EFFECTS OF GENOTYPE

The growth of cultured tissues or organs, and regeneration in vitro, are very much influenced by the genotype. There are numerous examples in the literature in which the results obtained during tissue culture have varied from one variety of plant to another, and it is probably true to say that effects of genotype impose one of the greatest constraints to the tissue culture and micropropagation of plants. In some instances, observed responses have been related by identifiable genetic factors, viz.: nuclear genes (Bullock et al., 1982; Foroughi-Wehr et al., 1982; Lazar et al., 1984; Rhodes et al., 1986; Szakcs et al., 1988; and Mathias and Fukui, 1986; Lall et al., 2004), cytoplasmic genes Mathias et al., 1986; Narasimhulu et al., 1988; Wan et al., 1988); and gene interactions (Keyes and Bingham, 1979; Wan et al., 1988).

Nuclear genes governing regeneration have been thought to have a high general ability to interact (tomato - Frankenberger and Tigchelaar, 1980); to be recessive (tomato - Frankenberger et al., 1981); to be dominant, or partially dominant (alfalfa - Reisch and Bingham, 1980: Zea mays - Rhodes et al., 1986); or to be additive (Brassica - Buiatti et al., 1974a, b). Ploidy is found to have an effect in some genera: dihaploid lines of Solanum tuberosum are more likely to produce adventitious shoots from callus than are their tetraploid parents (Fish and Jones, 1988).

Many genotype-dependent effects are caused by interactions between the plant’s genotype and the cultural environment. Variety A may undergo regeneration in response to growth regulators of one kind, while variety B is unresponsive until the concentration of the regulators is changed and/or different regulatory compounds are used. Other differential responses can be due to plants of varying genotypes requiring specific media or environmental conditions.

Because of genotypic specificity, media and the cultural environment often need to be varied from one genus or species of plant to another. Although general methodologies can be established for plant tissue culture, even closely related varieties of plants can differ in their cultural requirements. The best method of micro-propagating a new plant must usually be determined by experiment. It has been particularly difficult to obtain regulated regeneration of many plants within the families Fabaceae and Poaceae.

6.1 PREDOMINANTLY GENOTYPIC EFFECTS

If interaction with the environment were the only cause of genotype specificity, it should be possible to culture all plants of a similar kind with equal success once the specific conditions for each had been ascertained. Unfortunately, the behaviour of plant tissues in vitro in processes such as callus formation and growth and regeneration often seem to be under an over-riding genetic control, with other factors exerting only a minor effect. Thus in wheat, some genotypes give rise to plants from tissues cultured on several different media, while little success is obtained with other varieties on any of these choices (Lazar et al., 1983). Similarly in Medicago more plants were produced from somatic embryos in highly regenerative cultivars than from those with a low capacity for regeneration, regardless of the media employed (Brown and Atanassov, 1985). It appears that the inability to induce regeneration in some genotypes is due rather to our incomplete knowledge than to an over-riding genetic constraint.

Plant genotype has a sufficiently marked effect on the behaviour of cultured plant tissues for it to be possible to breed plants for improvements in all aspects of in vitro performance (see below). Some of the more obvious ways in which growth and regeneration have been found to be influenced by genotype are discussed below.
6.1.1. Culture initiation

Surprisingly, in some genera, the rate at which explants survive in culture can depend on apparently minor differences in the genotype of mother plants. Thus, there were large differences in the capacity of shoot tip explants from different mature *Eucalyptus marginata* trees to grow in vitro after the necessary sterilisation procedures (McComb and Bennett, 1982). The survival of *Dahlia* meristem tips in culture varied even between closely related plant varieties (Wang *et al.*, 1988). Hammerschlag (1982) found a big difference in the viability of newly explanted shoot tips derived from different peach cultivars, whilst Roca *et al.* (1978) recorded that varieties of potato and their hybrids differed more in their behaviour to shoot tip initiation than in shoot proliferation at Stage II.

6.1.2. Callus Initiation and growth

Many reports illustrate how the capacity of explanted tissues to form callus and the subsequent growth rate of callus cultures, can both be variety-dependent. Results from the following plants provide some examples: *Brassica* (Baroncelli *et al.*, 1974), *Helianthus* (Espinasse and Lay, 1989), maize (Shannon and Batey, 1973; Green and Phillips, 1975), oats (Cummings *et al.*, 1976), *Pelargonium* (Jelaska and Jelencic, 1980), *Petunia* (Izhar and Power, 1977), potato (Simon and Peloquin, 1977), rice (Abe and Sasahara, 1982), sainfoin (Arcioni and Mariotti, 1983), tobacco (Venketeswaran and Mahlberg, 1962; Cheng and Smith, 1973; Keyes *et al.*, 1981), and wheat (Shimada and Makino, 1975; Sears and Deckard, 1982). The effect of genotype is also seen in differences in the texture and colour (Taira *et al.*, 1977), and morphogenetic capacity of callus from closely related varieties of plants.

The results obtained in any particular test depend on the medium, the growth regulators used, and other environmental factors. Under the conditions employed by Gresshoff and Doy (1972), callus cultures could be established from three out of eighteen *Arabidopsis thaliana* genotypes, and one out of forty-three barley lines. Bayliss and Dunn (1979), however, could plot a normal distribution of the amount of callus produced from the seed embryos of each of 45 randomly chosen barley varieties on MS medium containing 1 mg/l 2,4-D.

Baroncelli *et al.* (1978) found that the genetic control of wheat callus growth was different in root and nodal explants, and a somewhat similar result was obtained in rice by Mikami and Kinoshita (1988). Although vigorously-growing callus was formed on the tissues of only some varieties, the growth response of seed, coleoptile and radicle explants was broadly related. However, the ability of the varieties to form callus from anthers was not correlated with the results obtained from the other explants. The authors suggested that their results might have been due to there being different genetic determinants of callus formation according to the physiological condition of the explants or according to their ploidy.

6.1.3. Direct regeneration

Adventitious shoots. Plants vary considerably in their ability to produce adventitious shoots directly on tissue explants. In general, success in vitro closely parallels the ease with which adventitious shoots may be regenerated without resort to aseptic culture, except that under controlled and disease-free conditions, the morphogenetic potential of the species is magnified, and shoots are produced more freely than they otherwise would be. Thus, those genera, which produce plantlets readily from severed leaves placed in soil or compost in a greenhouse (e.g. *Begonia*, *Peperomia*, *Saintpaulia*, and *Streptocarpus*) also give rise to large numbers of adventitious shoots directly from leaf or petiole segments when these are cultured on an appropriate medium. In some other kinds of plants, aseptic culture can be used to induce direct shoot regeneration that otherwise is seldom observed. *Chrysanthemum morifolium*, for instance, can give rise to adventitious shoots in vitro from explants of small leaves, petioles, stems, flower pedicels or young flower buds. Direct shoot regeneration commonly occurs on the explanted tissues of dicotyledonous species, but in monocotyledons is only normally observed in species which produce fleshy storage leaves.

Species that produce bulbs seem to be universally capable of producing adventitious shoots from the basal part of explanted bulb scale leaves. According to Broerntjes *et al.* (1968), only monocotyledons of the families Amaryllidaceae, Araceae, Liliaceae and Taccaceae are capable of forming adventitious shoots on leaf tissue. Many of these plants can also produce buds on floral stems (scapes).

Despite these very broad differences between species and genera, the capacity for direct regeneration on any given medium can also be found to vary between closely related plant varieties. Mutant lines of *Arabidopsis thaliana* had a lower shoot- and root-forming capacity than the normal (parent) line, but morphogenetic ability was fully restored in their hybrids (Nobuharu, 1980; Goto,
1981). This is an illustration of complementation, each of the pair of genomes present in the hybrid supplying one or more products, which were either absent or impaired by the mutation in the other. Sometimes the hybrids would show heterosis (hybrid vigour) by exceeding the organogenetic capability of the normal lines.

The shoot forming capacities of two pure lines of tomato (‘Apedice’ and ‘Porphyre’) and their reciprocal hybrids, were found by Bigot et al. (1977) to vary according to the derivation of explants and the growth regulators used. Shoots were initiated directly on the explanted tissue and/or on callus produced from superficial tissues. ‘Porphyre’ always produced more shoots from hypocotyl explants than ‘Apedice’. This ability was maternally transmitted to one of the hybrids and, with one particular combination of auxin and cytokinin, hybrids produced significantly more shoots than did the parents (a further example of heterosis). The relative regenerative capacity of the genotypes studied was not the same when cotyledon or leaf explants were cultured.

Root formation. Whether roots or shoots can be induced to form in callus cultures can frequently be controlled by addition of growth regulators, but in some cultures even closely related genotypes may have different propensities (Kim et al., 1988). Similarly, the facility with which adventitious roots can be induced to form directly on shoots grown in *vitro*, varies widely, sometimes even amongst varieties of the same species.

Embryogenesis. The ability of closely related plants to produce somatic embryos directly on explants is also under genetic control and differences between varieties are often found. Stamp and Meredith (1988) obtained somatic embryos on the zygotic embryos of four cultivars of *Vitis vinifera*, but could not induce them to form on the cultivar ‘Pinot Noir’. The direct formation of somatic embryos on apple leaf segments was genotype-dependent (Welander, 1988).

Indirect regeneration. Genotypic effects are influential in the regulation of adventitious organ formation from callus tissues. Separate root and shoot formation, or embryogenesis, is readily induced in plants of certain families or genera, and is obtained with difficulty in others. Differences in the morphogenetic capacity of callus from different species or even varieties of plant are also commonly found e.g. *Peperomia* (Klimaszewska, 1979), *Nicotiana* (Bourgin et al., 1979), *Triticum* (Gosch-Wackerle et al., 1979).

To the extent that indirect regeneration is impossible without prior callus formation, callus growth and regeneration are connected. The rate of callus proliferation from genetically similar plants may not, however, always be a guide to the morphogenetic capacity of the callus. In other cases morphogenetic competence and callus production seem to be influenced by the same genes. In cauliflower, the weight of callus produced on leaf explants of inbred lines was related to the number of shoots formed directly on petal explants of the same varieties (Baroncelli et al., 1973).

Intervarietal differences in the morphogenetic capacities of callus tissues are also commonly found. The rate of adventitious shoot formation can vary between lines within a species e.g. *Glycine canescens* (Hammatt et al., 1987), and the facility with which embryogenesis can be induced may vary between cultivars e.g. *Solanum melongena* (Matsuoka and Hinata, 1979); alfalfa (Brown and Atanassov, 1985). In many experiments to study plant regeneration, callus of different plant varieties is induced to form on a single medium, but frequently when the calluses are plated onto a common regeneration medium, each has a different organogenetic potential (e.g. Barg and Urmiel, 1977; Margara, 1977; Ohki et al., 1978). Cummings et al. (1976) obtained plantlet formation from callus of 16 out of 23 varieties of oats, and Wehner and Lacy (1981), shoot regeneration from only 28 out of 85 cucumber lines, although callus cultures were produced from explants in every case.

7. GENETIC CONTROL

The genetic control of growth and regeneration in *vitro* can result from either a primary or secondary effect of gene action. Thus, certain kinds of morphogenetic responses in tissue cultures are seen to be directly related to the behaviour exhibited by whole plants or parts of plants *in vivo* e.g. morphological features, whereas features of the whole plant which influence other characteristics of *in vitro* culture, e.g. the rate of callus growth, are more difficult to determine. Genetically determined characteristics of the latter kind probably result from only the secondary effect of normal gene function. This represents a spurious pleiotropy in which the main effect of a gene or genes causes other unrelated events to occur.
By correlating both the rate of callus growth and the ability to form adventitious buds with characters of the mature plant, Baroncelli et al. (1974) suggested that in inbred lines of cauliflower there might be groups of genes capable of shifting plant development in different directions, their effect in culture being to influence the competing processes of cell proliferation and regeneration. Such genes have been thought most likely to exert their influence by regulating the effective levels of growth substances (Bayliss and Dunn, 1979). Endogenous growth substance levels may vary in different genotypes.

Inbred varieties of several plants have been found to produce callus less well than their hybrid progeny, in which heterosis seems to be manifest (e.g. from explants of maize endosperm, (Tabata and Motoyoshi, 1965); alfalfa, (Keyes and Bingham, 1979); tobacco cotyledons, (Keyes et al., 1981). Heterosis may also be seen in the ability of anthers to form callus (Bullock et al., 1982) or produce haploid embryos. Keyes et al. (1981) noted how in several plants, correlations were found between the rate of growth of tissues in vitro, and vigour in other agronomic traits. They suggested that characteristics of in vitro cultures might be of value for the rapid identification of hybrid combinations that could produce superior plants in the field. In Petunia hybrida, however, Hanson and Read (1981) found that although F1 hybrids generally gave more vigorous plants and callus cultures than their inbred parents, there was no consistent correlation between tissue culture and field performance. Callus from the shoot meristems of the interspecific hybrid between Trifolium hybridum and T. ambiguum grew more slowly than that of either of the parental species (Rupert et al., 1976).

Some of the characteristics of in vitro cultures of closely related genotypes have been subjected to biometrical analyses and in Brassica oleracea have been shown to be correlated in a complex fashion with apparently unrelated features of whole plants in vivo (Baroncelli et al., 1973, 1974; Buiatti et al., 1974a, b).

Genes governing the capacity for in vitro callus growth have been shown to be located in particular portions of wheat chromosomes (Shimada and Makino, 1975; Baroncelli et al., 1978), and genes situated on Nicotiana glauca chromosomes were thought to be responsible for the relative rates of callus proliferation of triploid hybrid plants resulting from a N. glauca and N. langsdorffii cross (Cheng and Smith, 1973). Genetic factors governing callus formation and shoot regeneration in N. tabacum were deduced to reside chiefly in the part of its genome derived from N. sylvestris (Ogura and Tsuji, 1977).

Embryogenic callus resulted from culturing immature embryos of a Vigna glabriscens V. radiata hybrid, but only non-morphogenetic callus could be obtained from embryos of the reciprocal cross (Chen et al., 1990).

Selection. Some in vitro characters can have high heritabilities. In inbred cauliflower lines, Baroncelli and co-workers (1973) found values of 0.42 for the number of roots formed per callus, 0.39 for the proportion of petals which gave rise to callus, and 0.47 for the relative rates of callus growth. Selection amongst progeny segregating for these characteristics would clearly have resulted in improvement. Since then it has been clearly established that it is possible to improve upon the results obtained from plant tissues and organs in vitro by conventional plant breeding techniques.

Recurrent selection within a species has been effective in increasing the proportion of genotypes capable of regeneration from callus (e.g. from tetraploid alfalfa callus - Bingham et al., 1975; Reisch and Bingham, 1980), and has enabled the selection and release of tetraploid alfalfa cultivars (Regen S, Regen Y and RA-3) having a high capacity for regeneration from tissue cultures. Selection of a diploid clone having this attribute has also been possible (McCoy and Bingham, 1977, 1979). Lines capable of improved regeneration could be selected from the progeny of crosses between Trifolium genotypes capable of producing adventitious buds directly from explants (Webb et al., 1987).

8. THE EXPLANT

8.1. THE AGE OF EXPLANTED TISSUES

The successful culture of plant material in vitro is greatly influenced by the age of the tissue or organ which is used as the initial explant. The age of any piece of tissue can be measured in five ways, i.e. by:
• **The age of the organ or whole plant from which it is derived.** This is the period of time (hours, days, months) that has elapsed from the growth of a plant from a bud or embryo, or from the initiation of a particular organ or tissue.

• **Physiological age** in which the time taken to reach a particular stage is influenced by environmental factors e.g. temperature.

• **Ontogenetic age or phase of growth.** In this sense a piece of tissue can be categorised as being ‘young’ or ‘old’, according to whether it is derived from a part of a plant in a juvenile or adult phase of growth. The marked effects of ‘maturation state’ on plant tissue cultures have been discussed in the section on phases of growth at the beginning of this chapter.

• **The degree of differentiation.** In this concept, the youngest parts of a plant are undifferentiated meristematic cells, while differentiated cells of organs, sequentially derived from the meristems, are older. Developmentally, the cells of the apical meristems of most plants have a theoretical capacity to enjoy ‘perpetual youth’ and to live for ever if the apex of the plant is continually re-rooted in vivo or subcultured in vitro.

• **Period of culture,** the time span from when the culture or the passage was first commenced. Once a culture has been initiated from explanted material, this fifth age factor becomes operational.

Each of these components of tissue age may influence whether an explant from a stock plant or from a previous in vitro culture, can be used to initiate a culture, and may modify the direct or indirect morphogenetic potential of the tissue. Ontogenetic age and the age of the organ appear to be the most important factors, although in practice it is sometimes impossible to decide which of the first four age factors above is decisive. The shoot apex of a seedling is young in all senses, but although the stem apex from a 50 year-old tree is old in the material sense, it is youthful in that it is, essentially, undifferentiated. Nevertheless, although the shoot apex is comprised of actively dividing cells which are morphologically similar, it important to note that some of these cells appear to carry the first phase of the genetic programme for vascularisation as was shown for *Vicia faba* and *Pisum sativum* (Gahan and Bellani, 1984). Moreover, the cells which will give rise to the cortex are likely to already be programmed for this differentiation process. This is clearer in the root meristems where the central core of meristem cells carry the first phase of the genetic programme for the formation of vascular tissues and the endodermis (Gahan, 1981; Rana and Gahan, 1983; Gahan and Rana, 1985; Gahan and Carmignac, 1989).

8.2. ONTOGENETIC AGE

Explants taken from juvenile plant tissue, particularly that of seedlings, are usually highly responsive. This can be a genuine effect of material age, but usually reflects the juvenile state of seedling tissues. The difficulty, which is often experienced in growing and manipulating older tissues can be frustrating, because it is usually desirable to propagate mature plants of proven worth. This is especially so in the propagation of trees.

8.3. AGE OF THE ORGAN OR PLANT

In general, explants taken from newly originated organs are most likely to be capable of growth and organogenesis in vitro.

8.3.1. Callus initiation

Growth regulator requirements for callus initiation frequently differ according to the age of the explanted tissue. On a modified Linsmaier and Skoog (1965) medium, maximum growth of callus from stem explants taken from 2 week-old *Pelargonium* plants, occurred in the presence of 5 mg/l NAA + 5 mg/l kinetin; but these concentrations inhibited callus formation from similar explants taken from 2 year-old plants. Optimum callus proliferation from the latter occurred with 0.2 mg/l of both regulators (Hammerschlag and Bottino, 1981). The formation of meristemoids, and eventually shoots and roots, occurred only on the young explants cultured on 0.2 mg/l NAA and 0.2 mg/l kinetin.

8.3.2. Indirect regeneration

In experiments of Takayama and Misawa (1982), most segments derived from young leaves of *Begonia* produced buds and roots, whereas those derived from mature leaves usually died. An effect of age was even detected amongst the leaves taken from micropropagated shoots of *Malus domestica*. With an appropriate combination of growth regulators, adventitious shoots formed on the leaves, but the proportion of explants on which regeneration was observed, and the number of new shoots per explant, was greatest in the 3 or 4 leaves nearest the tip of each shoot (Fasolo *et al.*, 1988). Pierik (1969) and Pierik and Steegmans (1975) found that the rhizogenic potential of *Rhododendron* stem segments...
decreased with the age of the shoot from which they were obtained, and in the cultivar which rooted least readily, rooting occurred only on segments of soft young stems.

Young tissues do not invariably provide the most highly morphogenetic explants. Callus formed more readily on various explants from fully-grown plants of *Parthenium hysterophorus* than on young seedlings or cotyledons (Wickham *et al.*, 1980). Similarly, callus growth and shoot development was more rapid on explants of *Solanum lacinatum* cut from mature leaves which had just completed full expansion. By contrast, young unexpanded leaves yielded explants which soon expanded and callused but produced shoots slowly, and really old leaves gave rise to callus and shoots after an even greater time interval. The number of shoots regenerated from the three types of tissue was eventually very similar (Davies and Dale, 1979).

Frequently, the pattern of regeneration changes as a tissue ages and then the effect of polarity (see later) on growth and regeneration may become more pronounced. Tanimoto and Harada (1980) took leaf disks from the second pair of unfolded leaves of 9, 14, 18 and 24 week-old plants of *Perilla frutescens*. Explants from the younger plants formed most buds from primary callus. No shoot initiation occurred in callus derived from 24 week-old plants. Young leaves of *Heloniopsis* showed none of the polarity in bud formation present in older leaves (Kato, 1974), and in *Chamaenerion angustifolium* and *Armoracia rusticana*, organs developed along the undamaged margins of young root segments without callusing of the cut ends (Emery, 1955; Dor, 1955), but callusing of the cut ends leading to organogenesis can occur in old roots (Emery, 1955; Bowes, 1976b). Young leaves of *Echeveria elegans* tended to produce roots sooner than they produced shoots, while in older leaves the reverse occurred (Raju and Mann, 1970).

For some types of cultures it may be necessary to excise explants at a fairly precise age. For example, to obtain embryo growth and germination from ovaries of *Brassica juncea*, it was necessary to culture 5-7 day-old ovaries. Those which were 4 or 9 days old were unsatisfactory (Mohapatra and Bajaj, 1988). Immature embryos (without testa and endosperm) of *Malus domestica* which were 0-4 weeks old produced only callus when cultured, those which were 6.5 to ca. 14 weeks produced multiple shoots, whereas mature embryos (14 weeks) grew normally with a shoot and a root pole (Kouider *et al.*, 1985). Depending on whether callus or shoot regeneration was required, seed-derived tissues of *Pyrus serotina* were best excised at the times shown in Table 10.2.

8.3.3. Explants for shoot cultures.

In temperate plants where shoots are newly initiated each year from resting buds, shoots can be said to become progressively older as the season advances. Explants for shoot tip or meristem culture are usually best dissected from young shoots (Kaul, 1985, 1986), or from buds just before the spring flush (Kurz, 1986). On the other hand, lateral buds most capable of growth or shoot proliferation may not necessarily be those nearest the apex of a shoot. Single node explants of *Vitis rotundifolia* taken from the basal 10 nodes of non-lignified shoots bearing at least 25 nodes, were better than those from the 10 distal nodes (Sudarsono and Goldy, 1991).

<table>
<thead>
<tr>
<th>Explant</th>
<th>Optimum age for sampling (weeks after pollination)</th>
<th>For callus formation</th>
<th>For adventitious shoots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immature seed</td>
<td>7-10</td>
<td></td>
<td>Multiple shoots during 8-10</td>
</tr>
<tr>
<td>Endosperm</td>
<td>2-4 only</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Zygotic embryo</td>
<td>2-3 good</td>
<td></td>
<td>9-10 (later embryos dormant)</td>
</tr>
<tr>
<td></td>
<td>4-7 less good</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10 good</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection of an explant of the optimum ‘age’ for micropropagation can sometimes be complex. In *Rosa hybrida*, single node explants (1 cm of stem plus a bud) were best taken from the new shoots which grew after bushes were pruned when the shoots were ca. 10 cm and had 6 axillary buds. All the lateral buds were then capable of growing in vitro. Much less reliable explants were obtained from shoots which had extended until they bore terminal flower buds. Explants which grew well and produced...
vigorouse shoots could then only be obtained from middle order buds, but by the time the shoots were over 60 cm in length, growth of cultured buds was erratic (Fig 10.9) (Mederos and Rodriguez Enríquez, 1987). A similar observation was made by Kouadio and Phan (1987) with single node explants from tomato plants at the seventh leaf stage. Buds from nodes 1-3 grew slowly in culture, those from nodes 4 and 5 grew most rapidly, while those from node 6 grew slightly less quickly.

The capacity of meristems in onion flower heads to give rise to shoots, was highest when they were at a primordial stage. Some shoots were produced while pollen meiosis was taking place, but after this the ability of the flower heads to form shoots fell to zero (Dunstan and Short, 1979).

8.4. DEGREE OF DIFFERENTIATION

Explants of young tissues still undergoing cell division generally form callus more readily than those from older parts of a plant, and there is a much greater chance that the callus will be capable of organogenesis. This is particularly the case in the Poaceae, where callus cultures have not been initiated from mature leaves or stems, but only from young leaves or inflorescences, seed embryos or nodes. Callus derived from cotyledons excised from 2-4 week-old seedlings of *Pseudotsuga menziesii* had a greater capacity for cauloogenesis than that which originated from older seedlings (Abo El-Nil and Wochok, 1977).

Fig. 10.9 Selection of single node explants of *Rosa hybrida* [after Mederos and Rodriguez Enríquez, 1988].
8.4.1. Zygotic embryos as explants

In a great many species, embryogenic callus can be very reliably obtained from immature zygotic embryos. To improve the yield of embryogenic callus, zygotic embryos of wheat have been classified into the five developmental stages shown in Table 10.3. The highest yields of callus have been found to be produced using embryos at stages II and III (He et al., 1986). Competence of zygotic embryos of Picea for somatic embryogenesis has been shown to be limited to a specific stage of development prior to the accumulation of storage proteins (Roberts et al., 1989).

In dicotyledons also, embryogenic callus may only be obtained from zygotic embryos once they have reached a critical size. To obtain embryogenic callus from zygotic embryos of Castanea sativa in Spain, it was necessary not to excise the embryos from fruits until the end of August. Those explanted before this time only produced a small callus, or no callus at all (Vieitez et al., 1990). Guerra and Handro (1988) postulated that the induction of direct somatic embryogenesis on Euterpe edulis zygotic embryos depended on a subtle interaction between the developmental stage of the explants and the auxin 2,4-D in the medium. Mature embryos of Iris pumila gave rise to embryogenic callus once they had been germinated in vitro, but immature embryos only produced non-embryogenic callus (Radojevic et al., 1987).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Days after anthesis</th>
<th>Length mm.</th>
<th>Appearance of scutellum</th>
<th>Characteristics of embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td><13</td>
<td>0.9</td>
<td>Transparent</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>12-13</td>
<td>0.9-1.5</td>
<td>Transparent</td>
<td>Visible</td>
</tr>
<tr>
<td>III</td>
<td>15-17</td>
<td>1.5-1.7</td>
<td>Transparent</td>
<td>A sharp central ventral scale</td>
</tr>
<tr>
<td>IV</td>
<td>16-24</td>
<td>1.3-2.5</td>
<td>Opaque</td>
<td>No visible lateral root primordia</td>
</tr>
<tr>
<td>V</td>
<td>22</td>
<td>2.5</td>
<td>Opaque</td>
<td>Obvious lateral root primordia</td>
</tr>
</tbody>
</table>

8.5. EXPLANT AGE

Plant age and the degree of differentiation of tissues are often inter-related and produce interactive effects in vitro. Both the size and degree of development of certain organs, particularly cotyledons, hypocotyls and epicotyls (Fig. 10.10), depends on plant age. Thus the direct formation of adventitious shoots has been found to occur most readily from Pinus glauca cotyledons excised from 7-8 day-old seedlings. Prior to that the rate of shoot formation was slower, and after 8 days, the capacity of the explants to produce shoots declined rapidly (Toivonen and Kartha, 1988). A higher proportion of Cucumis melo tissue cultures produced adventitious shoots when they were initiated from small leaves (0.3-0.5 mm) from young (14 day-old) seedlings than from leaves of the same size from older seedlings (21, 28, and 35 days), or from larger leaves (0.6-0.9 mm or 1.0-1.2 mm) from seedlings of any of these ages (Kathal et al., 1988).

8.6 PERIOD OF CULTURE

The period of time during which callus tissues have been maintained in culture commonly influences their morphogenetic potential. There is often a short period (one or more subcultures) during which regeneration increases (e.g. Reinert and Backs, 1968; Reinert et al., 1971). This is followed by a period of high regenerative ability after which the capacity of the tissues to undergo regeneration often declines (see below). Adventitious shoot formation from Arabidopsis callus was increased if the normal subculture interval of 4 weeks was increased to 8 weeks just before transfer to a regeneration medium (Negrutiu and Jacobs, 1978).

8.6.1. Loss of regenerative ability

Some callus tissues retain a capacity to regenerate shoots in response to well-known stimuli, over long periods. Stimart et al. (1980) for instance, obtained shoot regeneration from Lilium callus maintained in culture for 3 years, and Sheridan (1974) found that a
regenerative capacity was still present in callus of this species after 8 years of subculturing. Callus of *Dioscorea* (Grewal *et al.*, 1977), of *Solanum nigrum* (Mandal and Gadgil, 1979), of *Datura innoxia* (Forche *et al.*, 1981) and of *Lavendula angustifolia* (Webb *et al.*, 1984) maintained a morphogenetic capacity for at least two years; corn and oat calluses have been reported that remained morphogenetically competent for up to 18 months (Rice *et al.*, 1979). The shoot-forming capacity of root and embryo callus of rice can be extended over a very long period if the callus is cultured with 2% sucrose plus either 3% mannitol or 3% sorbitol in the medium (Kavi Kishor and Reddy, 1986). However in conventional media, the facility with which regeneration may be induced from cultured plant cells very commonly decreases as the tissue is serially subcultured. The reasons for the loss of regenerative ability are still uncertain and may vary in different circumstances. Several theories have been advanced in the past to explain the effect:

- **Genetic variation in the cell population.** One widely-held theory is that cells are preferentially selected during culture for their ability to proliferate most rapidly under the chosen cultural conditions, and that this attribute is incompatible with the ability to undergo regeneration. Such a selection pressure will operate whenever there is appropriate genetic variation in the cell population, and can result in the loss of cells retaining the activated genetic information for totipotency (Sacristan and Melchers, 1969; Smith and Street, 1974; Orton, 1980).

- **The existence of a substance promoting regeneration,** which is present in freshly isolated explants and which slowly diminishes during growth *in vitro* (Reinert and Backs, 1968). The converse of this hypothesis would be that an inhibitor of regeneration accumulates with time.

- **An epigenetic change in the cultured cells.** The genotype of cells is essentially conserved, but mechanisms regulating the genetic information governing regeneration become inoperative or lost during subculture. The tissue could be considered to have become dedifferentiated with respect to regeneration (Rice *et al.*, 1979).

These hypotheses represent two contrasting ideas: either that non-competent cells have permanently lost their totipotency or that morphogenetic competence has only been impaired.

Fig. 10.10 Explant terminology – seedling explants and explant orientation.
Genetic variation as a cause.

There is considerable evidence to show that the *in vitro* culture of organised cells or tissues can lead to the formation of sufficient genetic variation in the resulting cell population for selection to be possible, leading to the accumulation of incompetent genotypes. Although the natural (or artificially-induced) occurrence of cells having aneuploid chromosome numbers does not necessarily prevent regeneration in calluses (Chapter 1), it seems clear that gross variations in the genetic make-up of callus cells will prevent plant regeneration (Rice and Carlson, 1975). In tobacco, Novak and Vyskot (1975) and Nuti Ronchi et al. (1981) found that many shoots or plants regenerated with aneuploid chromosome numbers, were weak and died in the course of development. The chromosome complements were presumably too imbalanced to permit survival. Moreover, aneuploidy is only one of the genetic changes that can be induced by callus and cell culture and so other karyotypic alterations may be even more responsible.

The argument that morphogenetic capacity is lost during an active selection for cells capable of high rates of growth, has usually been based on the observation that regenerative capacity of a cell population decreases as karyotypic abnormalities increase. Loss of regenerative ability is not always dependent on the occurrence of karyological diversity in a cell population. For example, one race of *Brachycome* lost its capacity to regenerate embryoids in 2 months, and its ability to produce roots, in 7 months. The cells remained strictly diploid over the whole of this period and beyond (Gould, 1978).

Epigenetic change as a cause.

Rather than being due to the disappearance by selection of cells possessing the necessary genetic information for organogenesis, loss of morphogenetic potential may be caused by a changed pattern of gene expression brought about by the cultural environment, and may be an epigenetic phenomenon (as, some would believe, are habituation and physiological ageing).

In the experiments of Northcote (1979), bean tissue remained undifferentiated on a ‘maintenance’ medium containing 2,4-D, and normally differentiated on an ‘induction’ medium containing NAA (2,4-D) and the cytokinin kinetin. However, after more than four transfers on the maintenance medium, the ability of the tissue to differentiate on the induction medium progressively declined. Cloning experiments showed that selection for the inability to differentiate, was not being practised, and after about 30 transfers on maintenance medium, the ability of cells to differentiate was often restored quite suddenly over one transfer. Other tests indicated no loss of genetic information from the cell population, which simply did not respond to the normal amounts of NAA and kinetin.

Recalcitrance or the non-regenerative condition of callus could be caused by the lack of direct effects of media components, particularly growth regulators, on genetic expression. One possibility is that genes responsible for regeneration become silenced by methylation *in vitro* and so incapable of expression. Differentiation and dedifferentiation have been shown to be related to the methylation and demethylation of the cytosine residues of DNA. The differentiation of carrot tissues has been shown to be characterised by a methylation pattern, and during the linear growth of carrot callus, methylation increases whilst during the stationary phase it decreases. The process has been shown to be influenced by growth regulators, with auxin leading to an increased methylation and cytokinin blocking changes to methylation. (de Klerk et al., 1997). Such methylation is also considered to provide a marker of ageing, phase changes and reinvigoration of *Pinus radiata* (Faga, 2002 a,b,c). However, whilst, methylated DNA results in the gene being silenced, silencing is due also to other mechanisms (see below), the methylation process apparently acting to ensure that the gene remains silenced. Demethylation only occurs once the silenced gene has begun to be transcribed (Alberts et al., 2002). The concept of silenced genes in recalcitrance may be more complex than a question of the methylation of DNA. For example, gene silencing also concerns the methylation of lysine 9 of the H3 histone tail of the nucleosome which results in gene silencing through the remodelling of the euchromatin into heterochromatin (Alberts et al., 2002; Rice and Sedat, 2001). If we deal with the process of competence and recalcitrance to regenerate in relation to the cell cycle, it is possible to see that competent calluses can readily respond to plant growth regulator treatment, enter the cell cycle and move into the regeneration phase by the regulaton of genes – possibly by methylation and demethylation of the relevant ones. This would involve receiving a signal at a moment in G1 prior to START. However, some calluses need a
growth regulator shock to be induced to regenerate. In this case it is possible that the genes have been silenced in a way that involves DNA methylation of both the genes and the H3 histone residues of the nucleosomes so resulting in the relevant genes being held in a minimal form of heterochromatin, this state being reversed by the e.g. auxin shock.

The third situation relating to recalcitrance requires that the callus cells are locked in G0 and cannot enter G1 to be able to cycle and to receive the growth regulator signal. This could happen if phosphorylated Rb protein is bound to and inhibits the eIF proteins which normally induce the binding of m-RNA to ribosomes. The Rb protein could then interact with HP1 (methyl lysine binding proteins) and CLF (Arabidopsis SET-domain CURLY LEAF protein) proteins. Rb can be found at the boundary between euchromatin and heterochromatin which results in the silencing of the euchromatic genes. In this situation, it is possible that such silenced genes would result in the cells being contained in G0 and could not be activated by plant growth regulator signals (Gahan, 2006).

A more recent development currently being investigated is RNA interference, which could have important roles to play in the process of recalcitrance. Double-stranded interference RNA is involved with gene silencing through the binding of one strand of the dsRNA either directly to the DNA or to mRNA, which is subsequently destroyed (Novina and Sharp, 2004; Matzke and Matzke, 2000); it is involved also with the gene silencing and the formation of heterochromatin (Martinnsen et al., 2004; Lipmann and Martinssen, 2004). In plants, such dsRNA is targeted to CpG islands within a promoter region of the chromosome and can also induce RNA-directed DNA methylation (Pelissier and Wasseneger, 2000; Hamilton et al., 2002; Zilberman et al., 2003). DNA methylation has been demonstrated to occur both in DNA and the histone H3 lysine in human cells (Kawasaki and Taira, 2004). Such RNA has also been implicated in aspects of heterochromatin (Matzke and Matzke, 2000).

There have been some reports of the restoration of regeneration in ‘old’ cultures previously considered to be morphogenetically incompetent. A 17-year old cell line of tobacco, which had lost its ability to regenerate plants for 8 years, was re-induced to give rise to shoots (and hence plantlets) by a series of subcultures on a shoot-inducing medium (Rice et al., 1979). At each subculture sectors of the callus which were greener and more compact were selected for transfer. During the third subculture some cultures formed abnormal leaf-like structures and after further rounds of selection, normal shoots were eventually obtained. Traynor and Flashman (1981) obtained shoot formation in tobacco callus lines, which had been maintained for 3-17 years on various media by subculture on a medium containing low levels of IAA (e.g., 0.05 mg/l) and high (15-25 mg/l) concentrations of the cytokinin 2-iP.

Although media alterations did not restore the morphogenetic capacity of ‘old’ Solanum laciniatum callus, Chandler et al. (1982) noticed that whereas large explants from young cultures initiated shoots and small ones did not, the reverse was true of old cultures. Shoot formation was also initiated much more slowly in cultures of old tissue. The authors suggested that these observations were consistent with the gradual accumulation of an inhibitor of regeneration in the tissues. In other circumstances it is possible to conjecture on the absence of a promoter being responsible for the failure of regeneration. Sometimes shoot regeneration from primary callus only occurs when the original explant is still attached (e.g. from Chrysanthemum leaves - Khalid et al., 1989). This implies a strong possibility of the need for either adjacent vascular tissue elements to be present in the explant or the presence of cells which already carry the activated programme for vascular tissue formation and can ready form vascular elements in vitro (Rana and Gahan, 1982). Thus, in the case of the data of Chandler et al. (1982), in younger explants, substances diffusing from vascular tissue, but which are not present in the cells of the older vascular tissue, could aid in the shoot initiation process.

8.6.2. Altered morphogenetic potential. Plant cells may not only show a gradual loss of regenerative capacity the longer they are cultured, but also an altered morphogenetic potential. There are many reports in the literature of, for example, altered sensitivity to applied growth substances for shoot bud initiation, or tissues forming only roots where previously both shoot and roots had been differentiated. These events could also be explained in terms of a new epigenetic gene expression and/or an altered pattern of endogenous hormone synthesis, although an explanation based on genuine genetic change is usually preferred (see Volume 2).
9. THE NATURE OF AN EXPLANT

The manner in which explant derivation can influence growth and morphogenetic potential has been partly covered in the preceding paragraphs where it will be seen that variation in competence or regenerative capacity can be found between explants from different organs and also between tissues within the same organ. The highest rate of micropropagation will often depend not only on the selection of the most suitable explant, but also on the discovery of the correct combination of growth regulators, and/or the best nutritional composition of the medium (Mathews, 1987) for that organ or tissue. The results obtained from any one type of explant can vary between even closely related genotypes. In wheat, only embryo axis calli of the cultivar ‘Buch Napost’ produced adventitious shoots, but they could be obtained from embryo axis and plumule calli in the hybrid cultivar ‘H81199’ (Elena and Ginzo, 1988).

For meristem, shoot, or node culture, there is usually only a limited range of explants which can be used. Survival and growth of shoot tips from the apex of growing shoots are generally better than those of lateral buds, although the latter can frequently be employed satisfactorily. In some plants (e.g. Eucalyptus), a node bearing a bud is a more reliable initial explant for shoot cultures than a dissected shoot apex.

Explants from hairy organs are usually difficult to decontaminate. This was the case with hairy softwood explants of Leucospermum (Proteaceae), which also failed to grow, probably because the prominent indumentum caused explants to be perpetually covered by a layer of liquid (Ben-Jaacov and Jacobs, 1986).

9.1. TYPE AND POSITION

9.1.1. Explants for adventitious shoot regeneration

Choice of the correct explant is important when propagation is to be based on direct or indirect shoot initiation. Although in some species, explants from many organs are capable of producing adventitious shoots, it is usually found that those excised from different organs or from different tissues within an organ, vary strongly in morphogenetic capacity. Thus in Brassica carinata, 86% of cotyledon explants produced shoots, 74% of hypocotyl segments, but only 26% of root segments (Jaiswal et al., 1987).

In such circumstances, it would be necessary, for efficient micropropagation, to select the type which had the highest capacity for regeneration. However, in some plants the availability of competent tissues can be limited, so that there is little choice. One of the best examples is that of direct or indirect embryogenesis, where ovules, nucellus tissue, nucellar embryos, zygotic embryos or parts of young seedlings, or very young leaves, commonly provide the best explants for obtaining somatic embryos or embryogenic callus.

In Jasminium, where explants show a remarkable capacity to produce callus in vitro, Khoder et al. (1979) obtained callus cultures from the shoot apex, petals, anthers, stem internodes, and flower peduncles, but shoot regeneration was only obtained from shoot apex callus. Callus derived from seedlings and inflorescence explants of various Cymbopogon species had a higher morphogenetic capacity than that arising from seeds, culms, roots or rhizomes (Jagadish Chandra and Sreenath, 1982). Different regenerative capacities are often found in mature leaf tissues. To obtain callus formation and/or organogenesis, it is frequently beneficial to include a portion of midrib or leaf vein in pieces of leaf lamina used as explants (Kato, 1974). In Armoracia rusticana, more direct shoot formation took place on leaf segments with part of a lateral vein, than on those which included part of the midrib (Grecka, 1987).

9.1.2. Accessory organs.

The presence of a leaf petiole on 1 cm node explants of Rosa hybrida inhibited shoot growth in vitro (Mederos and Rodriguez Enrquez, 1987), but the greatest potential for direct shoot regeneration from the basal portion of the ray florets of Chrysanthemum morifolium occurred when a pistil was still attached (Khalid et al., 1989). Explants taken from the base of the immature floral stems within tulip bulbs generally produced more adventitious shoots than segments bearing nodes (Taeb and Alderson, 1987). In these experiments an interaction was found between explant position and the time of year at which explants were placed into culture. Explants from the base or the first node of the stem produced less shoots when cut from stored bulbs during November to March, whereas production of shoots from the second node was enhanced during this period.
9.1.3. Topophysis

Strictly positional effects on regeneration (e.g. where similar buds from the top and bottom of a plant behave differently in vitro) are examples of topophysis (an effect of position upon the observed characteristics of a plant). In experiments with trees, positional effects are sometimes further divided into cyclophysis (differential effects exhibited by parts of the same age, but different position) and periphysis (distinctive characteristics shown by parts of the same age and position which have been subjected to different physical exposure) (Oleson, 1978; Pierik, 1987).

9.1.4. Growth regulator requirements

Explants of different origin react to growth regulators in distinct ways and, as with choice of explant, this is particularly obvious in the formation of adventitious shoots. In some species, one type of explant may respond to a particular growth regulator treatment while another does not; in others the time taken to respond may vary. The proximal halves of the leaf lamina of Citrus mitis developed adventitious buds in 3 weeks when cultured with 2 mg/l BA, but the distal halves of the same leaves only regenerated shoots after at least 10 weeks in culture (Sim et al., 1989).

The optimum dosage of growth regulators to induce regeneration often varies according to the size and type of explant from a single plant. In Brassica carinata (Jaiswal et al., 1987), the greatest number of adventitious shoots was obtained by adding to MS medium 5.0 µM BA for cotyledon explants, 0.5 µM BA for hypocotyl explants, and 1.0 µM BA for root sections. The best medium for regenerating shoots from cotyledon-derived callus of Lotononis bainesii, contained 1 mg/l NAA and either 0.1 or 1 mg/l BA, while for leaf callus it was necessary to use 0.01 mg/l NAA and 0.1 mg/l BA (Bovo et al., 1986).

In some instances it may even be advantageous to vary the regulatory compounds used for different kinds of explant. Adventitious shoots were obtained in greatest numbers from petiole sections of Oxalis tuberosa using 3 mg/l BA and 3 mg/l NAA, but the best regeneration from internode sections occurred when they were grown on a medium with 3 mg/l zeatin plus 3 mg/l NAA (Khan et al., 1988).

9.1.5. Natural growth factors

It is very probable that variations in the levels of endogenous growth substances are often responsible for either the success or failure of tissue cultures. Many of the influences of mother plant and explant origin discussed on previous pages, could be interpreted in this way. The hypothesis seems particularly relevant to the varying morphogenetic potential of explants of different origins, or those from mother plants in different stages of growth, especially where a morphogenetic gradient can be demonstrated.

Seedling cotyledons can be a source of growth factors (Kamisaka and Shibata, 1977) and in many species, explants from the epicotyl or hypocotyl of seedlings have a high morphogenetic potential. Is this because these tissues are especially juvenile, or because the cotyledons are a source of a diffusible growth promoting substance? The possibility that the latter might be the true explanation is well demonstrated by the potential of epicotyl or root sections of Citrus sinensis ‘Valencia’ seedlings to produce buds. As is shown in Fig. 10.11, this decreased the further the explants were from the cotyledon (Burger and Hackett, 1986).

9.1.6. Size

There is frequently an optimum size for explants used to initiate tissue cultures. Very small explants, whether they are shoot (or meristem) tips, fragments of whole plant tissues, or pieces of callus, do not survive well in culture, but large explants may be difficult to decontaminate effectively or are less easily manipulated. A good example is provided by the work of Davies and Dale (1979) with leaf discs of Solanum lacinatum. Those smaller than 2 mm in diameter showed a high mortality rate, although if they survived they ultimately produced as many shoots as 5 mm disks. Disks 10 mm across showed the same basic type of growth pattern as 5 mm ones, but often developed convolutions and thereby lost some contact with the medium. Shoot tip explants of apple with 4-6 leaves were less liable to vitrification than smaller ones with only two apical leaves (Standardi and Micheli, 1988).

9.1.7. Direct and indirect regeneration

Direct and indirect regeneration on explants also frequently depends on explant size. In Brassica oleracea small disks of vars. frutcosa and acephela showed the greatest increase in area and fresh weight, but the lowest frequency of root production (Dunwell, 1981b); and 7 mm disks of var. italica leaves produced 10 times more shoots per disk than 4 mm ones (Lazzeri and Dunwell, 1986). Similarly, as stem internode sections of Brassica monnieri were increased in length from 1 to 4 mm, a greater proportion of them formed shoot buds, and the
number of shoots per explant increased. The efficiency of shoot production (i.e. the number of shoots formed per mm of internode) was however inversely proportional to explant length, except that those smaller than 1 mm failed to show any organ formation (Thakur and Ganapathy, 1978). The same situation was found in Hyacinthus, where the number of bulblets per bulb scale explant increased as explant length was enlarged from 1 cm to 3 cm, although the number of bulblets per unit length of explant was thereby decreased (Paek, 1982). Hypocotyl explants of Albizia richardiana which were 1 mm in length only produced a large amount of callus, whereas shoot buds were produced on 10 mm sections (Tomar and Gupta, 1988).

On cultured pieces of Convolvulus roots, where new shoots arose from pre-existing meristematic primordia, the number of regenerated shoots and roots per explant increased as length increased, but here the number of roots and shoots produced per unit length of explant was largely independent of explant size, except that very small segments (1.5 mm) were again incapable of organ formation (Bonnett and Torrey, 1965).

Root formation from Populus callus was found to depend on the size of the callus pieces subcultured (Winton, 1968). The greatest number of roots occurred on the largest callus pieces, grown from the biggest explants, of the oldest tissue sources. This indicates that root initiation was influenced by the degree of tissue differentiation when it is likely that xylem elements were already present in the callus and set a pattern for root differentiation.

By contrast the frequency of leaf (shoot) formation in Arabidopsis callus was highest when small callus pieces (75 mg) were used as inocula on an induction medium. A larger inoculum size (250 mg) favoured continued callus proliferation at the expense of regeneration (Negrutiu and Jacobs, 1978).

Fig. 10.11 The number of shoot buds formed on successive explants (1 cm-long) from the epicotyls and roots of Citrus seedlings [after Burger and Hackett, 1986].
10. METHOD OF CULTURE

10.1. INOCULATION DENSITY

The need for a minimum inoculation density to induce cell or tissue growth in vitro has been mentioned before. Besides affecting cell growth, inoculation density is occasionally reported to affect cell differentiation, regeneration or shoot proliferation.

10.2. EVIDENCE FOR CONDITIONING FACTORS

After incubating suspension cultures of wild carrot for 10 days, both the number of somatic embryos formed and the growth stage, which the embryos had reached, were found to depend on the amount of inoculum used to start the cultures. Increasing dilutions of the inoculum resulted in undifferentiated cell growth. Not only were less embryos formed than would have been predicted from the reduced inoculum size, but those present were progressively smaller in size and less well-developed (Halperin, 1967). Inoculum size was also found (by Verma and Durzan, 1980) to be an important factor in carrot embryogenesis, and Hari (1980) showed that cells do not reach their full embryonic potential at either low or high densities. It was concluded that cells produced an active metabolite (present in conditioned media) essential for complete embryogenesis. This is further confirmed by experiments showing that too low a carrot cell concentration (less than 10^4 cells) resulted in cell death by a programmed cell death pathway, though the addition of a conditioned medium allowed the cells to remain alive (McCabe et al., 1997). The nature of the factors involved is not clear. However, the fact that cells release newly synthesised DNA into the medium may be significant - such DNA appears to freely enter cells where it can be expressed (Gahan, 2004). It has been proposed that this DNA can signal between cells (Adams et al., 1997) and so may be an important factor in the culture process, being in too small an amount to have an impact when the cell number is too low.

By culturing pieces of embryogenic Oryza sativa callus of different weights in a constant volume of medium, or pieces of constant weight in different volumes of medium, Raghava Ram and Nabors (1985) found that the optimum rate of plant regeneration occurred when the ratio of callus to medium was 6.5-7.5 mg ml$^{-1}$. Plant regeneration was considerably reduced and callus growth increased when larger amounts of callus were used: the tissue often died when smaller pieces of callus were explanted. These results were thought to be caused by the release of a conditioning factor into the medium.

An explant density effect was reported by Pierik and Steegmans (1972). When ten seedlings of a Cattleya orchid were inoculated into a single flask of liquid medium, they formed protocorms and plantlets, but no protocorms were produced when the inoculum was only two plants per flask. Similarly, lateral buds of asparagus on MS medium produced more shoots and roots when many were put into the same flask. The effect was thought to be due to a substance diffusing from the explants, because growth could be promoted in the same fashion at lower densities by addition of an auxin and cytokinin (Matsubara, 1973; Matsubara and Clore, 1974).

In culturing tuber disks of Helianthus tuberosus to study the formation of tracheids, Phillips and Dodds (1977) found by accident that the number of elements produced was greatly increased when the volume of medium per disk placed on filter paper was reduced to below 0.2 ml. Above this figure (e.g. 0.5 ml per disk) there was a sharp decrease. Similar results were found with explants of Pisum sativum (Rana and Gahan, 1982) when the cells converted to tracheids were greater at the base of the explants decreasing towards the top. The effect was not due to medium conditioning but appears to involve the need for a polarity of movement of components from the medium rather than a total immersion of the explant.

10.3. NUTRIENT SUPPLY

The smaller the size of an explant, or the number of explants on a given quantity of medium, the greater should be the availability of nutrients to the cultured tissues; but a high volume of medium per explant may not necessarily result in the best rate of propagation, for the condition is akin to inoculating suspension or callus cultures at low densities, and essential conditioning factors may become limiting. That conditioning factors can be important with whole plant explants is suggested by results of Dunwell (1981a): an interaction between medium composition and explant density was noted with Brassica oleracea leaf disk explants. When 5 disks were placed on a dish, glutamine increased growth on MS medium, whereas when there were 10 disks per dish, it reduced growth.
One result indicating that nutrient supply can be important is that of Chun et al. (1986). The accumulation of dry weight and the number of axillary shoots per explant in Stage II Populus shoot cultures was best when only one shoot was subcultured into each vessel, but the greatest number of shoots per vessel (i.e. the maximum rate of practical shoot multiplication), occurred when 2 or 3 shoots were explanted into each container. The effect was independent of the size of the container used, and as the amount of medium was constant throughout, Chun et al., concluded that competition for nutrients was able to limit growth and shoot proliferation.

10.4. EFFECTS OF POLARITY

10.4.1. The orientation of explants

Positions on entire or sectioned organs of plants are given relative to the crown (the junction of shoot and root). The morphologically uppermost surface of shoot or leaf explants is said to be distal; that of root explants proximal to this point. The lower side of leaves is said to be abaxial and the upper side adaxial (Fig. 10.10).

Polarity depends on cells having a capacity for the electrogenic exchange of hydrogen ions (H+) and potassium ions at the plasma membrane (plasmalemma). Auxin-promoted H+ efflux in basal cells probably sets up and maintains an electrical potential difference in tissues (positive at the apex, negative at the base), which maintains and reinforces auxin transport (Raven, 1979). Excision depolarises shoot and root tissue, but subsequent washing, ageing or incubation in an aqueous aerated medium restores the cell potential and allows re-polarization to take place, normally within 4-6 h in roots and within 12-16 h in pea epicotyl tissue (Hanson and Trewavas, 1982). Cultured explants usually show a marked polarity in cell proliferation and regeneration. This may be related to both the position and/or orientation which the organ or piece of tissue had on the intact plant, and also to its orientation within the culture vessel. Polarity of regeneration varies in different genotypes (even between varieties within a species) and can sometimes be reversed by growth regulator treatments.

10.4.2. Position on the mother plant

Polarity in stem and root sections. Stem and root pieces normally produce shoots from the morphologically uppermost cut end, and roots from the lower end. Segments of dandelion root, for example, show a very strong polarity (Bowes, 1976a). This is first apparent as a polarity in callus formation. At the distal end of a root segment the phloem proliferates markedly, producing a pronounced callus from which adventitious roots arise. There is much less callus formation at the proximal end of the explant where shoots arise adventitiously from superficial callus-derived meristems. Polarity of regeneration developed slowly in cultured Epilobium root segments: buds and roots were formed at first along the whole length of cuttings, but gradually bud initiation came to be localised towards the proximal ends, and root initiation towards the distal ends (Emery, 1955). When the hypocotyls of Capsicum seedlings were cut into 6 equal segments, shoots were only produced from apical sections, central sections produced mostly roots, while abundant callus growth occurred on basal segments (Fari and Czako, 1981). Segments of the inflorescence stalk of Gladiolus produce callus and roots at the basal end, followed by the formation of buds and cormlets at the distal end (Ziv et al., 1970).

Gradients in regeneration. It is usually found that when a complete organ is cut into pieces, the various segments differ in their morphogenetic capability. There is frequently a gradient in regeneration in progressive sections. For example, in Helianthus annuus, 5 mm sections from the middle of the hypocotyl have been found to be the best explants for obtaining callus capable of regenerating adventitious shoots (Greco et al., 1984). The morphogenetic capacity of sections of Citrus sinensis, epicotyls and roots has been mentioned previously (Fig. 10.11). The observed gradients were apparent on Murashige and Tucker (1969) medium containing 2 mg/l BA and 0.02 mg/l NAA; less shoots were formed on all sections, and the gradients were not apparent when the concentration of both regulators was 2 mg/l (Burger and Hackett, 1986).

Pedicel sections of the flowers of Lilium longiflorum were found by Liu and Burger (1986) to show a gradient in the formation of buds. The section taken from nearest the receptacle (the most distal section) formed the greatest number (nearly 5 times more than the next adjacent section), especially if it was placed upside down on the medium (see below).

Polarity in whole leaves and leaf pieces. Although in some species adventitious buds can be formed over the entire surface of detached leaves, shoots and roots more usually arise at the base of leaves or leaf fragments, i.e. at the lower proximal end (i.e. that nearer the stem - see Fig. 10.10). This
polarity in the capacity of leaf tissues to regenerate adventitious shoots, can be seen in the relative number of shoot buds produced over the surface of an entire leaf, but is more commonly manifested when leaves are cut into sections. The regenerative capacity of leaf fragments cut from detached leaves is then usually greater in those from the proximal end than in those from the distal region. This may occur in some plants because the proximal region of the leaf contains more meristematic cells than distal regions. There was a higher rate of shoot regeneration in sections cut from the proximal half of Malus leaves (Welander, 1988) while in Echeveria elegans (Crassulaceae), shoots were formed only in the proximal region of entire detached leaves and at the proximal ends of half-leaf segments (Raju and Mann, 1971). In this plant, shoot formation from the base of distal leaf halves was much slower than that from proximal halves. Similarly, the proximal halves of the leaves of Citrus mitis seedlings formed direct adventitious shoots after 3½ weeks of culture on a medium containing 2 mg/l BA, but shoot regeneration from the distal halves was much slower and only started after 10 weeks of culture: only a few shoots had formed after 12 weeks (Sim et al., 1989).

Callus originating from cotyledon fragments proximal to embryo axes of Olea europea was most likely to regenerate shoots (Canas and Benbadis, 1988) and regeneration occurred on more of the explants (81%) cut from the basal region of Douglas fir cotyledons than on explants taken from the middle (69%) or distal parts (52%) and grown under equivalent conditions (Cheng, 1976, 1977). However, in Heloniopsis orientalis (Liliaceae), shoot buds are formed more frequently from the distal parts (see Fig. 10.10) of mature leaves than from proximal segments (Kato, 1974).

A greater number of protocorm-like bodies were produced from explants of proximal leaf tissue in Phalaenopsis orchids, than from distal explants (Tanaka et al., 1975). Sections cut from the inner part of head lettuce leaves tended to produce callus and only a few shoots, while those from the periphery of leaves all gave rise to shoots (Koevary et al., 1978).

Differences between leaf surfaces. Some plants are able to produce callus or to regenerate organs from either leaf surface, but from the Mexican Snowball plant, Raju and Mann (1970) obtained shoots only on the adaxial surface of explants. In Phalaenopsis and Vanda orchids, protocorms were formed from primordia developed on the adaxial surfaces of either small leaf fragments or whole immature leaves (Tanaka et al., 1975). Contrary to this, regenerative callus only arose from the lower (abaxial) epidermis of Bryophyllum daigremontianum, and other leaf tissues never produced buds under the same culture conditions (Bigot, 1976). The abaxial surface of Ipomoea batatas leaves formed more embryogenic callus than the adaxial surface (Liu and Cantliffe, 1984). The leaf surface from which adventitious shoots may arise is usually genetically determined. Yanagawa and Sakanishi (1980) showed that regenerative capacity was high on the adaxial surface of bulb scale explants from plants in the Liliaceae, and on the abaxial surface of Amaryllidaceae. Shoot regeneration therefore occurs most frequently on the side of the scale in which the vascular bundles are sited, indicating that the bundles may provide cell division stimuli.

Explants taken from the bulb scales of bulbous plants regenerate adventitious shoots and bulblets more freely if cut from the basal (proximal) part of the bulb scale rather than from the distal region (Hackett, 1969). Adventitious shoot formation is always much higher if some part of the basal plate of the bulb is included with the scale explant. Lilium rubellum can be propagated from bulblets formed directly on leaf segments. Explants derived from the base of the leaf had a higher regenerative capacity than those taken from the leaf apex. This may be due, in part, to the fact that the cells at the base of the leaf are the youngest. In this plant, leaves from the upper part of the stem produced bulblets more readily than those from the base. The capacity of leaves to form bulblets decreased with the approach of flowering and at, or shortly after flowering, it disappeared completely (Niimi and Onozawa, 1979).

10.4.3. Growth regulators and polarity

Natural polarity of regenerative events is normally supposed to be due to the movement of growth substances within plant tissues, particularly the polar (i.e. from the shoot apex towards the root tip) transport of IAA auxin (see Chapters 5 and 8). Thus IAA movement is naturally basipetal in the stem and acropetal in roots. These patterns may not be apparent in small tissue sections, which would explain why polarity of organogenesis is not usually found in very small explants, but tends to increase as explant size is increased (Thakur and Ganapathi, 1978). The addition of auxin and cytokinin to culture media may reinforce the normally observed polarity
of explants, induce regeneration from unresponsive parts of organs, or lead to the disappearance or reversal of polar trends through auxin accumulation at the basal end.

A reversal of polarity was instanced by Cutter (1962). *Zamioculcas zamiifolia* leaves or leaf pieces produced tuberous swellings from their proximal ends from which roots and one or more shoot buds arose. Regeneration could also be induced from a distal cut surface if it was spot-treated with a concentrated NAA solution (186 mg/l). Loss of polarity following the application of growth regulators has been instanced in cauliflower, rape and *Begonia*. On media without growth regulators, cauliflower petiole explants produced roots and shoots at their proximal pole, but this polarity was cancelled if 1.9 mg/l NAA was added to the medium, when numerous roots were formed all over the explant. Shoots formed all over the explant when 2.3 mg/l BA was administered instead (Margara, 1969).

Shoot formation occurred at the morphological base of rape flower stalks placed on media containing relatively low concentrations of auxin and cytokinin, but this polarity was not apparent when the concentration of growth regulators was increased (Margara and Leydecker, 1978). Cultured without growth regulators, disks cut from the leaves of *Begonia rex* regenerated a root at the base of the longest vein, but the presence of 5 mg/l kinetin abolished the polarity of organogenesis. Adventitious shoots then arose over the whole area of both sides of the leaf (Schraudolf and Reinert, 1959). Auxin and cytokinin became essential additions to Linsmaier and Skoog (1965) medium to produce bulblet, callus and root formation from explants cut from the distal (and normally non-regenerative) part of *Lilium longiflorum* bulb scales (Dinnis and Ascher, 1976). Legrand (1972) noticed that the polarity of shoot regeneration from *Endiva* leaf fragments was progressively reversed, the longer they were cultured in darkness.

Interactions between growth substances and the normal polarity of explants can be complex. For instance, in the work of Bigot *et al.* (1977), sections taken from tomato hypocotyls tended to have a greater capacity to produce shoots the nearer the root they were taken. The region of the hypocotyl to show maximum regenerative ability, varied according to the variety of plant and according to the growth regulators in the medium. There was a greater difference in the regenerative ability of distal and proximal ends when 2.1 mg/l IAA and 1.0 mg/l 2-iP were used together, than when 1 mg/l 2-iP was used alone. Zimmerman *et al.* (1988) found that more hyperhydric plants of *Petunia* were obtained from distal nodal segments of normal plants than from proximal segments.

A morphactin [n-butyl-9-hydroxyfluorene-9-carboxylic acid, Chapter 5 (16)] added to the medium at a concentration of 3.5 mM, caused the roots of *Heloniopsis* plantlets to swell and produce semi-organised buds at their extremities (Kato, 1976). When excised leaves were exposed to the compound, shoot buds were initiated over the entire surface, rather than in a polarised fashion (Kato, 1978). These results were thought to be consistent with the known ability of morphactins to bring about a redistribution of natural growth substances. Nevertheless, the major impact on polarity appears to be the manner of the accumulation of auxin. This will be further influenced by the source of the material which is being induced to either shoot or root (Marks, 1996; Marks and Simpson, 2000).

10.5. THE POSITIONING OF EXPLANTS IN VITRO

Growth or regeneration from explants can be influenced by the way that the explant is placed into or upon the medium. The effects noted may sometimes be due entirely to polarity; on other occasions they can be attributable to the effect of positioning on the availability of nutrients and growth regulators to those parts of the explant which are competent.

10.5.1. Embryo explants.

The supply of nutritional factors is often of critical importance when excised embryos are cultured. For instance, rye embryos all germinated precociously when placed by Dunwell and Cornish (1980) with their scutellum on the medium, but only 35% did so if the embryonic axis was in contact with it. Embryo explants of *Nuytsia* (a parasitic plant) developed as normal seedlings on a solidified White’s medium if placed vertically with the hypocotyl partially embedded, but the cotyledons callused if they touched the agar (Nag and Johri, 1976). Embryos of pine and Douglas fir initiated adventitious buds much more freely and rapidly if cultured in an inverted position, with their cotyledonary ends in the medium, rather than their radical ends (Kadkade and Jopson, 1977). A greater surface of the explant is then in contact with the medium (Aitken-Christie *et al.*, 1985).
10.5.2. Leaf explants

Positioning can be particularly important with leaf explants. Leaf segments of *Gastaria* and *Haworthia* produced more somatic embryos when prone on agar than when placed upright (Beyl and Sharma, 1983). Discs cut from young leaves of the strawberry cultivar ‘Redcoat’, produced more adventitious shoots when their adaxial surface was kept in contact with the medium than when placed the other way up (Nehra et al., 1988). Similar results were obtained with segments of *Malus domestica* and *Malus pumila* leaves. Welander (1988) suggested that one explanation, besides polarity, for this observation might be that the adaxial surface is the most responsive to nutrients being the last tissue of the leaf to cease growing and dividing. The use of cotyledons and first leaves of *Solanum aviculare* (Gahan et al., 1994) also indicated a preference for the contact of the adaxial surface with the medium for the induction of xylogenesis, rooting and shooting, as well as somatic embryogenesis (Alizadeh and Mantell, 1994). Moreover it was possible to demonstrate the pathway of the movement of the growth regulators through the surface to the centre of the explant (Gahan et al., 1994). However, the best multiple shoot formation in response to BA, adventitious root formation in response to the auxins NAA, IAA and IBA, and callus formation in response to 2,4-D and NAA, occurred when the abaxial surface of leaf sections of a *Populus* hybrid was in contact with the medium (Park and Son, 1988). Similarly somatic embryos are formed directly from cells of the abaxial epidermis of the cotyledons dissected from immature soybean seeds. HIPHER et al. (1988) suggested that the embryogenic potential of this tissue was associated with its role as a nutrient transfer tissue.

10.5.3. Bulb scale explants.

Bulb scale explants of *Lilium longiflorum* produced far more bulblets per section when the abaxial (convex) surface was touching the medium than when their adaxial surface was in contact (Hackett, 1969). This result has been confirmed by Leshem et al. (1982) who obtained many more and larger bulbs, more roots and less callus, when the abaxial (rather than the adaxial) surface of scale segment was downwards on the medium. In all cases, bulblets developed only on the adaxial side of the scale. A similar result was described by Niederwieser and Vcelar (1990) with leaf sections of *Lachenalia* (Liliaceae) hybrids. Although adventitious buds were produced on the adaxial surface, regardless of the orientation of the explants, the best results occurred when the abaxial surface was in contact with the medium, because if the explants were the other way up, buds grew to form a hard callus-like tissue or were thickened and abnormal.

10.5.4. Stem and root explants

The organogenesis obtained on root or stem sections is also liable to differ according to whether the explants are normally orientated or inverted on the medium. Shoots regenerated from the upper (proximal) surface when dandelion root sections were placed distal side (i.e. the side that would normally be nearest to the root tip) downwards on the medium. Reversed, with the proximal side in contact with the agar, they produced a mound of callus from the upper (distal) surface (Booth and Satchuthananthavale, 1974). Adventitious roots formed from *Actinidia deliciosa* callus formed shoots at their proximal end if they were detached from the callus and inserted vertically with the root tip in the agar medium, but produced shoots along much of their length from the proximal end if placed horizontally (Revilla and Power, 1988).

When the basal ends of white spruce hypocotyl sections were placed in the medium, almost all the explants produced scale-like organs which could be subcultured to give buds and shoots, but only roots were formed on 50% of the sections if they were cultured with their apical ends downwards (Campbell and Durzan, 1978).

Discs cut from the inflorescence stalk of gladiolus developed callus and root primordia from their basal ends when that end was placed on the medium, but if explants were cultured in an inverted position, regeneration was more rapid. Roots were again formed at the proximal end (now uppermost), and one or two buds developed at the distal end (in the medium). Subsequent leaf growth turned the explant over. Subcultured correctly orientated on the same medium, explants eventually developed clusters of cormlets and one or two shoots (Ziv et al., 1970). It was similarly advantageous to invert scape sections of asparagus (Takatorii et al., 1968) and Narcissus (Seabrook et al., 1976) to obtain any morphogenetic response.

It has been suggested that inversion may overcome the polar transport of natural auxin, but this was not the case with tulip. Stalk explants elongated only when they were inverted on a medium containing IAA, and growth was due to basipetal (polar) auxin movement (Gibrzysewska and Saniewski, 1983). Pierik and Steegmans (1975)
thought that the strong promotion of rooting from the proximal end of *Rhododendron* stem segments, when they were inverted on a solidified medium, was probably due to a better oxygen supply.

Explant position is not invariably important. Stem sections of olive produced callus and roots from the end immersed in the medium, regardless of whether it was proximal or distal (Scaramuzzzi and de Gaetano, 1974); in *Echeveria elegans*, leaf fragments produced shoots always at the proximal cut end even if they were inverted (Raju and Mann, 1971); and direct shoot regeneration occurred to the same extent on petiole segments of *Saintpaulia*, regardless of their orientation (Harney and Knap, 1979).

10.5.5. *Callus explants*

Polarity in a callus explant is assumed to be from the medium vertically to the apex of the explant. However, if the callus contains vascular elements e.g. tracheids, procambial cells, these cells will influence the directions in which polarity will occur. It is possible that there are a number of mini-polarities formed as groups of cells become competent for organogenesis so imposing particular polarities on specific parts of the callus.

11. COMPETITION BETWEEN MERISTEMS

The first organogenetic meristems formed *in vitro* can inhibit the development of further structures of the same kind. New shoot meristems appear equidistantly, on the surface of the explants composed of thin cell layers (Tran Thanh Van *et al.*, 1974), suggesting that immediately a meristem is formed, it sends out a message inhibiting the initiation of another meristem in its near vicinity. That the inhibitor could be auxin, is suggested by experiments of Cassells (1979). The inhibiting effect of meristems on further regeneration and on the development of pre-formed organs, increases as meristems enlarge. Removing shootlets as they are formed may therefore facilitate continuous adventitious shoot production from explants or callus tissue, whereas if the tissue is left undisturbed, the total number of shoots may be small. Von Arnold and Eriksson (1978) found that out of 10-30 buds formed on Norway spruce embryo explants, only about 3 would elongate unless those which had reached 3-5 mm high were excised. The large number of shoots formed on *Pinus radiata* cultures were mutually inhibitory to further growth unless the nodular meristematic tissue from which the shoots had been produced was subdivided and the pieces moved to fresh medium (Aitkin *et al.*, 1981).

Competition can also occur between somatic embryos. Although many embryos were formed from scutellar callus of *Pennisetum americanum*, only 2-3 plantlets were produced from each explant if it was transferred to a 2,4-D-free medium in one piece. If the callus was divided into 4-5 pieces, one plant was generally produced from each segment (Vasil and Vasil, 1981). Gharyal and Maheshwari (1981) showed that direct embryoid formation would persist on *Albizia lebbek* hypocotyl explants, providing that recognisable embryos were continually removed, as they appeared, and were then cultured separately.

12. THE CONTROL OF DEVELOPMENT

The methods whereby epigenetic messages are unfolded are not fully understood (Wolff and Matzke, 1999). Although large amounts of DNA may be present in the plant genome, much of it is not required for the organisation of the organism. This is very clear from the human genome in which only some 35,000 genes are involved in the organisation and functioning of man (Wolfsberg *et al.*, 2001; Malakoff, 2001). Thus, of the large variations of DNA content seen in plants (Bennett and Smith, 1976) very little is actually needed for the structuring and functioning of the plant. In *Arabidopsis thaliana* there are only a total of 10x10^7 base pairs, which compares with 2x10^7 in yeast. Normally, the DNA which is not involved in active gene transcription is present at interphase as clumps of heterochromatin whilst the transcribed DNA is present as euchromatin. The regulation of the DNA into readily transcribed and non-transcribed regions is affected by acetylation of the histones structuring the chromatin. Equally, the way in which the histones are acetylated will aid in the replication of the DNA (Voet *et al.*, 1999). The availability of genes for transcription will also depend upon the methylation of the cytosine residues which will result in the non-transcription of the DNA (Swartz, 1991; Voet *et al.*, 1999). Gene transcription arises when a specific general transcription factor or binding protein attaches to the
relevant gene site together with a pre-initiation protein complex at the TATA box site which will recruit the RNA polymerase necessary for the transcription to occur. However, this is further complicated by the association of either an enhancer protein or a silencer protein at a distance from the gene. The enhancer will activate the process whilst a silencer will suppress the gene activity.

Studies on the flowering process have given a lead as to what sort of genes need be researched when looking for those related to the control of root and shoot formation. Three classes of highly conserved, homeotic genes have been identified as controlling the production of the floral whorl in Arabidopsis thaliana and Antirrhium. (Coen, 1991; Honma and Goto, 2001). These highly conserved gene classes are not comparable to the homeoboxes of e.g. Drosophila, but to another family of regulatory genes called the MADS family which are found in both yeasts and vertebrates and which control the development of blocks of tissue. Such gene families are likely to be activated in plants by either light (Briggs and Liscum, 1997; Bowler, 1997; Smith, 2000) or growth regulators (Rogler and Dahmus, 1974; Domoney and Timmins, 1980; Davies and Hartmann, 1988; Estruch et al., 1993; Hall and Smith, 1997; Thomas et al., 1997). Most of the components of the main cell signalling systems found in animal cells have been found in plants i.e. heterotrimeric G-proteins (Hooley 1998; Jones, 1998; Plakidou-Dymock et al., 1998), monomeric G-proteins (Moshkov et al., 2003), cyclic nucleotides (Yamazaki, 1997; Trewavas, 1997), MAP kinases (Novikova et al., 2000) and phospholipases (Roberts, 1997; Macdonald, 1997; Hooley, 1998) (see also Chapter 7). Recently, it has been demonstrated in A. thaliana that stem cell fate in the shoot apical meristem is controlled by a regulatory network including the CLAVATA (CLV) ligand system and the homeodomain protein WUSCHEL (WUS) (Brand et al., 2000). A mechanistic link between the action of cytokinin and the CLV/WUS network (Liebfried et al., 2005) has been demonstrated when it would appear that ARABIDOPSIS RESPONSE REGULATOR genes might negatively influence meristem size. Their repression by WUS could be important for normal meristem function.

REFERENCES

BARG R. & UMIEL N. 1977 Effects of sugar concentration of growth, greenery and shoot formation in callus cultures of four genetic lines of tobacco. Z. Pflanzenphysiol. 81, 161-166.

Adventitious Regeneration

ESPINASSE A. & LAY C. 1989 Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes. Crop Sci. 29, 201-205.

-everett n.p., wach m.j. & asworth d.j. 1985 Biochemical markers of embryogenesis in tissue cultures of the maize inbred b73. plant sci. 41, 133-140.

HICKS G.S. 1980 Patterns of organ development in plant tissue culture and the problem of organ determination. Bot. Rev. 46, 1-23

HONMA T. & GOTO K. 2001 Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529.

Chapter 11
Stock Plant Physiological Factors Affecting Growth and Morphogenesis

1. INTRODUCTION

Most in vitro studies focus on manipulating the medium. By varying the nutrient salts (see Chapter 3), gelling agents (Chapters 3 and 4), and especially plant growth regulators (Chapters 5-7), it has been possible to grow callus, stimulate axillary shoot proliferation and rooting, and induce shoot organogenesis (Chapter 10) and somatic embryogenesis (see Chapters 8 and 9). However, in vitro growth and morphogenesis are also governed by properties of the explant. It is well known that different genotypes will often not respond in the same way when cultured on the same medium. This has required countless empirical studies on medium optimization for different species or even cultivars of the same species. The effects of the plant genotype on in vitro growth and morphogenesis were described in the previous chapter.

Within a plant during its growth and development, different parts of the genetic code are expressed differentially in different cells (see Chapter 8). This results in distinct patterns of plant growth and morphogenesis in vitro and extra vitrum. Such phenotypic expression is the result of an interaction between the genotype and the environment. We choose the genotype by selecting the species and/or cultivar. We manipulate the gene expression by changing the environment to which the explant or the stock plant is exposed. Other factors also influence gene expression, including the tissue or organ selected for explant excision, season or growing conditions of the stock plant and the ontogeny of the stock plant.

When different genes are “turned on” or “turned off” in a cell or even a few cells, it can have profound influences on plant growth and development and phase change (Hackett and Murray, 1997; Poethig, 2003). This differential expression is referred to as epigenetic variation. Control of epigenetic variation is the focus of plant propagation (Hartmann et al., 2002) and tissue culture.

2. EPIGENETIC EXPRESSION AND CELL DETERMINATION

Plants cells have an amazing ability to respond to a signal, which almost invariably is a plant growth substance. When the cells can respond, they can change from a previously determined developmental pathway. For example, a leaf cell can change so that it will begin to divide and a root or shoot will form.

In tissue culture and plant propagation, the ratio of cytokinin : auxin is important (Chapter 6). When cytokinin is in excess, adventitious shoots will form, when auxin is in excess, adventitious roots or somatic embryos will form, and when there are moderate to high levels of both, callus will develop. This is the normal wound healing process in plants. Many plant species have the remarkable ability to replace wounded or lost organs. Following wounding, the endogenous hormone levels change and callus formation and organogenesis are often the result. Similarly, with some species, because of high auxin levels associated with sexual fertilization in the seed, adjacent somatic cells change and produce embryos through the process of apomixis. In plant propagation and plant tissue culture, we exploit this healing process and the apomictic ability of cells.

Different cells within a tissue will not all respond the same way to a change in the cytokinin : auxin ratio. Understanding what distinguishes certain cells from others in their ability to respond to the plant growth substance is important. As our knowledge of the molecular biology of cells increases we may understand why there are these cellular differences. With such knowledge, we may gain the ability to regenerate recalcitrant genotypes, such as adult forms of many plants.

Christianson (1987) and Christianson and Warnick (1983, 1988) stated that there are competent cells in a plant or explant (see Chapter 10). These are the cells that are capable of recognizing the plant growth regulator signal and changing, or becoming determined. When the plant growth regulator signal is removed, the determined cells will continue to respond. They will dedifferentiate (become meristematic again), and their daughter cells will differentiate into the new shoot, root, or somatic embryo.

Not all cells in a tissue are competent. Exactly what makes one cell competent to perceive a plant...
growth regulator signal and its adjacent cell not to be competent is not well understood. It is known that applied plant growth regulators elicit specific mRNA molecules (Christianson and Warnick, 1988). This is evidence of specific genes being expressed in response to the exogenous plant growth substances. However, this specific gene expression is more clearly related to changes in determined cells than to what makes cells competent.

A problem with trying to understand what makes a cell competent is that it is difficult to ascertain that a specific cell is competent until after it responds to the plant growth substances and becomes determined. Once determined, the cell changes and its gene expression can be studied. However, it is difficult to know which cell is competent and which one is not before the cell becomes determined.

It is likely that epigenetic expression is the reason that a cell is competent. Perhaps there is a gene or genes expressed for the receptor molecule of the elicitor plant growth regulator, which would allow that competent cell to recognize the plant growth substance. However, there are other possibilities that could lead to competence, such as a expression of an important gene in the signal transduction pathway in a competent cell.

The predetermination of cells and tissues can often be changed in culture by cell differentiation and cell division, leading to the direct formation of organogenic or embryogenic meristems or callus. But if the tissue is not competent to undergo these changes, or the growth regulators in the medium are not suitable, previously predicated developmental pathways may not be interrupted. Some aspects of determination may nevertheless survive in newly-established cultures and can occasionally persist for many callus transfers.

2.1. PHASES OF GROWTH

The sequence of stages through which a higher plant has passed in its development from a fertilized egg to an adult organism, is known as its ontology or ontogenesis.

In the juvenile phase, a young seedling plant displays one or more distinctive characteristics of both a morphological and physiological nature. These distinguish a juvenile plant from an adult. The juvenile phenotype gradually disappears during subsequent growth, and under natural conditions it is replaced by the adult (mature) phase in those parts of the plant in which maturation has occurred. Maturation occurs when the apical meristems become capable of changing from vegetative to flowering meristems under “normal” inductive conditions. In some plants, a transitional phase of development can be distinguished between the juvenile and adult phases during which the potential to flower gradually increases.

When a plant is induced to flower, the shoot apical meristem changes from forming vegetative structures to forming reproductive organs (Hackett and Murray, 1997). Typically, it is an external environmental stimulus, such as day length or chilling that will trigger this change. Under such a normal environmental stimulus the apical meristem of a juvenile plant is not capable of perceiving or responding to the signal and remains vegetative. Under certain circumstances, juvenile plants can be induced to initiate flowers but will revert to the non-flowering juvenile state for several years (Hackett, 1987). However, it is often difficult to devise methods to promote flowering that will not also advance maturation (Hackett, 1985). In many conifers, flowering can be induced on juvenile shoots by gibberellins or auxin/gibberellin combinations (Pharis and King, 1985; Pharis and Kuo, 1977; Pharis et al., 1976, 1980; Ross et al., 1981).

In general, the duration of the juvenile phase is proportional to the potential ultimate size of the plant, being shortest in annual herbaceous species and progressively longer and more noticeable in perennial and woody plants. In trees it may sometimes persist for many years.

Phase change from juvenile to adult is an epigenetic change, in that there are phenotypical changes that are the result of changing gene expression, not mutation. When an adult plant is regenerated from an embryo (either zygotic or somatic), juvenile traits are again expressed. Gene expression for dihydroflavonol reductase (DFR) was studied in adult and juvenile leaf lamina tissue of English Ivy (Hackett and Murray, 1997). DFR activity was detected in juvenile leaves treated with sucrose and light, but not in mature phase discs. It was determined that the lack of DFR activity was because there was no accumulation of DFR mRNA because of a lack of transcription of the DFR gene in mature phase discs. Lack of expression of this gene was also reported for adult phase stem tissue. This gene was expressed in juvenile leaves and stems. The specific reason why the DFR locus was not transcribed was unknown. In Arabidopsis, both light and temperature independently regulate the floral promoter (FT) gene (Poethig, 2003). However, there
are other genes that also regulate temperature sensitivity of flowering time. These genes (FCA and FVE) act upstream from the FT gene and seem to be involved in phase change.

2.2. CHARACTERISTICS OF JUVENILE PLANTS

There are numerous substantive phenotypic traits associated with juvenility, but they vary considerably among species. Commonly, the leaves on young plants are of a different shape than those on mature parts and may be simple rather than compound (or occasionally the reverse); juvenile leaves may also have a special type of cuticle and be arranged with a distinct phyllotaxy. Compared to their adult counterparts, young plants may have a modified resistance to pests and diseases. Juvenility in woody plants is often manifested by prolonged vigorous shoot growth. With Citrus and Gleditsia triacanthos, juvenile forms are thorny, whereas adult forms lack the thorniness and with some tree species, such as those of Quercus and Fagus, juvenile forms and older, more juvenile parts of the trees, hold their senesced leaves throughout the winter.

2.2.1. Vegetative propagation

To the plant propagator, the most important attribute of juvenile shoots is their ability to provide cuttings that readily form adventitious roots or explants that respond and grow well in vitro. Cuttings taken from adult shoots of plants can be rooted, but the frequency of success is often low, especially with woody plants. Likewise, researchers have had great challenges when attempting to micropropagate adult forms of many woody species. The change from the juvenile to adult phase is the most serious constraint to rooting in shrubs and trees (Howard, 1990). Most of the difficulty experienced in rooting mature shoots seems to be caused by their altered physiology, but can also be related to greater contamination with microorganisms and viruses.

Hedera helix has been used widely to study juvenility because it has a distinctively different morphology between the juvenile and adult phases. Juvenile plants have a different growth habit, leaf shape, and an enhanced ability to form adventitious roots. When petioles from the juvenile form were excised and treated with auxin in vitro, cortical parenchyma cells adjacent to the vascular bundles divided and formed root primordia (Geneve et al., 1988). However, when petioles from adult leaves were treated in a similar manner, callus formed and some callus cells divided to form root primordia. The juvenile form had pre-existing competent cells that were able to respond to auxin and become determined to form roots. However, the adult form appeared to lack cells with pre-existing competence to form roots, but competence was acquired by some callus cells once they had been initiated.

Explants taken from mature shoots are frequently more liable than juvenile material to suffer necrosis, especially when surface disinfested and placed in culture (Hanus and Rohr, 1987). For example, shoot tip explant death can occur within a few hours for adult Juglans nigra whereas healthy growth was evident on seedling explants when both sources were compared in different vessels containing the same medium (Preece and Van Sambeek unpublished). It was only by changing the medium and culture conditions that adult J. nigra shoot cultures have been maintained for years (Pearson and Preece unpublished). However, adult origin J. nigra microshoots still cannot be rooted.

For tissue culture, juvenile explants are usually more readily established in vitro and grow and proliferate at a more rapid rate than adult material. This is particularly true with tree species where micropropagation of adult material is often difficult.

2.2.2. Plant propagation dilemma

It is well known that it is easier to propagate vegetatively, juvenile forms of plants than adult forms of plants. When breeding and selecting new, superior plants for clonal propagation, it is usually necessary to wait until the plant reaches maturity. This allows for evaluation of important features, such as ultimate form and size, flowering and fruiting characteristics, autumnal coloration, and other traits. At the point that the mature phenotype is known, the plant is an adult and often becomes difficult to propagate clonally. Libby and Hood (1976) showed that juvenility can be maintained by hedging radiata pine. They rooted cuttings of many juvenile selections and by allowing some individuals to grow to maturity for evaluation, other, hedged members of the same clone could be maintained as juvenile plants for propagation. This technique also has potential for micropropagation.

2.3. THE PROGRESSION OF PHASIC DEVELOPMENT

The juvenile or adult phase is expressed by many cells within a plant, but is particularly evident in the apical meristems from which new organs are initiated. The meristems of juvenile shoots are usually smaller than those on their mature
counterparts and are composed of cells with small nuclei. Meristems are thus determined to give rise to juvenile or adult organs or tissues in the same way that they can be programmed to give rise to shoots, roots or differentiated cells.

Both juvenile and adult phases of growth result from persistent and stable gene expression in the shoot meristems. As cells divide, the expression is transmitted to daughter cells, and continues when shoots are propagated from cuttings or grafting. It may then be gradually changed by environmental conditions or be retained for several years. The change of an apical meristem from a juvenile condition to one with the form and function of the adult phase (and vice versa), generally takes place progressively. Some features of the plant phenotype may change at a different pace than others. For example, although seedling trees of Douglas fir have not been found to flower until they are 20 years-old, 100% of cuttings from a 9 year-old tree could be rooted, but only 5% of those from trees aged 14-24 years (Black, 1972). For some characters, particularly the ability to flower, the switch from one phase to the other is more abrupt and the phenotypic characteristics of each phase quite distinct. In many Eucalyptus species, leaf shapes are distinct, either juvenile, intermediate, or adult (Durand-Cresswell et al., 1982).

When a plant is juvenile, it puts on juvenile growth. This becomes the oldest part of a plant as it ages (Fig. 11.1). These lower and older portions of the plant retain their juvenile characteristics. On a tree, this includes the trunk and the portion of the lower branches near the trunk. Some temperate tree species, such as Quercus (oak), Fagus (Beech), and some Acer species (maple) retain their leaves throughout the winter as a juvenile characteristic. Viewing mature specimens of these species during the winter and focusing on the portion still holding its leaves, allows visualization of the shape of the tree when it was young and juvenile. This older, but more juvenile portion of the plant is called the ‘cone of juvenility.’

It is not until a plant is sufficiently old and large that it goes through phase change and develops adult characteristics. These characteristics will manifest themselves on the newest growth. Therefore, the outside and higher portions of a mature tree are the most adult. There can be a transition region between the cone of juvenility and the adult portion of the plant that is represented by the new growth (Fig. 11.1).

Fishel et al., (2003) dissected the main stems of six 10-15 year-old, 7-9 m tall Quercus rubra (northern red oak) trees by cutting them at the base and then into 40 cm long sections, identified as to their original location on the tree. These stem segments were placed under intermittent mist and softwood shoots were forced, harvested and rooted. Both softwood shoot production and rootability of the shoots was greatest from the lowest segments and declined with increasing section height. This is consistent with a gradual gradient of maturation from the base (most juvenile) to the top (most adult). However, shoot production was consistent throughout Quercus bicolor (swamp white oak) stem segments, indicating species differences.

The juvenile form appears in new growth from seedlings and seems to be associated with the proximity of shoot apical meristems to the roots of the plant, and the presence of a normal unrestricted root system. As the physical distance between the shoot tips and the roots increases with growth, the juvenile condition of shoot meristems disappears. Nicotiana sylvestris plants do not flower if, each time the plants begin to initiate flowers, their shoot tips are removed and re-rooted (Dennin and McDaniel, 1985). Micropropagated conifers develop adult features early in their development (Mohammed and Vidaver, 1988). This may be because the plants have poorly developed root systems.

2.4. REJUVENATION

Once the adult phase has been reached in a plant, it is more or less stable (Hackett, 1987). This is problematic in both clonal macro- and micropropagation since adult propagules respond poorly.

In fruit trees, such as apple, repeated pruning (hedging) or severe annual pruning back to the ground level in winter can be successful in inducing the formation of rejuvenated shoots with an improved rooting ability. It is a drastic step to cut down a mature specimen plant to be able to produce juvenile shoots from the stump for propagation purposes. When non-flowering shoots with juvenile characteristics are formed on mature woody plants, they are termed juvenile reversion shoots.

Although shoots arising from latent buds (epicormic axillary or adventitious buds buried under the bark on woody species) on mature plants usually have a juvenile morphology, they generally give rise to plants that flower in a shorter time than seed-derived plants and so may not be completely juvenile.
The features of juvenility found on epicormic and basal shoots can be short-lived and liable to disappear quickly as the shoots elongate. The roots from which suckers arise seem to retain a juvenile state for a long period. New shoots with some juvenile characteristics often appear from swellings or outgrowths on the trunks or at the bases of a mature trees. Such swellings are known as spheroblasts (nodular growths), or lignotubers (swellings at the base of the stem which arise on the lower nodes of seedlings) (James, 1984; Fig. 11.1).

These structures have been used by propagators to produce shoots for vegetative propagation purposes for over one hundred years (Preece, 2003). These shoots do not always arise adventitiously, and may sometimes grow from buds formed during the early life of the tree and have remained suppressed and dormant. They can be induced to form on the lower part of trees by partial girdling, coppicing, or other damage to the plant.

![Fig. 11.1](image)

Fig. 11.1 Some typical juvenility patterns in a deciduous dicotyledonous tree, showing where juvenile shoots may be obtained.

2.5. NATURAL REVERSION

It has been proposed that flower formation is the stage at which juvenility is normally re-initiated (Meyer, 1984). A reversion to a juvenile state certainly seems to occur within the maternal tissues of the floral organs from which zygotic embryos are derived; it is fully apparent in zygotic embryos, but is not related to sexual fertilization, because apomictic embryos also give rise to juvenile seedlings [for example, plants derived from the nucellar embryos of *Citrus* are juvenile (Swingle, 1932 in Brink, 1962)]. An indication of the juvenile status of inflorescences, flowers and embryos, is that they have often regained an ability to form adventitious shoots and somatic embryos *in vitro*. Therefore floral organs and immature fruit are often selected as explants because they respond well *in vitro*, for example Jorgensen (1989) produced somatic embryos from callus from filaments collected from *Aesculus hippocastanum*.
(horsechestnut) trees up to 100 years old. Plantlets derived from these sources have juvenile characteristics.

There are exceptions to this. When rhododendron flower parts were placed in vitro, adventitious shoots formed (Shevade and Preece, 1993). Additionally, adventitious floral structures formed, which is a sign of maturation. Although adventitious shoots also formed from leaves (Preece and Imel; 1991, Preece et al., 1993), no adventitious floral structures formed from leaf explants. Therefore, the in vitro process does not always alter the epigenetic expression of maturation.

2.6. INDUCTION OF JUVENILITY

2.6.1. Forcing epicormic shoots

Softwood shoots can be forced to grow from large stem segments placed in controlled environments (George and Preece, 2004, Henry and Preece, 1997a, b; Ledbetter and Preece, 2003, Preece and Read, 2003, Preece et al., 2002, Van Sambeek et al., 1997a,b; Van Sambeek and Preece, 1999; Vieitez et al., 1994). Forcing is accomplished by cutting branch or main stem segments from woody plants 25 cm to >2 m long, laying horizontally in a suitable medium such as perlite for mist or vermiculite in the laboratory or greenhouse, then allowing latent, axillary, or adventitious buds to elongate. If the stem segments are excised from within the cone of juvenility, it is expected that the new, softwood shoots will have juvenile characteristics. This varies with species (Fishel et al., 2003). The best forcing environment tested has been under intermittent mist (Van Sambeek and Preece, 1999). However, if explants are to be excised for in vitro purposes, intermittent mist is not acceptable because it results in high microbial contamination. Rather, for in vitro use, irrigation must be such that water does not contact the new shoots. Then it is possible to establish explants aseptically (Van Sambeek et al., 1997a, 1997b; Vieitez et al., 1994).

Shoot forcing from large stem segments can allow for the excision of juvenile shoots from adult plants. This method does much less damage to a plant than cutting it down to the soil line to force new suckers with juvenile characteristics. Using large stem segments from within the cone of juvenility may have more potential than forcing softwood shoots from the more adult outside portions of a plant.

Another advantage of forcing shoots for propagation is that they can be rooted better for at least some species than cuttings from field-grown plants. For example, Fishel et al., (2003) reported that forced cuttings from lower stem segments of northern red oak rooted better than cuttings from field-grown stump sprouts or branch tip cuttings 1-4 m above the ground. Ledbetter and Preece (2003) reported that softwood shoots forced from large stem segments under intermittent mist produced more roots than softwood shoots from outdoor-grown Hydrangea quercifolia (oakleaf hydrangea). In both cases it may be that shoots that are produced under intermittent mist are more adapted to the misting environment than outdoor-grown cuttings.

2.6.2. Re-rooting and grafting

A partial juvenility or rejuvenation can sometimes be restored on mature shoots by rooting the apex as a cutting (Lee and Rao, 1986), especially if the rooting process is repeated several times (Dennin and McDaniel, 1985), i.e. a cutting is taken and after a short period of growth on its own roots, its apex is removed and re-rooted.

Shoots (and particularly isolated shoot apices) grafted onto juvenile rootstocks can also regain a juvenile status (Debergh and Maene, 1985), but again the process may have to be repeated several times (‘serial grafting’) to reinforce juvenile traits (Bonga and Von Aderkas, 1992, Fig. 11.2). The rejuvenation of adult shoots by grafting is stimulated by leaves on the juvenile rootstock, but inhibited by leaves on the adult scion (Hackett, 1976). Successful rejuvenation also depends on there being little mature wood on the scion (Stoutemeyer and Britt, 1961). In practice, therefore, single or serial micrografting is frequently used for rejuvenation using small shoot tips as scions (Franclet, 1987; Monteuuis et al., 1987; Pliego-Alfaro and Murashige 1987). Giovannelli and Giannini (1999) compared the performance of explants collected from adult Castanea sativa (chestnut) plants and from the fourth serial graft. Explants from the adult trees had poor shoot proliferation and 50% showed apical necrosis and death, whereas rejuvenated explants from the serial grafts proliferated well and the microshoots rooted better than microshoots from the adult explants.

2.7. ETIOLATION

The development of plants or plant parts in the absence of light is known as etiolation. This treatment may also improve the facility with which explants from adult material can be cultured in vitro. It has, for example, been found to be an effective treatment for preparing mature sweet chestnut shoots for culture (Ballester et al., 1989). In late May (early
summer), newly-grown, 10-15 cm long sweet chestnut shoots were stripped of leaves and (while still on the tree), wrapped in foil for 4 months. When shoot explants were taken from this material, not only was a high proportion established \textit{in vitro} (79% vs. 22% in the controls), but there was also a rapid rate of shoot proliferation. From these results, it was proposed that etiolation brings about physiological rejuvenation of adult shoots, because it has no beneficial effect on seedling material (Hansen and Lazarte, 1984; Bennett and Davies, 1986). It is most effective when applied to the new young shoots that arise from severely pruned plants.

2.8. HIGH TEMPERATURES

Above-normal temperatures have been found to promote the growth of juvenile shoots from adult plant material (Fisher, 1954; Hudson and Williams, 1955). Reversal to the juvenile phase was more pronounced in \textit{Hedera canariensis} if grafts of adult scions onto juvenile rootstocks were grown at 27°C, rather than at lower temperatures (Stoutemeyer and Britt, 1961). Providing bottom heat at 15°C above the ambient temperature, induced the formation of juvenile basal shoots in potted plants of \textit{Hamamelis japonica}, \textit{Magnolia soulangiana} and \textit{M. stellata} (Debergh and Maene, 1985). The shoots were sufficiently re-juvenated to furnish suitable explants for tissue cultures.

Fig. 11.2 Cascade grafting to induce rejuvenation. The drawing shows the use of the technique in a gymnosperm. The same method can be used for broad-leaved plants.

2.9. GROWTH REGULATOR TREATMENTS

Spraying (Abo El-Nil, 1982) or injecting adult shoots of some plants with cytokinins can induce a reversion to a semi-juvenile state. This treatment may also increase the number of axillary shoots on the plant from which explants can be taken. To obtain shoot material that is sufficiently rejuvenated for tissue culture, spraying with cytokinin is sometimes preceded by one or more of the other treatments mentioned above, such as taking cuttings, hedging, or grafting (Clark, 1982; Pierik, 1990a,b). Perez-Parron, \textit{et al.}, 1994, had higher bud sprouting from adult \textit{Fraxinus angustifolia} shoots collected in the winter when the forcing solution contained BA, compared to NAA or GA$_3$. However, cytokinin applications are not always effective for stimulating rejuvenation (Hackett, 1985).
A juvenile phase of growth can sometimes be induced on adult forms of _Hedera helix_ plants by spraying them with GA$_1$, GA$_3$, or GA$_{4+7}$ (Hackett, 1985). However, treating mother plants with gibberellin can result in poor explant establishment from some species [e.g. meristem tips of _Pistacia vera_ (Barghchi, 1986a)]; it may also result in the failure of explants or cuttings to form adventitious roots and so should be used with caution. Spraying woody stock plants with a mixture of a cytokinin and a gibberellin can also be effective in inducing vigorous (juvenile) new growth.

2.10. THE EFFECT OF PHASE OF GROWTH ON TISSUE CULTURES

In many woody plants, it is much easier to establish juvenile than adult explants _in vitro_. There are far more examples of successful micro-propagation of juvenile forms of woody species than adult forms. Adult explants often produce more phenolic substances that blacken the medium than juvenile explants. For example, _Juglans nigra_ adult shoot and nodal explants produce and release phenolic substances that oxidize, darken the medium, and if measures are not taken, will be autotoxic and kill the explants (Van Sambeek _et al._, 1997a). In this study, 16% of juvenile explants were lost because of explant decline and exudation during establishment, whereas 31% of adult explants were lost for the same reason. One of the best methods to overcome the problem with exudation is to transfer to fresh medium every day or two during the first two weeks _in vitro_. With _J. nigra_, even when established, cultures must be transferred to fresh medium every two weeks. If this is done every three weeks, the cultures will decline and if monthly, shoot cultures will not survive for long. It was necessary to trim the bases of _J. regia_ shoot explants and transfer them at 2 day intervals during the first 3 months of culture (McGranahan _et al._, 1988a). After this time, cultures were more easily managed and only required to be transferred at 7 day intervals.

Besides affecting establishment, the relative maturity of the explant nearly always has major effects on the growth and morphogenesis of plant tissues and organs in culture. Zygotic embryos or pieces taken from germinated seedlings are therefore reliable explants for embryogenesis or shoot organogenesis. Adult-source explants generally are much less responsive.

There are numerous examples in the literature to show that explants derived from the juvenile phase are most responsive in culture. For example, the rate of survival and the subsequent growth rate of juvenile blueberry (_Vaccinium ashei_) explants is much higher than those of adult explants (Smagula and Lyrene, 1984). The most rapid initial shoot proliferation of _Prunus avium_ shoot cultures was from explants derived from root suckers of a mature tree (Pevalek-Kozlina and Jelaska, 1987). In cultures established from 1 year-old and 5 year-old trees, the rate was lower, and explants from mature trees could not be established. McCown (1989) reported that with _Betula_ spp., it is possible to obtain similar results with juvenile and adult cultures if time is allowed to stabilize the adult cultures. It took over three years _in vitro_ where the tissue was subcultured every month to get the adult cultures to multiply well. It is possible the mature birch was rejuvenated by prolonged culture _in vitro_.

2.11. REJUVENATION

In the genus _Castanea_, Chevre and Salesses (1987) found that shoot tips from seedlings could be placed _in vitro_ and propagated by shoot culture, but adult material (for example of the hybrid _C. crenata x C. sativa_) required rejuvenation first in layer beds. Babu _et al._, (2000) excised nodal explants from root suckers from a mature, 7 year-old _Murraya koenigii_ (curry leaf tree) and multiple shoots developed. Onay (2000) collected 3-4 cm long terminal lignified stem sections from 30 year-old _Pistacia vera_ trees. Stems had their bases soaked in 44 μM BA for 24 hours prior to planting in a sand/soil mix and placed in the greenhouse. After 3 weeks, 10% of the stems had actively growing shoots that were excised and placed _in vitro_. These explants produced multiple shoots after 30 days. Only single node cuttings, and not axillary and terminal buds from 2 year-old _Feijoa sellowiana_ seedlings would produce shoots in culture (Bhojwani _et al._, 1987). The response of single node cuttings declined with age, and only 12% of those from a 3 year-old plant sprouted _in vitro_. However, nodal explants taken from newly grown shoots on 3 year-old coppiced trees all produced shoots but the capacity to do so disappeared once the coppice shoots were 4 months old. By this time the shoots had lost their juvenile leaf form and were thickened and coated with epicuticular wax.

2.12. ROOTING

In conventional propagation, it is found that cuttings from mature parts of a plant are frequently more difficult to root than those taken from juvenile
shoots. This is also observed in vitro, especially in shoots derived from newly-established node or shoot cultures. Thus, de Fossard et al., (1977) were able to root the nodes of seedlings of several Eucalyptus species, but could not get any roots to form on nodes derived from mature trees. Although Sankara Rao and Venkateswara (1985) could establish shoot cultures from both juvenile and mature nodes of Eucalyptus grandis, 60% of the microcuttings from juvenile shoots formed roots, but only 35% rooting occurred on those from the mature source.

Although difficult, it is possible to root juvenile microshoots of Juglans nigra (Heile-Sudholdt et al., 1986; Long et al., 1995). However, when attempting to root about 300 microshoots from year-old shoot cultures from adult J. nigra, only one formed a root and it died during acclimatization (Pearson and Preece unpublished).

There are exceptions: shoots produced by shoot culture from juvenile or adult phases of an apple rootstock could both be rooted although their response to phloroglucinol was different (Welander 1986; Long et al., 1995). However, when attempting to root about 300 microshoots from year-old shoot cultures from adult J. nigra, only one formed a root and it died during acclimatization (Pearson and Preece unpublished).

2.13. CALLUS CULTURES

Studies on the morphology and behavior of callus illustrate the cellular basis of the maturation state. Callus cells derived from juvenile and adult phases of the same plant have different characteristics that are maintained consistently in vitro over prolonged periods. English ivy (Hedera helix) callus, derived from the juvenile stage, has been found to be composed of larger cells, to have faster growth rate, to produce roots more freely (Stoutemeyer and Britt, 1965; Polito and Alliata, 1981) and to be more prone to develop variant cell lines (Robbins and Hervey, 1970) than callus from the adult form. Callus from juvenile tissue of Robinia pseudo-acacia and Castanea vulgaris has also been noted to proliferate more rapidly than that obtained from adult zones (Trippi, 1963). Adventitious shoots could be regenerated from callus derived from seedling internodes of Vitis vinifera or Vitis vinifera x V. rupestris, but not from callus of similar adult explants (Rajasekaran and Mullins, 1982).

2.14. REJUVENATION INDUCED BY IN VITRO CULTURE

A characteristic feature of adult tissues in vitro, is that they become more easily managed after a period of time in culture. Most researchers consider that the marked changes that are observed in the characteristics of the cultured material indicate rejuvenation. Shoots or plantlets assume one or more of the phenotypic characteristics of plants in the juvenile phase of growth, such as a smaller leaf size and an improved capacity for adventitious root formation.

However, workers who consider juvenility to be the total reversal of maturation (e.g. Mullins, 1985; Mullins et al., 1986), question whether tissue culture does really produce a juvenile state, because plantlets sometimes flower in vitro and plants derived from tissue cultures often flower well before those grown from seed. Therefore, some prefer the use of alternative terms such as “re-invigoration” or “apparent rejuvenation” (Pierik, 1990a,b). Because so many different characteristics of juvenility are reported in different species of plants that have been micropropagated by shoot culture, others prefer to think that a partial rejuvenation occurs, which is some of the way toward complete rejuvenation (Bonga, 1982a), and that separate features of juvenility are independently controlled.

Enhanced rooting is an indication of at least partial rejuvenation. Microshoots from adult cultures often root better than cuttings from the original donor plant. Additionally, macrocuttings from rooted microshoots often root better than from plants propagated clonally by more traditional methods. Propagators at nurseries frequently purchase micropropagated plants to serve as stock plants for cutting production. Plietzsch and Jesch (1998) compared the rooting of cuttings from conventional stock plants with those from micropropagated stock plants. They chose woody cultivars that are vegetatively propagated, not seed propagated (adult phase cultivars). For example, rooting of Syringa vulgaris cuttings was 0-10% from conventional stock plants and up to 85% from in vitro-derived stock plants and cuttings from Prunus ‘Kanzan’ rooted at 0% when harvested from conventional stock plants and up to 90% from micropropagated stock plants. However, this may be only a partial rejuvenation because in vitro propagated plants, rooted cuttings from in vitro stock plants, rooted cuttings from conventional stock plants and grafted plants of Prunus nipponica var. kurilensis ‘Brillant’ all flowered prolifically five years after propagation.
3. PLAGIOTROPIC GROWTH

The leading shoots of woody plants typically grow vertically upward (orthotropic growth), while lateral branches tend to grow at a more horizontal angle (plagiotropic growth). In adult angiosperms there will usually be several orthotropic shoots, but most gymnosperms usually have only one. In some New Zealand species, plagiotropy can be an adaptation that allows a plant to build up a large root system in exposed locations during the juvenile phase before tall wind-susceptible orthotropic shoots emerge (Beckett, 1979).

Although plagiotropic laterals are formed during the juvenile phase of woody plants (Fig. 11.1), in most plants an orthotropic habit of growth re-appears if such shoots are rooted as cuttings. The orthotropic habit of adult laterals can, however be persistent in some broad-leaved trees and shrubs (e.g. in *Eucalyptus cladocalyx* - Maggs and Alexander, 1967; and *Coffea* spp. - Sondahl and Sharp, 1979) and particularly in conifers. If shoots from the lateral branches of some coniferous plants are rooted as cuttings, plants are obtained where the leading shoot retains a prostrate or inclined growth habit for one or more years before eventually becoming erect. Sometimes plagiotropism appears to be permanent (e.g. in *Araucaria* spp. - Bonga, 1982; Haines and de Fossard, 1977; and in *Pseudotsuga menziesii* - Ritchie and Long, 1986). In these cases normal plants can only be obtained by rooting cuttings or grafting scions taken from vertical stems (or sometimes from juvenile shoots).

Most coniferous trees quickly gain the aspect of maturity that conveys a long-term “memory” of plagiotropism on laterals. Even though many features of juvenility can be re-established in explants by pretreatment of the stock plant material (such as plant growth regulator sprays, grafting, and repeated transfers *in vitro*), it is often found that a proportion of young trees originating from shoot multiplication *in vitro* (particularly those of conifers e.g. 40% of loblolly pine plants - Leach, 1979), have a leading shoot with a plagiotropic habit. Although in some species plagiotropism of the leading shoot often disappears after the plant has been 2-3 years in the field (Ritchie and Long, 1986), delay in shoot extension and contorted growth of the main shoot is usually unacceptable for commercial plantings. Plagiotropy imposes a severe restriction on the vegetative multiplication of plants intended for normal planting and is more likely to result from the micropropagation of adult material. This was the case in *Cunninghamia lanceolata*, where 93% of the plants obtained from shoot cultures initiated from the nodes of a juvenile clone, had orthotropic growth (which was comparable to that of seedlings), whereas only orthotropic plants were obtained from cultures initiated from the basal side shoots of an adult clone (Engelmann *et al.*, 1987). In *Sequoia sempervirens*, plagiotropic growth and poor vigour following micropropagation, are characteristics of some clones (Boulay, 1987), suggesting that there is a genetic component.

4. APICAL DOMINANCE

The primary objective with clonal micropropagation is proliferation of axillary shoots (promotion of branching). Axillary buds form from meristems in the axils of leaves. The function of axillary buds in plants is to replace the shoot apex when it is lost, or to supplement shoot apices, thus increasing the total number of leaves or the display of flowers (Napoli *et al.*, 1999). Auxins and cytokinins have important roles in regulating apical dominance. The apical region is a rich source of auxin, the supply of which can be replaced exogenously if the apex is decapitated. Similarly, exogenous applications of cytokinin will usually stimulate branching. However, when auxin and cytokinin levels are changed in intact transgenic plants, there may not always be an associated correlation with bud outgrowth (Napoli *et al.*, 1999).

Over the years, most studies on apical dominance have utilized exogenously applied plant growth regulators. Since the late 1980s, plants have been produced that have been genetically transformed to over- or under produce auxin or cytokinin (Cline, 1994), making it possible to study the effect of changed endogenous hormone levels. When plants have been transformed with an *iaaM* gene (codes for tryptophan monooxygenase), they have produced up to 10-times more IAA and had strong apical dominance and no branching. When plants have been transformed with the *iaaL* gene (codes for IAA-lysine synthetase, which inactivates IAA by causing it to
conjugate with lysine), free endogenous auxin was reduced and branching increased. When plants have been transformed with the *ipt* gene (codes for isopentenyl transferase), cytokinin content increased and the plants branched freely. Similarly, plants transformed with the *Agrobacterium rhizogenes rolC* gene (codes for cytokinin B-glucosidase, increasing free cytokinin) also had reduced apical dominance. However, when mutant pea plants have been studied, branching seems to be related to some as yet unidentified signal other than cytokinin coming from the roots (Napoli *et al.*, 1999). Therefore, the specific mechanisms of apical dominance are yet to be resolved.

Somaclonal variation is reduced when propagation is based on axillary shoot proliferation rather than adventitious regeneration, especially from callus (Preece, 1997; Preece and Trigiano, 2001). This is because axillary shoots originate from preformed meristems in leaf axils. Many commercial micropropagation labs will discard cultures that they suspect have adventitious shoots. There are many cases where nurseries have refused to purchase any more micropropagated plants because of unacceptable somaclonal variation.

To obtain axillary shoots, it is necessary that the original explant contains one or more nodes. Therefore, apical meristems, shoot tips, and stem pieces with at least one node are used as explants. To stimulate branching, cytokinins are added to the medium. The specific cytokinin and its concentration varies considerably with the genotype. Members of the Ericaceae are frequently micropropagated using isopentenyladenine (2iP). The most commonly used cytokinin for axillary shoot proliferation is benzyladenine (BA). Most species respond well to BA and when the concentration is correct, many axillary shoots will proliferate and elongate, without any adventitious shoots forming. A newer cytokinin is thidiazuron (TDZ) (Huetteman and Preece, 1993). This substituted phenylurea compound has been shown to stimulate axillary shoot growth on species where BA and 2iP are ineffective, such as *Acer saccharinum* (Preece *et al.*, 1991).

There does not appear to be a clear relationship between apical dominance in the stock plant and axillary shoot proliferation. For example, juvenile plants frequently grow more rapidly and have stronger apical dominance than adult forms. However, shoot explants from juvenile plants generally proliferate more axillary shoots than shoot explants from adult forms. Cytokinins in the medium seem to be more of a determining factor than the inherent branching habit of the chosen genotype.

There are cases where cytokinin concentrations or types are not optimal, or a species does not branch well *in vitro*. In these cases, shoots will elongate *in vitro*, but not branch. A commonly-used solution is to cut these shoots up into nodal segments and subculture them to allow for one axillary shoot to elongate per nodal explant. Although not as efficient as axillary shoot proliferation from an individual explant, this is sometimes used commercially to micropropagate some plants. Automation of cutting and handling plant tissue cultures can be more efficient with a single axillary shoot elongating from each nodal explant than where masses of axillary shoots form from each explant.

5. DORMANCY

Seeds and buds of many temperate species go through a dormancy period that prevents germination or growth during times when the growing conditions are unfavorable, such as when entering winter weather conditions. By remaining dormant and not growing, plants are able to withstand unfavorable growing conditions until the weather becomes sufficiently favorable for growth. Dormancy (endodormancy) can be controlled within the seed or bud by factors such as hormones or underdeveloped structures, or by coverings such as seed coats or bud scales that may inhibit growth mechanically or chemically (Arora *et al.*, 2003, Khan 1997). Environmental factors such as unfavourable temperatures, drought, or light conditions can cause ecodormancy (also known as quiescence), which can be overcome more readily than endodormancy as environmental conditions become favourable for growth.

In his classic study, Khan (1971) demonstrated the interrelationships between gibberellins, abscisic acid (ABA), and cytokinins for maintaining or overcoming endodormancy. Gibberellins are apparently necessary for breaking dormancy. Without gibberellin, the necessary production of hydrolytic enzymes, such as α-amylase does not occur and dormancy is maintained. Even if gibberellin is present in sufficient quantity, the presence of ABA will prevent the gibberellin-induced transcription of hydrolytic enzyme genes and dormancy will be maintained. However, if both gibberellin and ABA are present in quantities
sufficient to have activity, the presence of cytokinin will overcome the inhibition of ABA and dormancy will be overcome. Numerous studies over the years have confirmed these effects of gibberellins, ABA, and cytokinins.

Recent studies on dormancy have focused on molecular biology related to onset, maintenance, and breaking of dormancy (Fennell, 1999; Arora et al., 2003). These studies have utilized AFLP (amplified restriction fragment length polymorphisms), cDNA libraries, microsatellite markers, RAPD (random amplified polymorphic DNA), RFLP (restriction fragment length polymorphisms), mapping using QTL (quantitative trait loci), and inheritance studies. It appears that Populus bud set and outgrowth are controlled genetically and are highly variable within the genus. Howe et al. (1999) detected many QTLs that affect bud set and outgrowth and are testing whether specific candidate genes for endodormancy are located near these QTLs. Among these candidate genes are phytchrome genes (PHYA-PHYE). It makes sense to study phytochrome genes because phytchrome is the photoreceptor for red and far-red light and photoperiod (long known to be associated with inducing or overcoming dormancy in many species). Genes involved with gibberellin biosynthesis are also being studied because of the important role of gibberellins in dormancy.

Studying controlled crosses in blueberry and mapping QTLs that control the chilling requirement of buds and RAPD-based genetic linkage maps, Rowland et al. (1999) have developed a two-gene model that predicts observed segregation ratios for the chilling requirement. In their model, it is assumed that the genes have equal and additive effects. Cloning and mapping these genes will allow the determination of whether they are associated with the mapped QTL loci that control the chilling requirement of blueberry.

Generally, cultures are most easily established from explants harvested from the active growth of the mother plant. The best time for collecting explants is usually when stock plants are producing new vigorous shoots (i.e. in temperate regions, in spring to early summer), but many exceptions have been observed. The optimum time for collecting explants may depend on the kind of culture, on the particular genotype to be used, on the relative amounts of contamination, and browning of the explant occurring at each season.

A major detriment to using dormant buds as explants is the occurrence of microbes within the buds. The outer scales of dormant buds of Acer, Aesculus, Betula, Fagus, Populus, Quercus, and Ulmus were shown to host populations of fungi and bacteria (Warren, 1976). Additionally, microbes were found in the internal parts of Tilia and Fraxinus buds. Although various treatments were tested to clean up dormant buds of Fraxinus americana, there was still 100% microbial contamination of cultures (Preece and others unpublished). However, isolated apical meristems from such buds can be disinfested of microorganisms without killing them.

Nevertheless, it is possible to obtain clean cultures from dormant buds of some species, and because of their resting state, they have been tolerant of harsher disinfection treatments. In fact, buds can be dipped in alcohol and flamed with no serious injury (Bonga and Von Aderkas, 1992). Typically, actively growing explants are surface disinfested only once using 0.5-1.0% hypochlorite solution with a wetting agent for up to 30 minutes, followed by rinses of sterile distilled water. Sometimes there will be a short dip in 70% alcohol prior to the hypochlorite treatment. Using stem segments with dormant axillary buds of Pyrus calleryana, Rossi et al. (1991) used a concentration of 3% sodium hypochlorite for 20 minutes and only had a 20% rate of contamination. Shevade and Preece (1993) used a double-disinfection technique for flower buds of Rhododendron collected from field-grown plants during the winter from November through February. They disinfested the entire buds for 15 minutes in 0.5% NaOCl containing Tween 20. This was followed by rinses in sterile water and removal of the outer scales under aseptic conditions to expose the thin white scales surrounding the florets. They were then surface disinfested and rinsed again using the same method as applied to the whole buds. Prunus serotina (black cherry) buds could be collected beginning in February, but were washed in running tap water for an hour, followed by a benomyl (fungicide) soak for 10 minutes, then 20 minutes in 0.5% NaClO and rinsing (Maynard et al., 1991). Bud scales were then removed aseptically and the bud was placed in concentrated hydrogen peroxide for 10-30 seconds, then rinsed.

There have been cases where explants were difficult to establish in vitro or growth has been inadequate if they were excised from dormant plants. Norton and Norton (1989) had difficulty with establishment if Rhododendron shoots were cultured initially in the winter or when the stock plant was not actively growing. The proportion of Prunus
‘Accolade’ meristems that gave rise to established shoots with a rosette of leaves progressively increased in shoots excised from field-grown trees early December (winter) to May (Quoirin et al., 1974). Potato buds excised in spring or early summer rooted better than those taken later in the year (Mellor and Stace-Smith, 1969), and a greater proportion of Castanea sativa cuttings produced callus in vitro if excised and cultured in March (spring) rather than in December (Borrod, 1971). However, in a Castanea hybrid, the proportion of December-gathered cuttings forming callus was high, and the poorest rate of culture establishment occurred with explants taken in July.

5.1. EXCEPTIONS TO THE GENERAL RULE

Although the best time for sampling usually coincides with the period when stock plants are in active growth, this is not always the case. Bulblet initiation in vitro from bulbs of Tulipa ‘Hageri’ was best in May, when the mother bulbs were growing vigorously, but in ‘Apeldoorn’ it was best in August, at harvest time (Nishiuchi, 1979). Similarly sections of the immature floral stems of Tulipa ‘Merry Widow’ bulbs only gave rise to direct adventitious buds when explants were taken from dormant bulbs (Wright and Alderson, 1980). Once the bulbs had entered a stage of active growth, the capacity to produce shoots practically disappeared. Callus continued to be formed, but it too was not produced once the floral stem had begun active extension growth. The formation of adventitious buds from cylinders cut from the base of scale leaves of Lilium speciosum was high when explants were taken during spring and autumn, but practically nil in summer and winter (Robb, 1957).

5.2. PLANTS IN GREENHOUSES AND GROWTH ROOMS

Explants are primarily taken from actively growing shoots from plants grown in protected environments. There are tiny cracks and crevasses in plants in which fungal spores and bacteria can exist. It can be extremely difficult to get a surface disinfectant into these areas. Therefore, success with disinfection is less from field-grown stock plants than those grown in the greenhouse, growth chamber or other protected environment. It is likely that the rain and blowing dust that strike field-grown plants carry or create an environment conducive to microorganisms.

Simply because a plant is grown in a greenhouse or growth room does not mean that it is free from surface microbes. The cultural practices by which the plant is grown are important. For example, it is essential that water be kept off the above-ground parts of the plant and that care be taken to water only the soil or growing medium.

5.3. FORCING SHOOTS OF TEMPERATE WOODY PERENNIALS

Many woody plants are either too large or are growing in the ground and cannot be moved in a practical sense to a greenhouse or growth room. In temperate regions, it is therefore often necessary to remove branch tips or segments, usually during the dormant season, and force new shoot growth on them indoors or in a greenhouse environment. This new growth can then be excised, surface disinfested and used for explant material. Although there are species differences, these explants tend to be relatively contaminant-free, they may also be more readily established in culture than explants taken during spring and summer, and can be less prone to produce dark, polyphenolic exudates.

There is variation in the technique among different labs. A common method is to excise 20-25 cm long stems (Read and Yang, 1991) from deciduous trees and shrubs, soak for 15 minutes in bleach solution containing 0.78% NaOCl with Tween 20 (Read and Yang, 1988, 1991; Yang and Read, 1992, 1993). The bleach disinfestation enhances bud break compared to non-disinfested stem tips (Read and Preece, 2003), in fact Yang and Read (1992) reported that buds broke faster, more buds elongated, and shoot elongation was promoted if the stems received the 15 minute soak in bleach solution prior to forcing, compared to those that did not. There is a fresh cut made at the base and the basal portions of the stems are placed in containers with water, 200 mg/l of the commonly used cut flower preservative 8-hydroxyquinoline citrate (8-HQC) (Read and Yang, 1987), sucrose, silver thiosulphate and sometimes plant growth regulators (Read and Preece, 2003). The influence of the plant growth regulators is discussed below under stock plant treatments.

Arrillaga et al. (1991) excised leafless shoots in April from a 30 year-old Sorbus domestica tree, placed them in jars with a 10% benomyl solution and sprayed them with a 44.4μM solution of BA to encourage lateral growth. They harvested shoots for in vitro culture after 10-15 days. The resulting shoots grew in vitro in a manner that was similar to juvenile source explants.
A related technique is harvesting 3-4 cm long terminal, lignified stem sections, immersing the cut ends in plant growth regulator solutions, placing in a greenhouse medium, and forcing in the greenhouse under a 24 hour photoperiod, as Onay (2000) did with 30 year-old pistachio. New shoots grew and were sufficiently large to excise, surface disinfest and place in vitro.

There may be two main disadvantages of forcing new growth from shoot tips taken from adult woody plants. One is that these shoots are excised from the most adult portions of the plant, which does not readily allow for rejuvenation. Additionally, with some recalcitrant species, shoots will elongate, but rapidly decline before being sufficiently long for excision. This has been the case with Juglans nigra (Eastern black walnut), where the apical buds elongated, but wilted and declined when they were 1-2 cm long (Khan and Preece, unpublished). This did not seem to relate to month of collection. However, Read and Yang (1987) harvested stems from Castanea dentata (American chestnut) in late November and stored them for various times at 4.5°C. Buds did not grow well if stored 45 days or less but grew well and elongated if stored 75 days or longer, with the best elongation on stems stored 105 days.

A method to force shoots from within the cone of juvenility is to use larger stem segments taken from the bases of the larger branches growing from the trunk of a tree or the base of a shrub (Henry and Preece 1997 a, b; Preece et al., 2002; Van Sambeek et al., 1997 a; b; Van Sambeek and Preece, 1999). Vieitez et al. (1994) compared explant establishment from leafy shoots that flushed from old stem segments, from the previous year’s growth, and from the current season’s growth of 100 year-old Quercus robur trees. They were unsuccessful in establishing shoot cultures from the current season’s growth or from the previous year’s growth, but were successful with explants from new shoots that grew on old stem segments. Using the old stem segments, they were able to establish shoot cultures from oak trees ranging from 70-300 years-old.

6. ADDITIONAL STOCK PLANT TREATMENTS

The ontogeny and physiology of the plant that is the source of explants (stock plants or mother plants) has a profound influence on in vitro response. Results obtained in vitro can be influenced by the condition of the stock plants, the ways that they are treated and by the environment in which they have been grown. It is generally recognized that the best explant material is derived from healthy and vigorous plants that have been maintained in active growth without stress. There are additional factors that will also have an effect.

6.1. NUTRITION

Explants that are most suitable for in vitro culture, are generally obtained from stock plants that have received adequate mineral nutrition (Read and Preece, 2003). Barker et al. (1977) could culture adult nodes of Eucalyptus most successfully if they were excised from healthy well-watered and well-fertilized trees. Debergh and Maene (1985) found that treating Ficus lyrata stock plants with high levels of Mg resulted in increased shoot formation from leaf explants. However, N, P, and K had no influence and high levels of Ca reduced shoot formation. Explants of papaya were more responsive to in vitro culture if the mother plant had been given fertilizer and water consistently in the field (Litz and Conover, 1977). Tomato stock plant nitrogen nutrition had an influence on adventitious shoot production from leaf explants, with higher levels of nitrogen resulting in more shoots (Read et al., 1979). Later work (Read and Economou, 1987) showed that supplying tomato stock plants with either very low or very high rates of inorganic nitrogen reduced the number of shoots that could be regenerated from cultured leaf segments. Nitrogen and potassium nutrition were also found to affect the results obtained from tissue culturing several Salix clones.

6.2. DISEASE STATUS

Usually the presence of any kind of plant disease is a reason for rejecting mother plants, because infectious organisms are liable to cause the death of cultures, may have a debilitating and negative effect on cultures, or may be transmitted to propagated plants. Greno et al. (1988) found that shoot cultures of several Citrus species were affected by the presence of the virus and virus-like agents: Citrus tristeza virus (CTV), Citrus infectious variegation virus (CIVV), Psorosis Veinination, Citrus cachexia viroid (CcaV), and Citrus exocortis viroid complex. In general, infection of the mother plant reduced the number and size of shoots that developed. Similarly, the production of axillary shoots, and the number of plants finally established, tended to be lower in infected cultures than in healthy ones. The actual
responses obtained varied both according to the host plant and the pathogen. In some hosts a pathogen might have no effect or may not cause visible symptoms. Greno et al. (1988) have suggested that the presence of such latent virus infections could be a cause of the difficulties in defining standard micropropagation protocols for some perennial plants and of variation among the resulting plants.

6.3. PRUNING

Cutting back stock plants to induce the growth of juvenile shoots was described earlier in this chapter. When initiating shoot cultures, it can also be advantageous to prune old herbaceous or woody plants to obtain a flush of new shoots bearing young, smaller and less contaminated buds (Read, 1988). Pruning of stock plants is also used to time flushes of growth, to increase the number of shoots that can be harvested (speeds collection), and for stock plant management (Scott, 1987). Another result of pruning stock plants can be to obtain explants of a more desirable size. Debergh and Maene (1985) reported that axillary buds of different members of the Araceae are too large or well-developed to be placed in vitro, whereas new shoots that grow following pruning have smaller buds that are easier to put in culture. Preece (1987) reported that decapitation of tomato stock plants decreased rooting and dry weight production of leaf explants in vitro when they were excised from the stock plant up to 8 days after pruning.

6.4. LIGHTING

Changes in stock plants can be brought about by the photon flux of light, its wavelength, or photoperiod (day length). These can also affect the growth or morphogenesis of cultured explants.

6.4.1. Photon flux

Growth in 22°C and 12 h of high light was found to be the most effective stock plant treatment for obtaining growth and shoot formation of single node explants of Eucalyptus (Cresswell and Nitsch, 1975). However, tomato stock plants grown under reduced light gave the highest yield of tomato protoplasts in vitro when they were excised from the stock plant up to 8 days after pruning.

Pelargonium petioles formed the highest numbers of roots in response to nitrogen and sucrose in an in vitro medium when they were derived from stock plants that had been maintained under an irradiance of 2.5 rather than 11.6 or 23.0 W m⁻² (Welander, 1978). Read and Economou (1987) found that microcuttings from azalea stock plants irradiated with low levels of light rooted better than if the stock plants received a high photon flux. Rooting of macro-cuttings can be enhanced by or inhibited by collecting cuttings from stock plants that have been grown under high levels of light (Hansen, 1987). The rooting response seems to be species specific.

6.4.2. Wavelength

The branching of intact Petunia hybrida plants can be modified through the phytochrome system. Plants grown in 10 hours of white light, terminated by 30 minutes red light each day become short and branched, but when the light period is terminated by 30 minutes far-red light, tall single-stemmed plants are obtained (Read et al., 1978; Suriyajantranatong, 1979). Leaf discs cut from stock plants receiving red light tended to produce a greater fresh- and dry-weight of callus and a larger number of adventitious shoots than those removed from stock plants receiving far-red light. The differences in growth and differentiation in vitro were probably related to altered natural growth substance levels in the two groups of plants. Extractable free IAA (auxin) was higher in plants treated with far-red light than those receiving red light.

6.4.3. Photoperiod

Hilding and Welander (1976) found that the most effective combination of auxin and cytokinin to induce morphogenesis in petiole explants of Begonia hiemalis varied according to whether stock plants had been grown under long or short days. Leaf petioles of this species only produced adventitious shoots and roots if they were taken from plants grown in 15-16 hour days at 18-20°C. There was no organogenesis on those taken from plants grown in short days (7-8 hours at 15°C) (Welander, 1977). Similar results were obtained on the same species by Simmonds and Nelson (1989). In contrast, Dunwell and Perry (1973) found that anthers taken from Nicotiana tabacum stock plants kept in an 8 h high irradiance photoperiod, produced the greatest numbers of haploid plants from cultured anthers.

6.5. TEMPERATURE

Leaf discs of Streptocarpus produced more shoots and roots when mother plants were grown at 12°C rather than 18°C or 24°C (Appelgren and Heide, 1972), and explants from Begonia hiemalis stock plants maintained in growth rooms, formed the most shoots and roots when the growth room temperature was 15°C rather than 18°C or 21°C (Appelgren,
containing BA or GA. A higher percentage of dormant stems of Vanhoutte’s spirea in solutions forcing in early spring. Yang and Read (1993) forced BA into the solution into which twigs were placed for Philadelphus report that shoot proliferation from shoot tips of before forcing bud growth. Read and Yang (1987) deciduous woody plants, or to apply them as a soak solution when leafless branches are taken from regulators is to incorporate them into the forcing shoots from which explants can be taken.

6.6. PLANT GROWTH REGULATOR PRE-TREATMENTS

Treating the stock plant with plant growth regulators can have an influence on in vitro performance of explants (Preece, 1987). As explained above, sprays of gibberellin and/or cytokinin are often effective in introducing some degree of re-juvenation (or re-invigoration) of woody plants, enabling explants to be cultured where previously it was impossible, and frequently inducing axillary bud break and increasing the number of shoots from which explants can be taken.

A convenient method of applying plant growth regulators is to incorporate them into the forcing solution when leafless branches are taken from deciduous woody plants, or to apply them as a soak before forcing bud growth. Read and Yang (1987) report that shoot proliferation from shoot tips of Philadelphus and Dirca was increased by introducing BA into the solution into which twigs were placed for forcing in early spring. Yang and Read (1993) forced dormant stems of Vanhoutte’s spirea in solutions containing BA or GA. A higher percentage of explants produced shoots or more shoots were produced per explant if the forcing solution contained 44.4 μM compared to 4.4 μM BA. However, as GA concentration in the forcing solution increased from 2.9 to 145 μM, the number of explants that produced shoots decreased. When GA was in the forcing solution of American chestnut or Aesculus, there was no effect on in vitro performance of shoot explants. Preece (1987) and Preece et al. (1984) reported that pretreating stock plants with gibberellic acid can inhibit adventitious shoot formation and rooting when tomato leaf explants are subsequently cultured with BA.

When lignified stems were excised from 30-year-old Pistacia vera trees, the bases were treated with either 44μM BA or 49 μM IBA for 24 hours (Onay, 2000). The stems were then potted up and placed in a greenhouse. Shoots only grew from stems treated with BA and these established in vitro and microshoots proliferated. Donkers and Evers (1987) obtained a significant increase in the multiplication rate from certain buds if flushed shoots of Platanus acerifolia had been sprayed with 200 μM BA in 50% ethanol.

Adventitious shoot formation can also be influenced by cytokinin pre-treatments. Economou and Read (1980) discovered that if leaves of Petunia were dipped for 30 seconds into a solution of 1.78 mM BA, this allowed adventitious shoots to develop freely when segments of the leaves were later cultured on a cytokinin-free medium. Oka and Ohyama (1981) obtained adventitious bud formation from mulberry leaf explants when seedling mother plants or in vitro shoots were pre-treated with BA.

De Langhe and de Bruijne (1976) found that the shoot forming ability of cultured shoot explants of tomato was stimulated when the parental plants had been previously pre-treated with chloromequat chloride, but that if this compound was added instead to the culture medium, it was ineffective. This observation was confirmed by Read et al. (1978, 1979). It was also observed that shoots excised from Dahlia leaves gave rise to increased amounts of callus if the mother plants had been grown in short days or had been sprayed with a 2500 mg/l daminozide solution (Gavinlertvatana et al., 1979).

Pre-treating wheat plants with sprays of 2,4-D and several other herbicides during the first week of embryo development caused multiple shoot formation from the embryos at a later stage (Ferguson and McEwan, 1970). This appears to occur through the in vivo formation of adventitious embryos (Ferguson et al., 1979).
7. CONCLUSIONS

Most in vitro studies focus on manipulating the medium. Indeed this can lead to profound effects on explant growth and development. However, not all explants respond well in vitro. Success can be increased by considering the plants that are the sources of explants. Simply the time of year or portion of the stock plant from which explants are collected can have great influences on in vitro performance. Additionally, it may be necessary to rejuvenate or otherwise treat the stock plant or donor tissues prior to harvesting explants to place in culture.

REFERENCES

BECKETT K.A. 1979 Juvenility with a special reference to New Zealand plants. The Plantsman 1, 81-84.

TRIPPI V.S. 1963 Studies on ontogeny and senility of plants. III. Changes in the proliferative capacity in vitro during ontogeny in Robinia pseudoacacia and Castanea vulgaris and in adult and juvenile clones of R. pseudoacacia. Phyton 20, 153-159.

WELANDER M & HUNTRIESER I. 1981 The rooting ability of shoots raised in vitro from the apple rootstock A2 in juvenile and in adult growth phase. Physiol. Plant. 53, 301-306

WELANDER T. 1977 In vitro organogenesis in explants from different cultivars of Begonia hiemalis. Physiol. Plant. 41, 142-145.

Chapter 12
Effects of the Physical Environment

1. COMPOSITION OF THE MEDIUM

Much work reported in the literature suggests that media often need to be varied for different plant genera and according to the kind of culture to be undertaken. It certainly can be advantageous to move a culture from one kind of medium to another when the pattern of growth needs to be modified, or morphogenesis induced. However, many different kinds of plant cultures can be grown on one kind of medium and a critical view would be that much work on the effects of media composition is highly empirical and many workers fail to provide adequate justification of why particular additions to the media are made. We can save ourselves much time and expense if we can modify plant production and use media with fewer constituents and/or change media less frequently during plant development. Murashige and Skoog (1962) (MS) medium has proved to be suitable for callus growth, direct and indirect morphogenesis, and shoot culture of many plant species. This is clearly a good starting point for plant production but we should bear it in mind that direct shoot formation can occur on the explants of some species in water alone. A very simple medium containing sucrose and a relatively low concentration of mineral salts is generally all that is required for root cultures and the micropropagation of most orchids, but in some plants both direct and indirect morphogenesis can be very dependent on the medium used for in vitro culture, and a particular balance of inorganic, organic, and growth regulator constituents is essential.

Various compositions have been developed to improve the growth of one or more particular tissues in culture. Features of these formulations, which can influence growth and morphogenesis, are discussed in Chapters 3 and 4. However, growth and development of different species and cultivars can be differentially affected by a single medium composition and may be only modified to a small extent by changing the composition of the medium (e.g. in wheat - Lazar et al., 1983; in Brassica - Narasimhulu and Chopra, 1988; and in alfalfa - Brown, 1988). Often, shoot regeneration can be more dependent on genotype than on the presence of complex organic additives in the medium.

One of the reasons that so many different recipes have been developed to aid growth and morphogenesis in culture is that different genotypes will accumulate different endogenous concentrations of growth regulators and the sensitivity of different processes to these regulators will also vary with genotype and with the status of other variables. Growth regulator accumulation can be determined but only with some difficulty using expensive physico-chemical technology and/or immunological techniques which themselves need to be validated using physico-chemical techniques such as GC-MS (gas chromatography-mass spectrometry). This means that it is often difficult to do more than investigate empirically the effects of different applied growth regulators on growth and physiology. Certainly technicians should be aware that the influence of particular concentrations of growth regulator will vary with other variables such as photon flux, temperature, inorganic nutrient concentration, pH and the presence or absence of other regulators. For example, Davies et al. (2002) show how the influence of ABA on growth and shoot functioning will depend on pH (which may partly be a function of the nitrogen relations of the plant) and calcium concentration local to the site of action in the leaf. For these reasons and others, it is advisable to avoid being too prescriptive with recipes unless all other plant and culture variables are defined. The plant variables will vary dramatically with the age, developmental and physiological state of the mother plant.

1.1. GROWTH REGULATORS

Growth and organogenesis in vitro are highly dependent on the interaction between naturally occurring endogenous growth substances (often not defined or only poorly quantified) and the analogous synthetic growth regulators which may be added to the medium. Growth regulators can bring about de novo morphogenesis on media containing suboptimal salt concentrations, and considerably enhance morphogenesis on an otherwise optimal medium (Margara, 1969). The most effective growth regulator or combination of regulators will depend upon other medium constituents. Marked differences between the regenerative abilities of plants, apparent on simple media, are likely to be produced by the use of appropriate growth regulators. Cotyledons originating from separate clones of Douglas fir, exhibit clear differences in their capacity to produce
adventitious buds on a medium without growth regulators; but with the addition of a suitable auxin and a cytokinin, this variation diminishes considerably (Cheng, 1976). This is presumably because the clones differed markedly in endogenous hormone concentration.

1.2. GROWTH REGULATOR GENOTYPE INTERACTIONS

It is often necessary to alter the growth regulator composition and/or concentration for in vitro culture according to the species or variety of plant being grown, and so it is wise to test any new genotype on media containing several different combinations of regulators. There are many examples of this genotype-induced specificity in the literature. The following illustrate the types of interactions commonly experienced.

The concentration of 2,4-D required for the development and further growth of callus tissue from Phaseolus hypocotyl tissue was shown by Mok and Mok (1977) to depend upon the species and variety of plant from which the explants were taken. The growth regulator was inhibitory to P. lunatus genotypes at 0.55 mg/l but 2.2 mg/l was required to arrest callus growth of the P. vulgaris varieties examined. Callus of P. lunatus cv. ‘Kingston’ showed near optimum growth at 4.4 mg/l 2,4-D, whereas that of line PI 194314 was inhibited at this concentration. There was also an eight-fold difference in the auxin requirement of ‘Romana’ and two other P. vulgaris genotypes. Mok et al. (1982) have reported similar differences between Phaseolus genotypes in respect of their response to cytokinins. The activity of thidiazuron was approximately equal to that of zeatin in promoting the growth of callus of P. lunatus cv. ‘Jackson Wonder’, but in line PI 260415 it was at least ten times higher than that of zeatin. ‘Jackson Wonder’ callus showed cytokinin autonomy after treatment with either substance, whereas line PI 260415 remained cytokinin-dependent under all conditions tested.

Results of this kind suggest that endogenous growth regulators will have a significant influence on the effects of applied regulators. As physico-chemical and immunological techniques for quantification of endogenous regulators become cheaper and easier to use, we can reduce the necessity for testing the effects of endless combinations of different hormones at different concentrations. These techniques are expensive, however, and will not be available in all labs. Therefore central analytical facilities may be advantageous for the industry.

2. CONSISTENCY OF THE MEDIUM

2.1. USING SOLID OR LIQUID MEDIA

2.1.1. Semi-solid media

The rate at which cultures grow and produce shoots during micropropagation can be influenced by the physical nature of the medium. For many purposes it is convenient to make media semi-solid by incorporating a gel such as agar (see Chapter 4). The chief advantages of using a solidified medium are that:

- small explants are easily seen and recovered
- explants retain the same orientation throughout culture
- plant material is held above the medium so that no special means of aerating the culture is used
- shoots and roots grow in a more orderly fashion because the medium is stationary. In a moving liquid medium growth can be disorientated, shoot buds may be initiated but fail to grow into shoots; and in shoot cultures, separation of shoots for micropropagation can be difficult
- in an agitated liquid medium, callus may break up and/or shed cells to form a suspension culture. This does not occur on a solid medium.

There are disadvantages with the use of semi-solid media. Some agars contain inhibitory substances which may prevent morphogenesis in certain cultures (Powell and Uhrig, 1987), rates of growth can be slow (see below), toxic exudates from explants do not diffuse away quickly. One problem with the use of semi-solid media that has not received much attention is that of poor oxygen diffusion to roots developing in the medium. Rather surprisingly, recent work by Verslues et al. (1998) suggests that this may be a problem even in aerated liquid media. Low oxygen tensions will affect both root growth and function and is probably one of the reasons that plantlets from culture often show lesions in root functioning after transplanting, with potentially very serious consequences for plant water relations and the quality of plants produced (see Chapter 13).

Gel from solid media adhering to roots may cause problems for propagators when they are transferring plantlets to soil. A further disadvantage is that the use of semi-solid media increases the time taken to clean containers and glassware for re-use. Vessels may need to be autoclaved to re-melt the agar,
scrubbed and hand rinsed before being placed in a dishwasher.

2.1.2. Liquid media

As explained in Chapter 1, liquid media are necessary for suspension cultures but can also be used advantageously for the culture of callus and organs. Their use often results in faster rates of growth than are possible on semi-solid media. This is because a greater surface area of the explant is in contact with a liquid, and, providing the medium is agitated, the diffusion gradients for nutrients and for gases between it and the explant are reduced. These two factors combined, enable a more efficient uptake of nutrients and growth regulators. In addition, toxic metabolites, which may accumulate in the vicinity of the tissue are effectively dispersed and the partial pressure of oxygen in the root tissues will be increased.

Because plant material must be supplied with oxygen, the uses to which a static liquid medium can be put are very limited. Aeration may not be a problem in cultures contained in very small volumes of liquid (e.g. hanging drops), or in those plant parts submerged in shallow layers of liquid medium. Where a static liquid is to be used for the culture of large pieces of tissue or organs, explants must either be placed in a very shallow layer, so that some of the tissue protrudes above the surface; must float upon its surface; or be supported above the medium. A supply of oxygen for submerged cells, tissues or organs in large volumes of liquid media is normally obtained by shaking, rotating the containers, stirring the medium, or by introducing a flow of sterile air (or a controlled mixture of gases) into the culture vessel. These measures also have the effect of suspending and moving the cultured cells or tissues in the medium but as noted above, this treatment may not be adequate to avoid the development of hypoxia in roots. This may result in the accumulation of toxic metabolites, which will disturb root function. Ethylene will be produced in enhanced quantities at low oxygen tension and this metabolite can dramatically restrict shoot growth and function (Sharp, 2002), particularly if the gas accumulates in vessels where seals restrict gas exchange with the outside air (see below). There may also be direct effects of low oxygen tensions on membrane functioning and on water and ion uptake capacity (Jackson et al., 2003).

Anthers float on a liquid medium, but microspore-derived embryos or calluses are more dense and will sink if the dish is disturbed or moved: they may then die from lack of aeration. Small organs or small pieces of tissue can be made to float more effectively on liquid media if its density is increased by the addition of Ficoll. Anther-derived callus of barley (Kao, 1981) and embryos of *Triticum* could be made to float on the surface of a liquid medium, where they received improved aeration, when 100 g/l Ficoll (Type 400) was incorporated in the medium. In wheat, this treatment resulted in a high proportion of embryos developing into plants: growth in a standard liquid medium was less effective (Jones and Petolino, 1988).

Just occasionally a liquid medium is disadvantageous. Maize cells in suspension culture produce a mucilage, which interferes with cell growth: the formation of a very large amount of mucilage similarly hampered the culture of *Phragmites australis* embryogenic callus (Straub et al., 1988). The motion within liquid cultures may damage delicate tissue. The growth of ‘meristemoid-like’ green globular bodies (produced from *Asplenium nidus* rhizome segments) was unsuccessful on rotated or shaken liquid medium. Higuchi and Amaki (1989) suggested that this might have been due to the meristems on the surface of the globular bodies suffering from collision damage. One serious disadvantage of using liquid media for shoot growth and multiplication is that shoots, which are perpetually submerged in liquid cultures may have a water-soaked appearance (i.e. they are ‘hyperhydric’ - see below and Chapter 13) and will then be useless for micropropagation.

For certain kinds of culture, the disadvantages of a semi-solid or liquid medium can be overcome by growing cells, tissues or organs on a porous material irrigated with a liquid medium (see Chapters 2 & 4).

A liquid medium can be used successfully for shoot cultures. It is usual at Stage I to establish explants on an agar medium, and afterwards transfer them to a rotated or shaken liquid medium to promote rapid shoot growth at Stage II. This method was used for instance with carnation (Earle and Langhans, 1974a; Takayama and Misawa, 1982), *Colocasia esculenta* (Jackson et al., 1977), *Eucalyptus* (Mascarenhas et al., 1982), chrysanthemum and periwinkle (Takayama and Misawa, 1982). Axillary shoots are separated and rooted on an agar medium at Stage III or else are rooted *extra vitrum*. Jackson et al., (1977) reported that *Colocasia* shoot tip or axillary bud explants grew well when placed on
liquid medium at Stage I. There was no lag period as on agar medium.

2.1.3. Differential effects

Miller and Murashige (1976) demonstrated that selection between agar-gelled and liquid media (whether shaken or stationary) should not be undertaken arbitrarily. Shoot cultures of four kinds of tropical foliage plants responded differently to liquid or solid media during explant initiation (Stage I) and shoot multiplication (Stage II).

In these experiments, Cordyline explants at Stage I survived equally well on solid or liquid medium, but the latter was preferred because it induced greater shoot elongation. None of the Scindapsus explants stayed alive on a rotated liquid medium, only a small proportion survived on a static liquid medium, but nearly all grew satisfactorily on a filter paper support or on an agar medium (the solidified medium giving the better shoot growth). The fastest rate of Dracaena shoot multiplication at Stage II was obtained from explants grown on filter paper supports at Stage I. Culture of Cordyline or Scindapsus on static liquid medium at Stage II caused shoots to elongate rather than proliferate.

Wimber (1965) showed the advantage of using a liquid medium for the micropropagation of Cymbidium orchids. On a solid medium there was only a small amount of protocorm multiplication and protocorms tended to differentiate into shoots. On a shaken liquid medium, protocorms of most clones continued proliferation. A rapid rate of micropropagation was achieved by transferring protocorms produced in shake culture back to an agar-solidified medium, where, left undisturbed, they gave rise to plantlets. Similar results were obtained on Cattleya and Dendrobium orchids by Scully (1967) and Sagawa and Shoji (1967). Liquid medium has since often been found to enhance morphogenesis or the rate of shoot multiplication in other kinds of plant.

Single shoots of Stellaria did not form multiple shoots on a static medium, but gave rise to a mass of proliferating shoots in moving liquid culture (Walkey and Cooper, 1976). The leaves and stems of cocoa shoot tips elongated on liquid medium, but on agar, growth was restricted to bud swelling. Orchard et al. (1979) thought this was because on agar the cut surfaces of the explant became covered with a viscous exudate, which apparently restricted the uptake of nutrients. There was a higher frequency of adventitious leaf (shoot) regeneration from Arabidopsis callus on liquid than on agar-solidified medium (Negrutiu and Jacobs, 1978) and in experiments of Grewal et al. (1979), callus of Hyoscyamus muticus produced some complete plantlets on liquid medium, whereas on a solid medium the callus only proliferated. Callus of Tylophora indica formed somatic embryos in liquid medium, but they did not develop further unless the callus was transferred to a supplemented agar medium (Rao and Narayanaswami, 1972). When zygotic embryos of cocoa were grown in liquid culture, their development was more typical of that in vivo. Compared to embryos cultured on a semi-solid medium, there was additionally a higher incidence of asexual embryogenesis (Pence et al., 1980).

Results of the kind detailed above suggest that if propagators are to avoid having to develop bespoke micropropagation schedules for individual species and even for different cultivars then we need a better understanding of developmental plant physiology, particularly as influenced by physical structure and the gaseous composition of the medium of plantlet growth. The development of cellular and molecular techniques will allow a greater understanding of the physiological lesions that may develop in plants at low oxygen tensions and will also provide convenient cellular and molecular markers for easy identification of culture-induced lesions.

2.1.4. Propagation rates

Shoot cultures of several different kinds of plants can be multiplied satisfactorily in vitro at Stages II and III, when partly submerged in shallow layers of liquid medium without any agitation. Some micropropagation laboratories favour this technique for shoot cultures as it avoids the addition of expensive agar to the medium. Plantlets are also finally obtained without having to wash agar from their roots. Davis et al. (1977) were able to grow Stage II carnation shoot cultures in 50 ml liquid medium in 1000 ml flasks (i.e. a shallow layer) with only gentle agitation (one horizontal revolution per minute). Hussey and Stacey (1981) grew single nodes of potato in liquid culture within Petri dishes. The shoots, which were produced, developed roots naturally and so there was no need for a separate rooting stage.

2.1.5. Mass propagation using liquid media

Most attempts at producing very high numbers of plants by in vitro methods rely upon the use of liquid media for shoot or shoot meristem multiplication (see Chapter 2 & 4). Attempts to scale-up shoot culture in very large vessels of liquid medium have in the past
been largely frustrated by the problem of hyperhydricity (see Chapter 13) but recently significant progress has been reported (Hvoslef-Eide & Preil, 2005).

The differential results obtained on liquid and solid media can often be effectively combined to obtain the most efficient micropropagation system, e.g. shoot initials formed on an agar-solidified medium can be transferred to a liquid medium to produce rapid shoot growth. Simmonds and Cumming (1976) found that callus of Lilium hybrids could be multiplied most rapidly on a liquid medium, but that for the maximum rate of plantlet production it was necessary to transfer the tissue to solid medium. A very similar method of propagating daylilies was described by Krikorian and Kann (1979).

Although bulblets multiplied in liquid culture can be normal phenotypically, the multiplication of leafy shoots submerged in a liquid culture medium can be more problematical. A high rate of multiplication may occur, but as mentioned above, shoots frequently become hyperhydric. This was experienced, for example, with chrysanthemum (Earle and Langhans, 1974b), carnation (Earle and Langhans, 1975; Davis et al., 1977), peach (Hammerschlag, 1982) and Alstroemeria (Pierik et al., 1988b). When removed from the flasks, shoots were water-soaked and brittle. The leaves of hyperhydric shoots are often abnormally broad and thick, and may not show normal cuticular development (see Chapter 13). Shoots of this kind are easily damaged by desiccation or excessive sunlight and survive very poorly when subcultured or transferred to the external environment. Even without obvious hyperhydricity, shoots of micropropagated plants can show lesions in growth, development and function, which can adversely affect survival after transfer to the soil (Santamaria et al., 2000). These symptoms can often be attributed to low oxygen tensions in propagation media, but accumulation of other gases in the culture vessels can also be a problem (Davies and Santamaria, 2000) (and see below).

2.1.6. Double-phase media

Several workers have experimented with adding a layer of static liquid medium to the top of a semi-solid medium. Johansson et al. (1982) found that somatic embryogenesis could be induced more effectively from anthers if they were cultured upon a liquid medium over a layer of agar-solidified medium containing activated charcoal. Maene and Debergh (1985) tried a two-layered medium as a possible method of minimising the cost of elongating and rooting shoots from cultures of ornamental plants. The technique was effective on Begonia tuberhybrida shoot clumps. Shoot elongation could either be brought about by moving the clumps from the initial medium to an agar-solidified elongation medium or, a liquid elongation medium could be poured onto the surface of the initial agar medium without transferring the cultures (Viseur and Lievens, 1987).

The combined use of both solid and liquid medium has been patented in Hungary as an improved method of in vitro mass propagation (Molnar, 1987). In his paper Molnar says that shoot cultures of a wide range of plants including dicotyledons, monocotyledons and ferns, have been found to produce more axillary buds and shoots in a 2-phase system than on a comparable semi-solid medium. The micro-cuttings obtained were also more vigorous and formed strong roots more rapidly. The best results were obtained when both auxin and cytokinin growth regulators were put into the solid phase, but only cytokinins into the upper liquid medium. Explants seemed to take up nutrients and growth regulators from both the lower and upper layers: presence of the basal solid medium ensured that explants were suitably anchored.

Viseur (1987) discovered that while Pyrus communis shoot tips produced a high number of axillary shoots on liquid medium, the shoots soon became hyperhydric and unsuitable for propagation. There was no hyperhydricity on a medium solidified with 5-8 g/l agar, but the number of axillary shoots per explant was then low. The rate of shoot multiplication could be increased however, by adding a layer of liquid medium above the agar medium. Varieties very prone to hyperhydricity required 8 g/l agar in the solid phase; otherwise the best rate of shoot multiplication occurred with 5 g/l. A culture medium had to be present in both the solid and the liquid phase. The use of water-agar or water in the liquid phase, led to hyperhydricity and a decrease in both shoot quality and yield. Molnar (loc. cit) emphasised that the upper layer of liquid medium must coat the explants, while Viseur (loc. cit.) says that the best results are obtained when the tops of shoots are not quite covered with liquid.

The suitability of 2-phase shoot culture for pear has been confirmed by Rodriguez et al. (1991). Chauvin and Salesses (1988) have reported that the use of a double phase medium improved both the
number and the length of axillary shoots in shoot cultures of *Castanea sativa* and *C. crenata*.

Others have found that nutrients can be replenished by adding a layer of liquid medium above a semi-solid medium once it has become exhausted. Shoot cultures which would otherwise need to be sub-cultured can be maintained in this way, thereby reducing labour costs and the stress which is imposed on explants during subculture (Aitken-Christie and Jones, 1987; Vermeer and Evers, 1987).

The use of two phase media to minimise the necessity for transferring explants to new media in new vessels must be a potential cost saving development and presumably will also reduce plant losses due to physical damage. This apart, it is difficult to understand the physiological justification of placing different hormones in different compartments (liquid versus solid) and precisely adjusting the depth of the liquid media for different cultivars. There must be a good case for an increased research effort to simplify this aspect of the micropropagation process.

3. THE GASEOUS ENVIRONMENT

3.1. OXYGEN TENSION AND REDOX POTENTIAL

3.1.1. Control of oxygen supply

Although a small flow of gas into and out of cultured plant tissues will be caused by fluctuations in the temperature and atmospheric pressure of the growth room, most of the exchange of oxygen and other gases, is due to diffusion (Jackson et al., 1987). The available oxygen within cultured plant tissues is therefore influenced by:

- The concentration of the gas in the ambient atmosphere
- its rate of diffusion into the culture vessel; and
- its rate of diffusion into the cultured cells or tissues.

The concentration will be closest to that in the ambient atmosphere when the tissue stands free of the medium and is surrounded by a minimum film of moisture or medium. Submerged tissues or organs in a static medium are very poorly aerated.

3.1.2. The ambient atmosphere

The simplest way to influence the oxygen supplied to tissue cultures is to alter the concentration in the external atmosphere. The concentration of oxygen in air is normally close to 21% by volume. In a chamber, oxygen can be maintained at a concentration, which is above or below that in ambient air. The partial pressure of oxygen in the chamber air, is only a general guide to the amount of oxygen available to cultured tissues. An experiment on the effect of oxygen on cultures is most useful if, besides pO2, the permeability of the culture vessel to oxygen is also described (see e.g. Jackson et al., 1991). Greater accuracy can be obtained by measuring dissolved oxygen instrumentally at a location, which is either very close to the plant tissues or even inside the plant organs. Instruments that can achieve this end are now readily available (Ober and Sharp, 2003) and are providing some surprising results suggesting that most plants grown in aerated nutrient solutions with unrestricted oxygen supply to shoots may also show some limitations in root function due to limited oxygen supply to the roots.

3.1.3. Gaseous environment in the container

If sterilised air, or a gas mixture, is introduced directly into the culture vessel, problems of gas diffusion from the growth room air clearly do not exist. However with unventilated cultures growing in sealed vessels, oxygen concentration at the level of the medium or the tissues can be considerably less than that found externally. This is because use of oxygen by the culture creates a local deficit, which may not be immediately compensated because of the impedance to diffusion created by closures, especially if they are tightly fitting and impermeable. Kozai et al. (1988) found that there were 0.1 air changes per hour inside 47 ml tubes if they were covered with aluminium caps, 1.0 change when they were plugged with formed plastic caps, but 6.2 changes per hour if the tubes were covered with microporous polypropylene.

The shape of the culture vessel will influence gaseous diffusion. Not surprisingly, Bateson et al. (1987) have shown that in vessels of equal volume, growth is rapid where the diffusion distance is small, but is diminished as the length of the container is increased relative to its diameter.

The concentration of oxygen within the tissues of cultures grown predominantly above the surface of the medium is largely influenced by the partial pressure of the gas within the vessel. The leaves of shoot cultures can therefore absorb oxygen from the surrounding atmosphere as they would *in vivo* (unless they are covered with a water film). Meristem tips on a filter paper supported above a liquid medium are
probably better aerated than if they were placed on an agar medium.

One gaseous component of the atmosphere that has received little attention is the carbon dioxide concentration. It would seem clear that an elevated CO$_2$ concentration should enhance growth of plantlets that are autotrophic, but this may not always be the case, since high sugar concentrations in the medium can suppress CO$_2$ fixation (Van Huylenbroeck et al., 1998). Some plants have stomata that are very sensitive to high CO$_2$ levels and rather counter-intuitively, this can result in low CO$_2$ concentrations in the leaf, even when the vessel concentrations are high. This is sometimes the case (Santamaria et al., 2000) although in many situations the CO$_2$ within vessels is reduced by some plant fixation. Here also, low CO$_2$ will increase the susceptibility of the plant to oxidative stress if the incident radiation becomes too high. Such stress can severely limit plant growth and function.

3.1.4. Diffusion into the medium

Oxygen is only sparingly soluble in water. At 0°C, a solution oxygenated to saturation point from air contains only 10.2 cc oxygen per 1000 cc, and the amount which can be dissolved decreases as the temperature rises. Thus, increasing the incubation temperature of a culture from 21°C to 25°C will decrease the maximum amount of oxygen that can be dissolved in the medium by approximately 9%. Because air is a mixture of gases, more oxygen can be dissolved if water, or an aqueous solution of compounds, is flushed with pure oxygen gas at barometric pressure.

Slightly less oxygen can be dissolved in a plant culture medium than in water because of a phenomenon called the ‘salting out effect’. Dissolved salts and non-electrolytes such as sucrose, diminish the solubility of gases. In addition, the concentration of oxygen in plant culture media will usually not reach the saturation level. That actually found will depend on the surface to volume ratio of the medium in the vessel and the concentration (partial pressure) in the immediate gas phase. The former will be smaller when an identical volume of medium is placed in a test tube rather than a Petri dish. Surface to volume ratio is increased when liquid media are agitated or when gaseous mixtures are injected into them. The rate of oxygen uptake from air then depends on the rate of agitation or the rate of gas input into the medium. In a 30 ml flask it was found to be 700 ml/hr at a shaking rate of 100 cycles/min and 1500 ml/hr at 140 cycles/min (Long, 1961).

Oxygen diffuses considerably more slowly through water than through air (respective coefficients of diffusion at 25°C, 2.4 x 10^{-5} cm2/s and 0.205 cm2/s: Jackson et al., 1987). Unless a medium is agitated, oxygen will only be supplied very slowly to tissues submerged at any depth. The oxygen uptake of tissues on semi-solid medium is therefore predominantly through those parts which are exposed above the surface.

The passage of oxygen into plant tissues from a gas phase does not seem to present much of a restraint to normal Krebs’ cycle respiration, although steles of plant roots have been shown to have very low partial pressures of oxygen.

Soffer and Burger (1988) have obtained evidence that diffusion of oxygen from stationary water into plant tissues is impeded at the water/tissue interface. This resistance to diffusion is diminished but not eliminated if the water, or medium, is stirred or agitated (see also Ober and Sharp, 2003). Even a film of liquid over an otherwise exposed explant will reduce the rate of oxygen uptake into the tissues: the thicker the covering, the greater will be the barrier to the passage of the gas (Konings and Jackson, 1979).

3.1.5. Oxygen requirements of cultures

Partial pressures of oxygen in plants undergoing tissue culture are not often described in scientific papers. There is some evidence that the lowest tolerable level may vary according to plant species (Crawford and Braendle, 1996) but all plants require oxygen to survive, grow and develop. Much of the differential behaviour of plant cultures on liquid and solid media described in the literature may be related to differences in oxygen availability.

Respiration. Plant growth and functioning requires energy, much of which can be provided from metabolism of carbohydrates. The most common and efficient method of energy production is via the Krebs’ cycle. This takes place in both light and dark, although it is often called ‘dark’ respiration to distinguish it from photorespiration. Krebs’ cycle respiration requires oxygen: its rate usually decreases immediately the concentration of oxygen falls below that in air. Anaerobic respiration will provide energy for growth and functioning but the energy released from carbohydrate metabolism in this way is much reduced (e.g. Fitter and Hay, 2001).

The growth of potato callus can be doubled if the tissue is moved from air to an atmosphere containing
70% oxygen. Van der Plas and Wagner (1986) showed that this was because respiration was not at a maximum when the cultures were maintained in air. They suggested that oxygen supplementation could be generally employed to increase the rate of growth of callus cultures without inducing injury.

Growth. The rate of plant growth can be diminished by limiting oxygen supply (hypoxia, hypoxia). It can be seen to slow down at significantly higher oxygen partial pressures than those that markedly restrict respiration.

In a natural environment, roots frequently have to grow in low oxygen tensions: root cultures have been said to tolerate relatively low levels of oxygen availability (Street, 1957, 1969). However, the growth of roots in hydroponic solutions is increased by aeration, and cultured tomato roots will also grow more rapidly if a liquid medium is subjected to a continuous gentle agitation (Said and Murashige, 1979). Roots initiated on the shoots of some plants can be seen to grow on the surface of agar, rather than down into it, suggesting that oxygenation of the medium is limiting. The rate of growth of plant roots grown on media solidified with 1% nutrient agar can be almost doubled if the plants are placed instead onto 3.5% nutrient agar, which has been crumbled to make it porous (Barrett-Lennard and Dracup, 1988).

The rate of elongation of maize roots in a humid atmosphere, is reduced to only 50-60% of the maximum, when the partial pressure of oxygen falls to 0.1 atm (10 kPa, 75.2 mm Hg), or in a liquid medium, to ca 0.3 atm. Saglio et al. (1984) attributed the reduction in growth to the effect of oxygen on non-respiratory processes with a low affinity for oxygen. They found that cell division (the number of cells produced or the number of mitotic divisions) was not affected until the partial pressure of oxygen in the gaseous environment was reduced to 1 kPa (0.01 atm). The formation and growth of adventitious roots on microcuttings is also oxygen-dependent.

The rate of uptake of sucrose, nitrate and other nutrient ions by roots or unorganised tissues is reduced in conditions of hypoxia, although nitrogen supply may not limit growth even when the oxygen in solution is as low as 0.003 mmol\(^{-1}\), for some uptake still occurs (Kessel and Carr, 1972; Buwalda and Greenway, 1989). Cells die when oxygen levels fall below a critical level (anoxia) and although tissues can survive for extended periods at low oxygen tensions, there is no evidence that plant tissues can grow under these conditions.

Growth of non-photosynthetic tissues *in vitro* can be slowed considerably, apparently without damage, if the oxygen tension of the medium is appreciably reduced, either by supplying a controlled gaseous mixture to the culture or by preventing the diffusion of air by applying mineral oil or silicone overlays. Growth inhibition in these circumstances is due partly to a lack of oxygen, and partly to an accumulation of carbon dioxide in the tissue.

3.1.6. Cultures needing good aeration

Adequate gaseous exchange is essential to ensure a fast rate of multiplication in most tissue cultures, but a satisfactory rate of growth can usually be obtained when the dissolved oxygen concentration is below the aerobic saturation point. The best cell doubling time in suspension cultures of *Euphorbia pulcherrima* in one and two litre flasks, was achieved when the partial pressure of oxygen, \(pO_2\) was 60% (0.12 atm) (Preil et al., 1988). Similarly the best relative growth rate of embryogenic alfalfa suspensions seemed to occur when the medium was aerated so that it was 70% saturated with dissolved oxygen (\(pO_2\) 0.14 atm) (Stuart et al., 1987). The rate of growth of the *Euphorbia* culture (above) declined very rapidly if \(pO_2\) dropped below 10% (\(pO_2\) 0.02 atm).

A relatively high level of dissolved oxygen appears to be necessary for the formation of adventitious bulblets *in vitro*. Only a very small number of bulblets was formed from *Lilium speciosum* bulb scales in 100 ml of static liquid medium contained in 300 ml flasks (Takayama and Misawa, 1983). However, the number and dry weight of bulblets produced in 50 ml of the same medium unshaken in 90 x 20 mm Petri dishes were high, and the rate of proliferation even slightly exceeded that obtained when liquid medium in the 300 ml flasks was shaken at 180 rpm. Poor aeration in a column bio-reactor reduced the rate of bulblet proliferation (Takayama and Misawa, 1981). By contrast, although shoot growth of potatoes in large fermentors was found by Akita and Takayama (1988) to require conditions of high aeration [(2 litres of medium in an 8 litre bio-reactor supplied with air at 0.1 vvm (vessel volumes per minute)], once shoots of an adequate length had been obtained, they could be induced to produce miniature tubers in a larger volume of medium (6 litres in an 8 litre bio-reactor) where the aeration was less good. Tubers were not formed if shoots were cultured in the larger volume of medium from the start.
3.1.7. Beneficial effects of a diminished oxygen tension

There are several reports, which indicate that a reduction in the partial pressure of oxygen can be used to regulate growth and development in plant tissue cultures.

Photosynthesis. Although the growth of non-photosynthetic tissue is decreased when oxygen is limiting, that of green shoots or plants in the light may be increased. Intact plants with the C3 method of photosynthesis (most plants) increase in mass about twice as fast as those grown in air when grown in 2-5\% oxygen. This is because in such plants as much as 50\% of carbon fixed by photosynthesis in normal air is lost through the process of photorespiration. This is a rapid form of respiration specifically associated with substrates produced during photosynthesis through the oxygenase activity of the enzyme ribulose bisphosphate carboxylase/oxygenase (RUBISCO). This enzyme has a high affinity for oxygen and activity is inhibited by O\(_2\) concentrations below those in air, and almost completely repressed when the atmospheric oxygen level is about 1-2\% (Zelitch, 1978). Krebs’ cycle respiration utilising electron transfer from cytochrome oxidase to oxygen can take place at much lower oxygen concentrations. In high light, shoots grown at low oxygen tensions can therefore accumulate dry matter quicker than they can in air, but to achieve the most rapid gain, it may be necessary to supply rather more oxygen during the night to permit Krebs’ cycle reactions to proceed efficiently.

Shimada et al. (1988) have shown that the net photosynthetic rate of green shoot cultures of Primula malacoides and Chrysanthemum morifolium increases by about 1.5 times when they are grown in an atmosphere containing 10\% oxygen instead of normal air. The net photosynthetic rate in 1\% oxygen was about 3 times that in air, and was comparable to that of plants growing in vivo: plants were autotrophic and grew using only carbon derived from carbon dioxide, without sugar being added to the medium.

Differentiation. The nature of cell differentiation in culture may be regulated by the available oxygen concentration. Dalton and Street (1976) found chloroplast development in suspension cultures to be favoured by low partial pressures of oxygen and high CO\(_2\) concentrations (5-10\%). Ethylene, naturally produced by the cultured cells, was antagonistic. Friable callus strains (which may admit more oxygen or may have insufficient internal thickness for full respiratory inhibition) are less liable to develop chlorophyll than compact calluses from the same plant tissue (Street, 1977b). The effect of oxygen on chloroplast formation may be unusual, because other kinds of development in plant cells and tissues appear to be promoted in oxidative conditions (see below). Lignin synthesis can be inhibited by antioxidants (Siegel and Porto, 1961).

Organogenesis and embryogenesis. If, in the medium used for suspension cultures of carrot cells, the dissolved oxygen concentration was reduced below a critical level of 1.3 mg/l (41 mmol\(^{-1}\) or approx. 16\% of the saturation level), small ‘meristematic’ cells were produced which resembled those formed under the influence of high auxin concentrations. These cells differentiated into embryos, whereas the larger cells produced at higher oxygen concentrations only gave rise to roots (Kessel and Carr, 1972).

Carman (1988) found that wheat somatic embryos, incubated in an atmosphere containing 3.2 mmol\(^{-1}\) oxygen (7.8\% oxygen at a total pressure of 760 mm and 25°C, which could produce a maximum of ca. 90 mmol\(^{-1}\) dissolved oxygen), formed less callus than in ambient air, but the proportion of embryogenic scutellar callus to non-embryogenic embryo axis callus was increased. The embryos formed in low oxygen had fewer abnormalities, secondary embryos, or precocious germination than normal, and a high proportion of them germinated to give seedlings. Abnormal in vitro growth and precocious germination of immature zygotic embryos of barley was prevented by culture in an atmosphere containing less than 9\% oxygen (i.e. less than ca. 3.7 mmol\(^{-1}\)) (Norstog and Klein, 1972).

As pollen microspores confined within an anther are more easily induced to produce sporophytic embryos than if they are isolated on culture media, Sopory and Maheshwari (1976) suggested that reduced oxygen tension is also necessary for androgenesis. This hypothesis seems to be confirmed by the results of Harada and Imamura (1983). Culturing Nicotiana tabacum anthers at reduced atmospheric pressure, in an anaerobic environment, or in a nitrogen atmosphere containing less oxygen than is found in air, increased the proportion of microspores undergoing direct embryogenesis: this resulted in more anthers producing plantlets and a greater number of plantlets per anther. When incubation was carried out at 28°C and 1 bar, the most stimulatory oxygen concentration was 5\% (giving ca. 56 mmol\(^{-1}\) dissolved oxygen).
Suspension cultured cells of *Selenium candolii* produced 4-5 times more somatic embryos per fresh weight of inoculum if, after they were plated on a medium lacking an auxin, they were covered with a layer of liquid paraffin oil. Mathur (1991) supposed that this was due to the reduced concentration of oxygen in the medium. As a reduction in the partial pressure of oxygen would be expected to reduce the exposure of cells to oxidative conditions, the above findings are in contrast to the reports of Earnshaw and Johnson (1986), which suggest that oxidative conditions are required for embryogenesis. Jullien (1974) also thought that a relatively high oxygen tension was necessary.

Many seeds with a hard seed coat are able to begin germination under anoxic conditions until the seed coat is ruptured, when normal aerobic respiration takes over. Henrich et al. (1981) noted that seeds of some orchids would germinate with very little oxygen, submerged at the bottom of 15 ml static liquid medium. The protocorms passed through their early developmental stages as if they had been on the surface of an agar medium. Other workers have found that in general, callus growth and somatic protocorm proliferation in orchids is promoted in liquid media where there is a good supply of air, while shoot growth is favoured on static liquid media (Alpi and Garibaldi, 1969; Cheng and Chua, 1982).

The oxygen tension of a medium may be one factor determining organogenesis and subsequent bud growth. Proliferation of *Spiraea* shoots was increased (apparently by more adventitious shoots being formed) after shoot cultures were subjected to a period of anoxia by flushing with nitrogen gas (Norton, 1988; Norton and Norton, 1988a).

An unshaken liquid medium was better than a shaken one (or agar) for inducing coconut flower meristems to grow into ‘shootlets’ (Blake and Eeuwens, 1982).

3.1.8. **Physiological effects of oxygen availability**

Redox potential. The redox potential (reduction potential) \(E_h \) of an aqueous solution is a measure of its tendency to either gain or lose electrons (i.e. to oxidize or reduce newly available substances). Redox potential is measured in units of electrical potential difference (volts). The more positive the value of \(E_h \) becomes, the greater is the proportion of oxidant to reductant in solution. As \(E_h \) becomes more negative, the relative proportion of reductants increases. The resistance that a solution shows to a change in its \(E_h \) is known as its poise. This is analogous to the buffering of solutions against changes in pH.

The redox potential of a solution is altered by pH (increasing as pH is reduced); temperature; and in the case of a gas, pressure. Standard redox potentials \(E_0 \) are therefore defined at a given pH, pressure and temperature (usually pH 7, 25°C and 1 atmosphere, unless otherwise stated) when the concentrations of reductant and oxidant are equal (i.e. when the compound in solution is 50% oxidised or reduced).

The redox potential of a plant culture medium varies according to the concentration of dissolved oxygen and the respiratory activity of the cells or tissues growing in it. Anaerobic bacteria cannot be cultured until there is very little oxygen in the medium and bacteriologists often estimate the oxygen tension of a medium or culture by using redox-sensitive dyes, which are coloured when oxidised and colourless when reduced. The \(E_0 \) values at which colour changes occur, vary according to the dye chosen and the pH of the solution.

In the first stage of normal respiration, glycolysis (which does not require oxygen), glucose is converted to pyruvic acid. Pyruvate is normally passed to the Krebs’ or tri-carboxylic acid (TCA) cycle, which is the most energy-efficient of the respiratory processes and requires oxygen for the oxidation of carbon compounds to carbon dioxide. In the process of being oxidised, substrates donate electrons, which are passed on through a series of carriers of increasingly positive redox potential to oxygen, which is thereby reduced to water.

When oxygen is deficient, so that the TCA cycle cannot operate, plants can obtain some further energy (but with much less efficiency) by the decarboxylation of pyruvate to acetaldehyde and the reduction of this compound to ethanol (fermentation). The presence of these two last compounds in tissue culture vessels indicates that glycolysis has been followed by fermentation in some parts of the cultured tissues (Jackson et al., 1987): both chemicals have been commonly detected where the presence of volatiles has been examined [e.g. in flasks containing callus cultures - Thomas and Murashige (1979a,b); or in *Prunus* shoot cultures - Righetti et al. (1988)].

Plants are also capable of respiration in the presence of oxygen by another route, the ‘hexose monophosphate shunt’ or the ‘pentose phosphate pathway’. In tobacco callus this method becomes much more dominant during adventitious shoot formation (Thorpe and Laishley, 1973; Brown and Thorpe, 1980). Although the pentose phosphate pathway
The frequent addition of hydrogen peroxide (a strong oxidising agent) has been shown to increase the yield of somatic embryos and bring about a decrease in the concentration of glutathione (Kapik et al., 1986). But on the other hand, Harada and Imamura (1983) were able to increase embryogenesis from pollen within Nicotiana tabacum anthers by incorporating the reductants ascorbic acid (0.6-568 mM), mercaptoethanol (1-1000 mM) or dithiothreitol (0.6-648 mM), and Joy et al. (1988) found that the addition of 40-80 mM ascorbic acid to a shoot-forming medium, enhanced adventitious shoots in both young and old Nicotiana tabacum callus.

The concentration of reduced glutathione, another reducing agent, has been noted to be higher in proliferating callus than in embryogenic callus of wild carrot (Earnshaw and Johnson, 1985), suggesting that oxidative conditions were required for embryogenesis. This result is supported by the later finding that adding reduced glutathione to the growth medium prevents embryogenesis in carrot tissue cultures: the addition of other antioxidants (ascorbic acid and vitamin E), can have a similar effect (Earnshaw and Johnson, 1986). By contrast 10 mg/l glutathione (presumably GSH) has been added to media for the induction of embryogenesis in Medicago sativa, apparently without inhibitory effects (Senaratna et al., 1989).

Tissues often become brown and necrotic after excision due to the presence of activated oxygen and other oxidising substances. Several authors have noticed that tissue browning and necrosis is not necessarily detrimental to morphogenesis, and Krul and Worley (1977) found that somatic embryos of Vitis all arose adjacent to areas of necrotic cells. In Paulownia tomentosa, the presence of necrotic tissue was apparently essential for the initiation of embryogenesis (Radojević, 1979).

Reducing agents. It is sensible to include a discussion of the effects of reducing agents on in vitro cultures at this point, even though they are not factors of the external environment. Ascorbic acid. L-ascorbic acid (ascorbate, Vitamin C) is synthesised by plants and occurs naturally in cells in relatively high concentrations [e.g. 13 mg/100 g fresh weight of suspensions of Rosa rugosa cultured in the dark (and even more in the light) (Wegg and Townsley, 1983); 23.4 g/100 g chlorophyll in protoplasts (Foyer et al., 1983)]. Ascorbate acts as a reductant, being converted by oxidation to dehydroascorbic acid. Reconversion of dehydroascorbic acid to ascorbic acid, by the enzyme dehydroascorbate reductase, brings about the oxidation of glutathione.

Ascorbic acid, which is water soluble, and Vitamin E, which is hydrophobic and associated with membranes (see below), provide cells with a defence against oxidative injury. Vitamin C can scavenge injurious hydrogen peroxide (Foyer et al., 1983; Thompson et al., 1987) and some other activated oxygen radicals. It is responsible for reducing the oxidised form of Vitamin E.

Ascorbic acid has been added to few published media for plant tissue culture and so it is not an essential ingredient. Several researchers have included small quantities (i.e. 0.1-1.0 mg/l) without evidence of a clearly beneficial effect. Definite responses have, however, been measured in some studies. Bonner and Axtman (1937) reported that adding 50 mg/l (but not 25 or 100 mg/l) to the culture medium increased the growth of isolated Pisum sativum roots. The validity of this finding has been confirmed by Liso et al. (1988) who found that root growth of Allium cepa roots was increased over periods of several weeks by moderate concentrations of ascorbic acid (or its precursor, L-galactono-γ-lactone). It was noted that 0.1 mM ascorbic acid stimulated DNA synthesis in root meristems and appeared to shorten the cell cycle, especially the G1 phase. Chlorophyll formation in callus cultures of several plants was assisted by the presence of 10 mg/l ascorbic acid or ascorbate (Fukami and Hildebrandt, 1967).

Thiourea (thiocarbamide). The reducing agent, thiourea is routinely incorporated into media by some workers (Pua et al., 1983). It has been reported to enhance the growth of Lactuca sativa and Cichorium endiva callus (Fukami and Hildebrandt, 1967) and to promote the growth of uniform cell suspensions.

pathway is slightly less energy-efficient than glycolysis linked to the oxidative-TCA cycle, it allows for the formation of higher concentrations of reduced nucleotides and 5-carbon intermediates, important for the synthesis of nucleic acids.

Some workers have suggested that development is associated with hypoxia: others have thought it to be an oxidative process. Publications describing the addition of oxidising or reducing agents to plant tissue cultures, have provided evidence supporting both views. Note that, redox potential will affect the availability of inorganic ions in plant cultures because the solubility of metal ions in water can depend on both pH and E_h. For example, Fe^{2+} becomes more soluble as E_h and pH decrease.

It is sensible to include a discussion of the effects of reducing agents on in vitro cultures at this point, even though they are not factors of the external environment. Ascorbic acid. L-ascorbic acid (ascorbate, Vitamin C) is synthesised by plants and occurs naturally in cells in relatively high concentrations [e.g. 13 mg/100 g fresh weight of suspensions of Rosa rugosa cultured in the dark (and even more in the light) (Wegg and Townsley, 1983); 23.4 g/100 g chlorophyll in protoplasts (Foyer et al., 1983)]. Ascorbate acts as a reductant, being converted by oxidation to dehydroascorbic acid. Reconversion of dehydroascorbic acid to ascorbic acid, by the enzyme dehydroascorbate reductase, brings about the oxidation of glutathione.

Ascorbic acid, which is water soluble, and Vitamin E, which is hydrophobic and associated with membranes (see below), provide cells with a defence against oxidative injury. Vitamin C can scavenge injurious hydrogen peroxide (Foyer et al., 1983; Thompson et al., 1987) and some other activated oxygen radicals. It is responsible for reducing the oxidised form of Vitamin E.

Ascorbic acid has been added to few published media for plant tissue culture and so it is not an essential ingredient. Several researchers have included small quantities (i.e. 0.1-1.0 mg/l) without evidence of a clearly beneficial effect. Definite responses have, however, been measured in some studies. Bonner and Axtman (1937) reported that adding 50 mg/l (but not 25 or 100 mg/l) to the culture medium increased the growth of isolated Pisum sativum roots. The validity of this finding has been confirmed by Liso et al. (1988) who found that root growth of Allium cepa roots was increased over periods of several weeks by moderate concentrations of ascorbic acid (or its precursor, L-galactono-γ-lactone). It was noted that 0.1 mM ascorbic acid stimulated DNA synthesis in root meristems and appeared to shorten the cell cycle, especially the G1 phase. Chlorophyll formation in callus cultures of several plants was assisted by the presence of 10 mg/l ascorbic acid or ascorbate (Fukami and Hildebrandt, 1967).

Thiourea (thiocarbamide). The reducing agent, thiourea is routinely incorporated into media by some workers (Pua et al., 1983). It has been reported to enhance the growth of Lactuca sativa and Cichorium endiva callus (Fukami and Hildebrandt, 1967) and to promote the growth of uniform cell suspensions.
(Nitsch et al., 1970). Its antioxidant effect has been noted to produce a growth regulatory effect in vivo; dormant peach buds, which can be stimulated to grow in partially anaerobic conditions (Erez et al., 1980), can also be forced into growth by sprays of thiourea.

Together with other thiocarbamides, the compound has three notable biological properties: it complexes with metal ions, particularly with those of copper and Fe(III); together with other carbamides, it is (like ascorbic acid) an effective scavenger for hydrogen peroxide (being readily oxidised to a disulphide); and is able to inactivate peroxidase enzymes (Skellern, 1989).

Glutathione. Fuchigami and Nee (1987) have suggested that glutathione has a role in overcoming rest or dormancy in plants. Reduced glutathione is thought to maintain protein thiols in a reduced state, thereby inducing polysome (the association of one mRNA molecule with several ribosomes) activation and protein synthesis. Like pentose phosphate respiration, high levels of reduced glutathione ensure an above-normal availability of NADPH. It has been proposed that the balance of reduced glutathione (GSH) to oxidised glutathione (GSSH) influences cell extension, growth and cell division (Standardi and Micheli, 1988). The addition of 2 mM glutathione to Gamborg et al. (1968) B5 medium, promoted cell division of *Brassica* callus (Sethi et al., 1988). As with embryogenesis, indirect adventitious shoot formation in *Malus* was prevented by 100 mg/l GSH (James et al., 1984).

4. GROWTH REGULATORS

Auxins have been found to activate enzymes regulating respiration via the pentose phosphate pathway, while enzymes concerned with glycolytic respiration are reduced in activity (Black and Humphreys, 1962). Kinetin too has been thought to have the same effect (MacLeod, 1968) and carrot cells prompted to divide by kinetin were noted to consume less oxygen than when this cytokinin was absent (Neumann, 1968). Some cytokinins are capable of acting as reducing agents in photochemical reactions and Rothwell and Wright (1967) proposed that this might account for part of their biological activity.

High levels of the naturally-occurring auxin, IAA, promote active cell division. Enzymes in oxidative conditions readily denature this phytohormone, but breakdown can be prevented by anti-oxidants of various kinds (Stonier et al., 1970). The synthetic auxin 2,4-D, which is frequently used to control the continuation of proliferative growth or the onset of embryogenesis, has been said to elevate cellular antioxidant (GSH) concentrations (Earnshaw and Johnson, 1986), while the addition of ascorbate to culture media decreases it in favour of oxidised glutathione (GSSH) (Standardi and Micheli, 1988). This suggests that it may be important to correlate redox potential with stages of morphogenesis.

For detailed information on plant growth regulators see Chapters, 5, 6 & 7.

5. CARBON DIOXIDE

5.1. GROWTH REGULATION

5.1.1. Non-autotrophic requirement

Low concentrations of carbon dioxide can stimulate ethylene biosynthesis: at higher concentrations (1-10% CO₂) it competitively inhibits ethylene action. It seems likely that many of the effects of CO₂ on tissue cultures may be exerting their influence through a modification of the ethylene effect but there has been some discussion of a non-photosynthetic requirement for carbon dioxide in plant tissue cultures. The presence of carbon dioxide (optimum partial pressure 0.1 atm) may aid initiation of new growth in low-density cultures of sycamore cells in suspensions, or on agar plates. The gas had a conditioning effect: non-photosynthetic fixation resulted in the cells producing organic acids and amino acids, which were essential for growth.

Attempts to replace these naturally produced compounds with synthetic alternatives were unsuccessful (Stuart and Street, 1971; Gathercole et al., 1976). These results have been confirmed in other plants. Besides leading to the biosynthesis of organic and amino acids, non-autotrophic fixation has also been found to result in the production of lipids (Nesius and Fletcher, 1975; Obata-Sasamoto et al., 1984; Plumb-Dhindsa et al., 1979; Vanderhoven and Zyrd, 1978).

Concentrations of CO₂ of the order of 2000 ppm can occur in tissue culture vessels (Santamaria et al., 2000) and in many plants, this concentration has been shown to promote bleaching of leaves, particularly when combined with high photon flux densities. This can substantially limit CO₂ uptake.
and may be the result of photo-oxidative damage (Santamaria et al., 2000).

5.1.2. Effect on organogenesis

Shoot formation from tobacco cotyledons was inhibited if the gas phase contained 1% CO₂ rather than ambient levels during the first 7 days of incubation. A similar effect was produced by 5 mM aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis, which led Everett (1982) to suggest that carbon dioxide was antagonising the action of ethylene. By contrast, Cornejo-Martin et al. (1979) reported that ethylene (5 vpm) combined with 2% CO₂ was more effective than ethylene alone for promoting shoot formation in rice callus in the presence of BA. Similarly Kumar et al. (1986) found that the ethylene and the carbon dioxide which built up in sealed containers after inoculation of Pinus radiata cotyledons, were responsible for promoting shoot morphogenesis on a medium containing BA.

6. CONTAINER SIZE

Container volume can sometimes affect growth and morphogenesis in vitro. These effects are probably due to different concentrations of oxygen, carbon dioxide, ethylene and other volatiles in the air space within the container. Vessels of different size usually differ in the ratio of explant to medium, explant to air, and medium to air: the shape of the vessel can also influence the growth rate of cultures by modifying the rate of gaseous diffusion (Bateson et al., 1987).

There are many examples in the literature of vessel size having an effect on the rate of culture growth or the rate of shoot proliferation. They usually show that growth is not at an optimum in very small containers: sometimes an optimum size of container has been demonstrated. Fresh weight increase, morphogenesis or the rate of axillary shoot proliferation is frequently affected in different ways. Growth of Saintpaulia shoots was greater in 120 ml jars than in 60 ml ones (Start and Cumming, 1976) and shoot proliferation in shoot cultures of several woody plants better in 200 ml or 350 ml vessels than in 60 ml tubes (McClelland and Smith, 1990).

6.1. PRACTICAL RECOMMENDATIONS ON VESSEL SIZE

It is impossible to recommend vessel sizes for any particular type of micropropagation procedure without prior experimentation. The best size and shape of vessel will vary from one species to another, and will depend on factors such as the material from which the vessel is made (e.g. glass or gas-permeable plastic), the type of closures used, the volume of medium and the density of inoculation (e.g. Jackson et al., 1991).

Takayama and Misawa (1981) and, since then, many others (see Hvoslef-Eide and Preil, 2005) have attempted to scale-up the propagation of various kinds of ornamental plants using liquid culture in large vessels. Leaf segments of Begonia hiemalis undergoing direct shoot regeneration cultured in jar or bubble column fermentors had a lower growth rate than those in shaken 150 ml Erlenmeyer flasks. This was thought to be due to the relative rates of aeration (Takayama and Misawa, 1981). In general terms, large vessels are labour-saving devices and by using them methods of culture can be simplified permitting the growth of larger plants in less physiologically-demanding conditions.

7. THE PHYSICAL ENVIRONMENT

7.1. TEMPERATURE

In their natural environment, plants usually experience temperatures which fluctuate widely, especially between day and night. It is probably not necessary to mimic this day to night variation but we should be aware that day temperature and night temperature do not always exert the same effects on plant growth (e.g. Langton and Cockshull, 1997). The growth of plant cultures may be improved by lowering the temperature at night because dark respiration will be reduced and where growth rooms have to be heated, there is a saving in fuel costs by reducing the night temperature. Direct effects of night temperature on growth can be more varied, with increasing night temperature decreasing internode length in some species and increasing it in others. A further advantage of alternating temperatures is that they assist the exchange of gases in culture vessels (Chalupa, 1987). However, such variation is not essential and, in many laboratories, tissue cultures are maintained in growth rooms at the same temperature by night and day.

To speed growth and morphogenesis in vitro, cultures are generally maintained at mean temperatures which are higher than those which would be experienced by the same plants growing in
vivo. The average constant growth room temperature employed in a large sample of experimental reports was found to be 25°C (with a range between 17 and 32°C). Tropical and subtropical plants such as cotton, rice, Citrus and Bougainvillea tend to be cultured at slightly higher temperatures than temperate species (average 27.7°C, range 24-32°C). Where a diurnal fluctuation is preferred, a somewhat higher-than-average day temperature is usually coupled with a dark-period value that is ca. 4-8°C lower than the daytime figure: typical variations adopted are 25°C day: 20°C night, or 28°C/24°C.

There is not a single defined temperature for the tissue culture of any one species and that employed in published reports will often be found to vary according to the experimenter and the kind of organ or tissue being cultured. Such differences usually have only minor effects on the rate growth or propagation.

Many small micropropagation laboratories have only a single growth room in which temperature is fairly uniform. Different kinds of plant can be successful multiplied under such conditions, but there are frequent examples in the literature to prove that different plant species can have distinct temperature optima. Dicentra spectabilis shoot cultures proliferate most rapidly at 22°C and explant growth and shoot proliferation are both poor at 27°C.

Note that in lighted rooms, the temperature inside culture vessels is usually several degrees higher than room temperature, due to the greenhouse effect (Debergh, 1988). In addition, the base of the vessels is frequently warmer than the top.

The following discussion shows how explant establishment, culture growth, plantlet development, and morphogenesis can be temperature-dependent.

7.1.1. Culture establishment and growth

The rate at which plant material grows in vitro, usually declines slowly as temperatures are reduced below the optimum, while above the optimum, the rate of growth falls off more rapidly, and cultures also frequently appear to be unhealthy. Although shoot cultures of Artocarpus heterophyllus (Jackfruit) produced more axillary shoots at 25 or 30°C than at 20°C, hardly any were obtained at 35°C. Rahman and Blake (1988) supposed that at the higher temperature, respiration exceeded photosynthesis.

Diamantoglou and Mitrakos (1979) discovered a clear temperature optimum for the growth of olive embryos. Although growth was slow initially at 25°C, 70% of the embryos developed into plantlets at this temperature while at 15, 20 or 30°C, the success rate was more than halved. Leaf blade explants of Vitis survived in culture at 20 and 25°C, but did not grow. Growth was only satisfactory at 29°C; at 32 and 34°C the explants survived for only a short while (Favre, 1977).

Culturing explanted peach shoot tips at 21-24°C ensured 80-90 per cent survival, but only 7 per cent survived at 28°C (Hammerschlag, 1981, 1982). Callus cultures too, show large differences in growth rate depending on temperature. Tumour callus of sorrel grew rapidly at 21 and 25°C and only poorly at 5, 15 or 30°C. At 36 and 45°C there was little growth and the callus turned brown (Nickell and Burkholder, 1950).

Temperature requirements can sometimes vary between quite closely related genotypes. Having established cultures from stem nodes of 14 different Rosa hybrids at 24°C, Horn et al. (1988) looked at the effect of a range of temperatures on the rate of shoot multiplication. The best overall results were obtained at 18°C, but certain ‘thermonegative’ hybrids gave the best results at 12°C while in other ‘thermopositive’ ones, shoot proliferation was at an optimum at 18 or 24°C.

There are many other examples where the cultures of certain plants require below-average temperatures. For example, the best plantlet growth from the floral meristems in cauliflower curd tissue occurred at 18°C: growth was less at 22°C (Walkey and Woolfitt, 1970). Single node cultures of Syringa vulgaris grew satisfactorily at 21°C in a 16 h day under an irradiance of 5 Wm⁻², but if the cultures were kept at 25 or 27°C, growth was abnormal and there was leaf yellowing and curling (Pierik et al., 1988a).

7.1.2. Morphogenesis

Shoot bud formation. Organogenesis frequently reaches an optimum within a narrow range of temperatures, which varies between species.

Induction at relatively low temperatures. Adventitious shoot initiation on Begonia cheimantha leaf explants has been observed to be at an optimum in leaf cuttings at 15°C (Heide, 1965) and in petiole segments at 15-20°C (Fonnesbech, 1974a). Further shoot development was, however, enhanced at 24°C (Fonnesbech, 1974b). The initiation process is promoted by cytokinins, and in both series of experiments, incubation at 25-27°C inhibited kinetin-induced bud formation. Similarly in Streptocarpus hybridus, direct shoot formation on leaf discs (which were not maintained aseptically) was best at an
incubation temperature of 12°C, and fewer buds were formed per disc as the temperature was increased up to 30°C (Appelgren and Heide, 1972). Shoot induction on peduncle explants of Anemone coronaria took place only at 15-19°C, and above 26°C most explants died (Sutter and Langhans, 1978).

Induction at high temperatures. In some plants the temperature for the best induction of adventitious organs is somewhat higher than that required for growth. In Pinus radiata for example, adventitious buds formed most readily on juvenile explants when they were cultured in a 28°C (day), 24°C (night) regime, whereas the shoots, which were formed grew best at 24/20°C (Aitken et al., 1981). A very different temperature optimum was found for shoot formation for fragmented shoot apices of Vitis vinifera. Here the rate of initiation and multiplication of adventitious shoot buds was much greater at 35°C than at 27, although explants were killed at 38°C (Barliss and Skene, 1982).

Induction at normal temperatures. In other plants, shoot regeneration seems to be most effectively induced at temperatures closer to those used for normal tissue culture. On rapeseed (colza) flower stalk segments, where adventitious shoots were readily formed at 24°C, low temperatures (13°C for 16 h day, 6°C at night) inhibited subsequent morphogenesis, especially when applied during the first 1-2 weeks of culture (Margara and Leydecker, 1978). Although in Brassica campestris, adventitious shoot formation from leaf discs was better at 20°C than at 25°C, it occurred satisfactorily at several temperatures in B. napus and B. oleracea (Dunwell, 1981; Johnson and Mitchell, 1978). Very similar results were obtained by Kato and Ozawa (1979) with leaf fragments of Heloniopsis. Shoot bud formation (here largely independent of the addition of benzyl adenine) was at an optimum at 21-25°C. Pretreatment at 30°C for 7 days or more, reduced the number of buds eventually formed in segments of both young etiolated, and mature green leaves, but not in segments of young green leaves unless they were kept in the dark at the same time.

Pretreatments. Morphogenesis is often influenced by the temperature at which mother plants or cultures have been maintained previously. Kato and Ozawa (1979) reported that Heloniopsis shoot initiation was enhanced if explants were maintained at 16°C for 7-21 days before culture at a higher temperature and Von Arnold and Eriksson (1979) found that to induce a high proportion of Picea abies needles to form adventitious buds, they should be kept at 10-16°C before incubation at 20°C. Even lower temperatures are inductive in other plants (see below). Maintaining tomato stem explants for an unspecified time at a ‘low’ temperature of 19°C was described as enhancing their regenerative potential (Reynolds et al., 1982).

Selection for a low temperature response. Heating costs involved in the greenhouse culture of ornamentals make it desirable to obtain varieties with an ability to grow and flower in reduced temperatures. Grunewaldt (1988) has reported the selection of clones with an ability to grow at 16°C (instead of the normal 20°C) by low temperature induction of direct shoot regeneration in leaf explants, some of which were from mutagen-treated plants. The earliest clones to flower at 16°C were amongst the plants regenerated by a 7-day incubation at 26°C followed by 12 weeks at 15°C.

Direct adventitious root formation. The formation of adventitious roots on shoots is temperature dependent. For example no callus or roots formed on young shoot tips of Asparagus at 0, 10 or 15°C, but 20 per cent of cuttings rooted at 20°C, and 45 per cent at 25°C (Gorter, 1965). In many plants, root induction on the shoot micro-cuttings produced in vitro seems to require a slightly lower temperature than is necessary for shoot multiplication and growth.

Conifers seem to root most effectively at a temperature of ca. 20°C (Chalupa, 1987). Shoots derived from Douglas fir shoot cultures grown at 24°C, yielded only a few plantlets if root induction was carried out at this temperature. The plantlets also showed a discontinuity in their anatomy due to the formation of callus at the shoot-root transition zone. On the other hand, many plantlets of normal appearance were produced at 19°C (Cheng, 1978). Digitalis lanata shoots from cultures grown at 24°C were best rooted at 19°C/14°C (day/night) (Schner and Reinhard, 1982, 1986) and shoots obtained from Aconitum carmichaeli shoot cultures multiplied at 25°C produced more roots at 20°C than at 25°C (Hatano et al., 1988).

Not all plants respond in this way: shoots of some may root better at a higher temperature. Microcuttings of two apple varieties produced at 25°C, rooted well at 24-26°C but rooting was partially suppressed at 20-22°C or 28°C (Kataeva and Butenko, 1987). Zimmerman (1984) obtained similar results with shoots of different apple cultivars from shoot cultures maintained at 25°C. A very high proportion of shoots rooted when placed on a rooting
medium in the dark at 30°C for one week, followed by a 16/8 h regime at 25°C. The rooting of ‘Delicious’ and ‘Vermont Spur Delicious’ was improved by incubation at 30°C, while that of ‘Royal Red Delicious’ was best at 35°C.

Tuber and bulblet production. Incubation temperature is reported to have a marked effect on the rate of *in vitro* tuber formation in potato. At least 10 times more tubers were formed at a constant 20°C than at 28°C, or at a day temperature of 27°C and cooler nights (Wang and Hu, 1982). In bulbous species, culture at certain temperatures can cause the cessation of shoot growth, a type of dormancy, which often requires a cold treatment to reverse it (see below).

Culturing *Lilium longiflorum* bulbscales *in vitro* at 30°C resulted in the formation of bulblets, which produced leaves when transplanted, either without further treatment or after the bulblets had been immersed in water at 45°C for one hour. All the bulblets regenerated at 25°C were fully dormant however, and did not produce leaf axes when transplanted (Stimart and Ascher, 1978; Stimart et al., 1983). Scale sections of *Lilium speciosum* cultured at 20 or 25°C, produced bulblets which were dormant when planted *extra vitrum*; but bulblets produced from section grown at 15°C began growth straight away (Paffen et al., 1990).

7.2. LOW TEMPERATURE TREATMENTS

7.2.1. Callus

The proportion of *Arabidopsis* callus cultures forming shoots and roots was increased when 9 month old callus was kept for 3-6 days at 4°C before transfer to regeneration medium at the normal culture temperature of 25°C. The weight of roots per callus was kept for 3-6 days at 4°C before forming shoots and roots was increased when 9 months’ growth was accompanied by cool temperatures. Shoots derived from shoot cultures of var. ‘Elsa Spath’ became dormant in short days, especially if this treatment was accompanied by cool temperatures. The dormancy could be broken by 100 mg/l GA 3, or chilling in short days. Placing shoot cultures in long days during the chilling period resulted in the incomplete elimination of dormancy, and subsequent rosette growth (Kratz and Langhans, 1978).

Bulbs. Plants which produce a bulb *in vitro* often become dormant; this is sometimes manifested by senescence of the shoot above the bulb (e.g. in onion, Hussey and Falavigna, 1980). Dormant plants or bulblets can often be induced to resume growth or to germinate, either *in vitro* or in an external environment, if they are kept for a few weeks at a low temperature (1-10°C has been found to be appropriate).

Graves et al. (1978) administered cold to plantlets of *Lilium, Hemerocallis* and *Hippeastrum* at Stage III before they were potted into soil, similarly finding that it reduced the risk of injury and allowed the young plants to initiate rapid growth. Bulblets of *Lilium auratum* and other *Lilium* species produced on MS + 90 g/l sucrose, required 100-140 days at 5°C before dormancy was broken, but those formed on the same medium containing 30 g/l sucrose required only about 50-70 days of cold (Takayama and Misawa, 1980; Takayama et al., 1982).

Where continued subculture is desired, treatments other than cold can sometimes be used to encourage plants to resume active growth. Splitting crowns into two after 12-14 weeks of culture was effective in *Freesia*, but in some other members of the Iridaceae, this treatment resulted in very weak plants (Hussey, 1976). Mahotiere et al. (1976a,b) found that onion shoot dormancy could be avoided by transferring cultures from 20°C to 10°C for 96 h. Continued growth could alternatively be promoted by the addition of 100 mg/l kinetin and/or 100 mg/l sucrose to the medium. Dormancy of *Gladiolus, Iris, Sparaxis* and *Schizostylis* plants *in vitro* was prevented by 0.03 mg/l BA (Hussey, 1976, 1977).

Woody plants. Shoots in cultures of woody plants can become dormant *in vitro*, although this is rare. One reported example is in *Clematis*, where dormancy in many cultivated varieties is triggered by short days and cool temperatures. Shoots derived from shoot cultures of var. ‘Elsas Spath’ became dormant *in vitro* in short days, especially if this treatment was accompanied by cool temperatures. The dormancy could be broken by 100 mg/l GA 3, or chilling in short days. Placing shoot cultures in long days during the chilling period resulted in the incomplete elimination of dormancy, and subsequent rosette growth (Kratz and Langhans, 1978).

Dormancy in plantlets of woody species is more common when rooted plantlets are transferred *extra vitrum*. They may then fail to grow vigorously or may form an obvious resting terminal bud and cease growth altogether. Dormancy of this kind can usually be overcome by cold, or gibberellic acid, treatments. Plantlets of *Prunus institia* (plum rootstock) remained small with weak growth unless kept for two months at 0°C or given a spray of 200 mg/l GA 3 after potting.
(Howard and Oehl, 1981). Gibberellic acid is often added to media used for propagating fruit and nut species to promote shoot elongation (Lane, 1982). Significantly greater growth and clonal uniformity of some Prunus and Malus species was achieved when plantlets which had been rooted in vitro, were kept for at least 42 days at 2-4°C in the dark before they were planted in the greenhouse [Suttle (Driver and Suttle, 1987)].

Dormancy, similar to that occurring in some shoot cultures, may result from embryo culture of species in which seeds require to be subjected to a period of cold moist conditions (stratification) before normal growth. Then embryos dissected out from unchilled seeds may germinate in vitro but produce dwarfed plants, typically having a rosette of leaves and virtually no internode growth. Plants may remain in this condition for many years (Flemion, 1959) unless chilled or treated with a gibberellin (Barton, 1956). If kept in constant temperatures, pine callus cultures occasionally cease growing, but will resume active growth at normal temperatures if stored in the cold for about 6 weeks (Bonga, 1977a,b).

7.2.3. The induction of flowering

Cold treatments promote the flowering of certain plants in vivo, particularly biennials. The work of Gertsson (1988) has suggested that in vitro culture at cool temperatures may have a similar effect. Plants of Senecio hybridus obtained from shoot cultures maintained at 10°C, flowered earlier, had a greater foliage height, and taller inflorescences, than those from cultures grown at 21°C.

8. HUMIDITY

Relative humidity (R.H.) is a measure of the amount of water vapour contained in a gaseous atmosphere. It is expressed as the ratio of the quantity of water an atmosphere actually contains, to that which it could contain when saturated.

The R.H. of the gaseous mixture (‘air’) above the medium within a culture vessel depends on its temperature and that of the medium. Where the temperature of the air equals that of the medium, and the vessel is effectively sealed, the relative humidity should theoretically be in the range 98-99.5%. The air may become almost fully saturated if the temperature of the medium exceeds that of the air, but relative humidity will decrease if there is an exchange of water vapour from the vessel to the growth room.

A relative humidity of ca. 70% is usually recommended for growth rooms. Humidities lower than this can occur in rooms fitted with cooling units, causing media within partly sealed vessels to dry out rapidly. An humidifier should be placed within growth rooms to rectify this situation.

8.1. THE OPTIMUM HUMIDITY FOR CULTURES

Because cultures grown in high humidities are liable to become hyperhydric, it would be ideal to surround shoot and organ cultures with air that is not fully saturated. However, a reduction in humidity will increase the risk of desiccation of tissue cultures. Jones (1974) found that carrot embryoids would not stand desiccation and were best kept at a relative humidity of 80-90%. They all died if humidity was less than 60%. The rate of shoot proliferation of Pelargonium shoot cultures was poor when the relative humidity was below 75% (Cassells and Minas, 1983), and cauliflower plantlets exposed to 30% and 15% R.H. in vitro experienced high mortality.

The humidity in vessels containing cultured shoots also depends on leaf area development. This is because leaves absorb radiation and commonly exhibit temperatures above the temperature of the air, thereby increasing the driving force for transpiration.

8.2. COOLING THE BASE OF VESSELS

A common situation in growth rooms is for the bases of vessels, resting above a warm light source, to be at a higher temperature than their tops. In these circumstances, if the air in the vessel has a high relative humidity, the top of the vessel may then reach the dew point and water will condense on the sides, or upon the lid, at the coolest point.

The relative humidity inside culture flasks will be less than 100% if the air temperature is higher than the temperature of the medium, for then water in the atmosphere condenses into the medium (Vanderschaeghe and Debergh, 1987). Thus the most effective method of reducing R.H. in culture vessels is to stand them on a cooled platform so that the medium is cooler than the air above it. In high relative humidities, the temperature of the medium then becomes the potential dew point (Debergh, 1986a,b; 1988; Vanderschaeghe and Debergh, 1987; 1988).

In the experiments of Vanderschaeghe and Debergh (1987), the most cost efficient method of cooling the shelving of growth rooms was found to be
the circulation of a mixture of antigel fluid and water (previously cooled by a cryostat) within metal pipes. Flasks were placed on a metal shelf over the pipes.

8.3. SURVIVAL EXTRA VITRUM

Frequently there are high losses when shoots or plantlets which have been grown in enclosed containers under high humidity, are transferred to an external environment. This is partly because they may have become hyperhydric, and partly because they are not adapted to a dry environment. This may be manifest as poor stomatal control of water loss, reduced photosynthetic capacity and poor root growth. The degree of adaptation can be increased by growing shoots in a reduced humidity before transfer, but shoot growth and rooting capacity may decline progressively as humidity is lowered (Short et al., 1987). This means that such treatments are only practical for a short period before transfer. Normally cultures are grown in high humidity until they are removed from the culture vessel and only then are shoots gradually hardened to the harsher external environment.

9. THE EFFECTS OF THE PHOTENVIRONMENT

Most commonly in micropropagation, the photoenvironment is quantified as light intensity, illuminance or irradiance. This is radiant energy of those wavelengths which produce visual sensations to the eye. The visible radiant energy spectrum encompasses wavelengths from about 390 nm (violet), to around 700 nm (red region).

A range of units has been devised to compare the luminous qualities (illuminating capabilities) provided by light sources. These units are not ideal for describing the effects of light on plants because plant pigments do not have the same relative sensitivities as the human eye to radiant energy of different wavelengths, and so it is better to define the light regimes experienced by plants in physical (energy) terms. Nevertheless illumination units have been widely used in early botanical literature (that on plant tissue culture being no exception). The following section therefore gives a brief description of the derivation of both illumination and energy units and how they may be approximately interconverted for comparative purposes.

9.1. UNITS OF LIGHT MEASUREMENT

Energy units. Standard units (e.g. erg and joule) are used to quantify light energy. The amount of radiant energy emitted (or received) from a light source, per unit time, is termed the radiant flux. Radiant flux per unit area is known as the radiant flux density, and that intercepted per unit area, as irradiance (or the radiant flux density at a surface).

Quantum units. Radiant energy in wave form (including light), is emitted in discrete indivisible quantities called 'quanta' or 'photons'. The very small amount of energy in each quantum is inversely proportional to the wavelength of the radiation. Quantum units are particularly suited to the measurement of light where its energy may be utilised for photochemical reactions, especially photosynthesis. Quanta are measured in moles (the preferred SI unit), or Einsteins, one Einstein (E) being defined as the energy of 6.023 x 10^23 (i.e. the number of molecules per gram molecule, Avogadro’s number) photons. A substance must absorb one Einstein of radiant energy per mole to take part in a photochemical reaction. The energy of an Einstein varies inversely with the wavelength of light and is greatest in the blue and ultra-violet part of the spectrum. The quantum (or photon) flux density at a surface is equivalent to irradiance measured in standard energy units. The size of a photon flux is sometimes referred to as the rate of photon fluence.

Units relating to illumination. The luminous qualities of light are defined in a similar fashion to its radiant energy attributes. Luminous flux (the passage of light per unit time) is measured in lumens and luminous intensity (the candela). The candela now replaces the formerly accepted unit of visible light intensity, the candle. Intercepted visible light per unit area is termed illuminance (or illumination), corresponding to irradiance in energy terms. Illuminance (measured in lumens m^-2 or lux) is thus luminous flux density at a surface. Under older terminology, illuminance was measured in foot candles. One foot candle was equivalent to one lumen per square foot.

Table 12.1 summarises these different categories of light units. It is only possible to convert between irradiance [or photon (quantum) flux density] and illuminance for any given wavelength of light. Exact factors for light sources emitting over many wavelengths are therefore impossible, and even average conversion factors will depend on the precise spectral emission. The interconversions between illuminance and energy units presented in Table 12.2 should therefore only be used to make approximate comparisons between dissimilar units reported in different scientific papers.
Table 12.1 Units and symbols used in the measurement of various light characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>Nanometer (1 nanometer = 10⁻⁹ metres)</td>
<td>nm</td>
</tr>
<tr>
<td>Energy</td>
<td>Joule</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Erg</td>
<td>Erg</td>
</tr>
<tr>
<td></td>
<td>Einstein</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>Cal</td>
<td>Cal</td>
</tr>
<tr>
<td>Energy flux</td>
<td>Watt</td>
<td>W</td>
</tr>
<tr>
<td>Luminous flux</td>
<td>Lumen</td>
<td>Lu</td>
</tr>
<tr>
<td></td>
<td>Candela steradian</td>
<td>cd.st</td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>Watts per steradian</td>
<td>W/st</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>Candela (replace candle)</td>
<td>Cd (Candle = c)</td>
</tr>
<tr>
<td>(Luminous flux density at a surface)</td>
<td>Lumen per square foot [foot candle]</td>
<td>Lu ft²</td>
</tr>
<tr>
<td></td>
<td>o Lux</td>
<td>Lx</td>
</tr>
<tr>
<td></td>
<td>o Lumen per square metre</td>
<td>Lu m⁻²</td>
</tr>
<tr>
<td>Incident radiant flux</td>
<td>Watts per square metre</td>
<td>W m⁻²</td>
</tr>
<tr>
<td>Irradiance (Radiant flux density at a surface)</td>
<td>Joules per square metre per second</td>
<td>J m⁻² s⁻¹</td>
</tr>
<tr>
<td></td>
<td>Ergs per meter square per second</td>
<td>ergs m⁻² s⁻¹</td>
</tr>
<tr>
<td>Quantum (Photon) flux density</td>
<td>Einsteins per square metre per second</td>
<td>E m⁻² s⁻¹</td>
</tr>
<tr>
<td></td>
<td>Moles (photons) per sq. metre per second</td>
<td>mol m⁻² s⁻¹</td>
</tr>
</tbody>
</table>

Table 12.2 Factors for converting between light units commonly found in the plant tissue culture literature

Units of Energy	1 erg = 1 x 10⁻⁷ joules
	1 cal = 4.185 joules
	Energy of 1 E = 1.2 x 10⁸/λ joules
	An Einstein (E) is 1 mole of photons, and the energy it provides therefore varies with the wavelength (λ) of the light in nm
Units of Illuminance	1 foot candle = 10.764 lux or lumen m⁻²
	1 candle (standard) = 0.02 Watts
Units of Luminous flux	1 candlepower = 4 π lumens
Units of Irradiance	1 erg cm⁻² s⁻¹ = 1 x 10⁻⁷ W m⁻²
	1 μmol m⁻² s⁻¹ = 1 μE m⁻² s⁻¹ = 0.215 W m⁻² = 0.215 J m⁻² s⁻¹

Note: Take reciprocals to convert in the opposite direction, e.g. 1 erg = 10⁻⁷ J and therefore 1J = 1/10⁻⁷ erg = 10⁷ erg

9.3. THE LIGHT REQUIREMENTS OF PLANTS

The growth and development of plants is dependent on light for:
- Photosynthesis, the process whereby light energy is converted to chemical energy in the biosynthesis of chemicals from carbon dioxide and water.
- Photomorphogenesis, the light-induced development of structure or form.

This phenomenon does not necessarily involve the absorption of large amounts of light energy, and uses receptor systems which act as switching devices setting in motion the morphogenetic processes characteristic of light-grown plants. There are however some photo-morphogenetic systems which require prolonged exposure to high irradiance (HI) before they will occur.
- Phototropism, the growth response of plants which is induced by unilateral light. Photosynthesis, photomorphogenesis and photo-tropism are all facilitated by pigments in the tissues, which absorb radiation of particular wavelengths.

As explained in the section above on carbon dioxide, the photosynthesis carried out by most cultured plant material is relatively low, and cultures are mainly dependent on an external supply of sucrose. In these circumstances, light is most important for its effect on photomorphogenesis.
Phototropism is not of great relevance in plant tissue cultures.

9.3.1. Photosynthesis

Photosynthesis is energised by light of wavelengths between 400 and 700 nm, and light in this waveband is termed photosynthetically active radiation (PAR). The terms photosynthetic photon flux density (PPFD) or photosynthetic photon flux (PPF) are therefore often used to describe the photon flux density of 400-700 nm light.

9.3.2. Photomorphogenesis

Plants can follow two alternative developmental strategies depending on whether they are grown in the dark (skotomorphogenesis) or in the light (photomorphogenesis). In the dark, plants become etiolated, i.e. they invest their energy in rapid stem elongation; there is no leaf expansion, and a functional photosynthetic apparatus is not formed. Exposure to light induces a rapid change in gene expression leading to the normal pattern of development.

The signals, which lead to the photomorphogenic reactions of plants are subdivided according to the part of the spectrum which produces the response. The majority of responses are induced by either red or blue wavelengths. Red light-mediated systems have been extensively studied in plant material, and at least three photochromic pigments called phytochromes are now thought to act as receptors (Sharrock and Quail, 1989). Phytochromes not only absorb red light but also low wavelength ultra-violet light. Blue light receptors are less well understood.

One pigment, primarily absorbing light of 450-480 nm wavelengths (the blue/UV-A part of the spectrum), has been termed cryptochrome; the other absorbs irradiation of wavelengths around 290-300 nm (the UV-B spectrum). Plant responses to light of the blue-UV regions of the spectrum can therefore be due to the effect of one receptor, or of two (e.g. a phytochrome and cryptochrome) or more, interacting together (Schäfer et al., 1990). Sometimes the blue-UV sensory pigments need to be activated before a phytochrome response can be triggered (Mohr, 1987).

Photosynthetic pigments act as a light trap and pass on the energy they absorb to other molecules, which then facilitate the oxidation-reduction reactions leading to carbohydrate synthesis. A photochromic pigment like phytochrome, on the other hand, is one whose absorption properties change after exposure to light of a specific wavelength and threshold. In one form, Type II phytochrome has its absorption maximum in the red light region; upon exposure to red light the absorption maximum changes to the far-red region. Exposure of the pigment to far-red light while it is in this state, causes a high proportion of it to revert to the original form. This property of Type II phytochrome, which gives it a ‘switching’ capability, is often represented by the equation in Fig. 12.1. Action peak spectra for phytochrome in vitro have been found to be 10 nm lower than the above values (Smith and Kendrick, 1976).

The manner in which phytochrome pigments in their alternative forms regulate specific biochemical reactions has been investigated using a range of mutants and transgenics.

Fig. 12.1 The conversion of phytochrome into an active (Pfr) by red light, and reversal by far-red light.
10. THE INFLUENCE OF LIGHT ON TISSUE CULTURES

The three aspects of the photo-environment which most clearly influence in vitro growth and morphogenesis, are:

- wavelength;
- flux density; and
- the duration of light exposure or photoperiod.

Each of these attributes has an effect on both photomorphogenesis and photosynthesis. The influence can be direct, through an action on tissue already growing in vitro, or indirect through the influence of light on stock plants. In the latter case, the growth or morphogenesis displayed in vitro is modified by the light treatments applied to the stock plant before explants are removed. The effects of light on photosynthesis are not of great importance in tissue cultures, unless photoautotrophic growth is required.

The growth of organised plant tissues in vitro is not generally inhibited by light, which is often required for optimal results. On the other hand, initial cell divisions of explants and the growth of callus tissues are sometimes prevented by light.

10.1. FORMS OF LIGHTING FOR GROWTH ROOMS

Most micropropagation work is carried out under artificial lighting in temperature-controlled growth rooms.

Seibert et al. (1975) found that although growth and morphogenesis of tobacco callus was only influenced by low irradiance blue or near-U.V. monochromatic light, when tubes emitting white light (composed of many wavelengths) were compared, the best growth and shoot formation was obtained with tubes emitting a proportion of total light energy in the red region (600-700 nm). Similarly Fridborg and Eriksson (1975) discovered much lower hormone levels to be necessary for multiplication under light from white tubes (supplying 8 Wm⁻²). These results suggest that red light can reinforce the stimulatory effect of blue and near-U.V. light when it is supplied simultaneously. Seedling explants of Brassica produced more adventitious shoots in Grolux light of 32 μmol m⁻² s⁻¹ than under 30 μmol m⁻² s⁻¹ from white fluorescent tubes (Lazzeri and Dunwell, 1986b).

Fluorescent tubes. Fluorescent tubes are used almost universally to provide light for cultures. They have the advantage that shelves within a room can be conveniently illuminated without the creation of too great an amount of heat. Fluorescent lighting is sometimes supplemented with incandescent bulbs to ensure an adequate supply of wavelengths in the red end of the spectrum, but this is not always desirable. Micropropagation growth rooms are usually equipped with cool white (warm white), or Grolux tubes, or mixtures thereof (Seabrook, 1987). A mixture of cool-white and Agrolite (F40/AGO Westinghouse) gave plants from single node cuttings of potato which had the maximum leaf area, number of leaves, stem length and fresh and dry weight. Phillips TL-84 fluorescent lights produced plants with short internodes.

A mixture of Grolux and cool white tubes gave satisfactory rates of shoot proliferation of fruit tree cultures (Fiorino and Loreti, 1987): leaves of cultured shoots were said to be greener than under normal fluorescent lights (Rugini et al., 1987), but Hasegawa et al. (1973) found no difference between the effectiveness of cool white or Grolux fluorescent lamps in promoting the formation of shoots from shoot cultures of Asparagus.

Other lighting sources. Bulblet formation on Achimenes longiflora leaf and stem cuttings was promoted by high illuminance (15000-20000 lux) light from a mixture of Grolux and cool white tubes, but was strongly inhibited in light of the same luminous flux density from mercury vapour tungsten filament lamps (Deutch, 1974). A disproportionately high emission of far-red and infra-red light from the mercury vapour lamps seemed to be responsible for the inhibition. Incandescent lamps can also be a source of far-red irradiation. The profuse branching of Xanthium strumarium plants kept under fluorescent lights for 16 h each day, was prevented if the plants were given an additional 30 minutes illumination from tungsten filament bulbs. The inhibition was thought to have been caused by the far-red light content of the incandescent lighting (Tucker and Mansfield, 1972). Murashige and Nakano discovered incandescent lamps to be unsatisfactory for promoting organogenesis in tobacco (Hasegawa et al., 1973).

To supply light at sufficiently high photon flux densities to support active photosynthesis of cultured shoots and plantlets, several research establishments (e.g. Kozai et al., 1987; Lee et al., 1988) have installed metal-halide or sodium vapour lamps, or have used them in conjunction with fluorescent lighting, in growth rooms. Norton et al. (1988; Norton and Norton, 1986) found that shoot proliferation in shoot cultures of woody plants was almost twice as great in the light from high pressure sodium discharge lamps as in that supplied by
fluorescent tubes. Plant growth under light from metal halide lamps was also greater than under fluorescent tubes, but less than under the sodium sources. Unfortunately, lamps supplying high energy light also emit considerable amounts of heat, and their use within growth rooms can necessitate considerable additional cooling costs unless the heat is channelled away by some means.

10.2. WAVELENGTH

10.2.1. Blue and near-U.V. light

Callus growth and morphogenesis. Callus of some species can be initiated and grown in the dark, while tissues of other plants grow better in continuous light or in a regular photoperiod (e.g. that of potato - Helgeson, 1980; tomato fruits - Mukund et al., 1988).

By using sources emitting light over narrow bandwidths, it has been shown that near-U.V. and blue light can have a controlling influence on the rate of growth and morphogenesis of some callus cultures. Callus initiated in the dark is often moved into the light when indirect morphogenesis is desired.

In a detailed study, Seibert et al. (1975) demonstrated that the combined effect of both wavelength and flux density can be important for callus growth and morphogenesis. Using tobacco callus, they showed that although the tissue would grow in the dark, its growth was stimulated, and shoot formation was promoted to the greatest extent by near-U.V. light (371 nm) at the very low irradiance of 0.24 Wm\(^{-2}\) (an illuminance of ca. 90 lux), but was inhibited when the incident flux density was more than 1.5 Wm\(^{-2}\) (ca. 540 lux); blue light of 420 or 467 nm wavelengths caused growth stimulation which was maximal at 3 and 6 Wm\(^{-2}\) (ca. 1080 and 2160 lux), respectively.

Other experiments have given conflicting results. Bergmann and Balz (1966) obtained stimulation of tobacco callus growth with blue light (435 nm) at an irradiance of 2.4 Wm\(^{-2}\) (ca. 860 lux) and Weis and Jaffe (1969) found that blue light of mixed spectral composition (15.5 Wm\(^{-2}\) or ca. 5600 lux), or white light, was essential for shoot bud development from tobacco callus. Red and green light were without effect. By contrast, in experiments of Ward and Vance (1968), even though callus growth of *Pelargonium* was particularly enhanced when cultures were kept in white and blue (450 nm) light, a stimulatory effect was also caused by light of other colours. *Crepis capillaris* callus increased in fresh weight more quickly in blue light than in darkness, but the greatest rate of growth occurred in red light (Husemann and Reinert, 1976). Red light has been noted to promote growth and organogenesis in cultures of some other species (see later).

Hedtrich (1977) obtained no root formation from leaf discs of *Prunus mahaleb* in darkness, a small number of roots in light from white fluorescent lamps (3000 lux), but more where some of the light was provided by lamps giving near-U.V. light.

Blue and near-U.V. responses are thought to be regulated by one or more pigments, which are particularly sensitive to light of these wavelengths. The situation is complicated, because phytochrome Pr and Pfr have minor absorption peaks at 365 nm (near-U.V.) and 495 nm (blue) respectively, and in some circumstances blue and near-U.V. light is capable of converting Pr into Pfr, but much less effectively than red light (Smith and Kendrick, 1976). Phytochrome also has strong absorbence at 280 nm (U.V.). This has been attributed to absorption by the inactive protein part of the molecule, energy then being transferred from the protein to the chromophore moiety.

Inhibition of callus growth. Inhibition of callus growth or cell division by blue light of higher incident flux densities than used by Seibert et al. (loc. cit.) has been reported on several other occasions, for example, in *Parthenocissus* (Klein, 1964), tobacco (Beauchesne and Poulain, 1966a,b), carrot (Polevaja, 1967), Jerusalem artichoke (Fraser et al., 1968), *Pseudotsuga menziesii* (Kadkade and Jopson, 1978) and *Actinidia delicosa* (Loreti et al., 1991). The growth of *Haplopappus gracilis* callus was suppressed when cultures were moved from the dark to the light (Stickland and Sunderland, 1972a,b). When light of different wavelengths was compared at an irradiance of ca. 10 Wm\(^{-2}\) , blue had the greatest inhibitory effect; white and red light caused a similar but smaller reduction in the rate of cell division. Far-red light on the contrary, stimulated growth.

Fridborg and Eriksson (1975) found that callus or suspension cultures of *Nicotiana tabacum*, *Haplopappus gracilis*, haploid *N. sylvestris* and *Allium cepa*, were inhibited to varying degrees by continuous blue to near-U.V. light; but that the growth inhibition could be partially overcome by the cytokinin, 2-iP. For maximum growth, tobacco callus required 10 times more cytokinin in blue light than in white light.

Growth and embryogenesis of carrot suspensions was inhibited, but not prevented, by white (26 μmol m\(^{-2}\) s\(^{-1}\)) and blue (27.5 μmol m\(^{-2}\) s\(^{-1}\)) light, but the
highest number of embryos was obtained when the suspensions were kept in the dark (or in red or green light, which produced the same response as dark treatment). Michler and Lineberger (1987) who obtained these results, suggested that red and blue light spectra could be used with advantage to manipulate carrot embryogenesis and embryo growth: as embryos grew, blue light also encouraged the formation of secondary embryos; red light hastened development towards the heart stage; while ABA synthesis at this time was most pronounced under blue light.

Possible causes of light-inhibited growth. The initial cell divisions in explants of artichoke tissue were found by Fraser et al. (1967) to be suppressed by light, and Yeoman and Davidson (1971) later showed that:
- cells were sensitised to light by 2,4-D (there was no effect in the absence of auxin);
- the cells have a light sensitive phase; exposure before or after this produced no response.

Alternative causes of growth inhibition induced by higher levels of blue or near-U.V. light might be:
- increased production of phenolic compounds which interfere with growth regulator activity (Andersen and Kasperbauer, 1973),
- destruction of cytochrome oxidase which is involved in respiratory processes (El-Mansy and Salisbury, 1971),
- enhanced biosynthesis of gibberellins (Beauchesne et al., 1970). Evidence in favour of this hypothesis was obtained by Fridborg and Eriksson (1975), who found that the inhibitor of gibberellin synthesis, chlormequat (CCC), stimulated the growth of Haplopappus gracilis callus and cell suspensions grown in blue light. Cells and tissues of this plant were also inhibited by the addition to the medium of 0.1 mg/l gibberellic acid. However, in callus cultures of some other plants, gibberellic acid is found to stimulate growth.
- inhibition of natural cytokinin synthesis, or production of abscisic acid, which is antagonistic to cytokinin.

Growth inhibition by high incident flux densities of near-U.V. and blue light could also be caused by the accelerated metabolism of the auxin IAA (Fridborg and Eriksson, 1975) and may occur by the photo-degradation of this natural auxin in the presence of light-sensitised riboflavin (vitamin B2) (Galston and Hillman, 1961), or some other kind of flavonoid. Flavoprotein inhibitors can prevent callus growth in the light (Seibert et al., 1975).

Alternatively light may alter the oxidation of IAA by peroxidase enzymes, by regulating the levels of co-factors and inhibitors of the enzyme (Stickland and Sunderland, 1972b). Reductants such as ascorbic acid and polyphenols, inhibit the oxidation of IAA by riboflavin; possibly it is on account of the natural occurrence of these compounds, that some plant cells are able to grow and divide in the light. In most cultures, cells are stimulated to divide in the light by externally supplied auxins. Marcotrigiano and Stimart (1981) found that in the light, hypocotyls of Paulownia required 3 mg/l IAA in the medium to produce shoots at the maximum rate, whereas under continual darkness only 1 mg/l IAA was necessary. Cytokinin (kinetin, 3 mg/l) was required at the same concentration under both regimes. Fridborg and Eriksson (loc. cit.) made similar observations on shoot formation from callus.

The reaction of plant cells to light in vitro depends on their previous history. Light can inhibit callus colony formation from plated suspension cultured cells (Street, 1977b) and protoplasts obtained from cell suspensions invariably grow in the dark, but light is inhibitory (Reinert et al., 1977). However, callus growth from mesophyll protoplasts takes place if they are first incubated in a low illumination (e.g. 300 lux) for a short while before being transferred to light of 3000 lux (Enzmann-Becker, 1973).

Blue light inhibition of auxillary shoot proliferation. In a series of publications, Letouzé has described how the axillary buds of decapitated willow (Salix babylonica) cuttings remain dormant in blue light (Letouzé, 1970). The growth inhibition could be overcome by red light (or cytokinin treatment) and the red light promotion was reversed by subsequent exposure to blue light (Letouzé, 1974; 1975). In the presence of added growth substances, the light-mediated control of bud growth may not be apparent. A negative effect on shoot proliferation of fruit trees has been noted with light of 320-380 nm (Rugini et al., 1987).

Behrouz and Lineberger (1981a,b) have investigated the interaction between white, blue, red or green light (15 μmol m⁻² s⁻¹) and growth regulators, on the proliferation of shoots in shoot cultures of Juneberry. The regulants incorporated into the medium were 0.1 mg/l NAA + 2.5 mg/l BA. The greatest number of shoots was produced by using blue or white light together with the auxin and cytokinin.

Somewhat similar results were obtained by Norton et al. (1988; Norton and Norton, 1988b) in
shoot cultures of *Spiraea*. Without the presence of the cytokinin BA, these produced the same number of axillary shoots in red, blue or white (control) light. However there was significantly more shoot proliferation than in the control in red light when 0.25 mg/l BA was added to the medium, but less when the rate was increased to 0.5 mg/l. These results support the hypothesis that in many plants, omission of blue light (or irradiance with red - see below) can mimic or replace cytokinin dependency (Fig. 12.2). A few plants seem to behave differently. In the presence of 5 μM BA, axillary shoot proliferation of *Vitis* shoot cultures was greater in blue light than in red, especially if the medium contained only 5 μM Mn2+, instead of 100 μM, as in MS medium (Chée, 1986).

U.V. light can induce specific enzyme activity. When chlorophyll-free cell cultures of parsley (*Petroselinum hortense*) are irradiated with light of a wavelength below 350 nm (particularly U.V. light, 290 nm), there are changes in the composition of messenger RNA. This leads to the induction of enzymes, which are specifically concerned with the formation of some particular flavonoid glycoside secondary products (Hahlbrock, 1977; Hahlbrock et al., 1980).

10.2.2. The phytochrome system.

Seeds of some varieties of plants which are stimulated to germinate by red light, can alternatively be induced into growth by cytokinin treatment (Miller, 1956); but cytokinins are much more effective at promoting germination if seeds are kept in sufficient light to break their dormancy. Miller (1958) and Khan (1966) showed that with *Xanthium*, kinetin depended on a reversible phytochrome effect to overcome seed dormancy, its stimulatory effect being reversed by far red light. In other words, red light and cytokinin were complementary.

Kadkade and co-workers have reported on phytochrome systems in lettuce and pine. In hypocotyl callus systems of the former, Kadkade and Seibert (1977) showed two phytochrome-sensitive systems to be in operation. Both callus growth and shoot organogenesis were greatly improved by daily 5 minute exposures to red light, and generally unaffected by similar far-red light treatments. The promotion caused by red light was reversed by afterwards placing the tissues in far-red light.

In most instances where red light specifically influences growth or morphogenesis in tissue cultures, it appears to have either the same effect as, or to reinforce, the addition of cytokinin to the medium. Red light, or polychromatic light containing a high proportion of red wavelengths, usually promotes axillary shoot growth (Fig 12.2). The response has been shown to be phytochrome dependent, because a short FR treatment at the end of a white light photoperiod can prevent branching (Tucker, 1976). Both red light and cytokinins promote bulblet formation in *Achimenes longiflora* (Deutch, 1974).

Duckweed (*Lemna gibba*) cultured on a simple medium will not grow in the dark. The addition of a cytokinin will induce some growth as will periodic exposure to red light. Combining the cytokinin treatment (0.6 mg/l kinetin) with an eight-hourly exposure to 15 minutes of red light, produces the greatest growth response, the effect of which is reversed by far-red irradiation (Cleland, 1976). The promotive effect of red light on the growth of *Crepis capillaris* cells could be completely replaced by the addition of 1 mg/l kinetin to the medium, but kinetin had no effect on green cells cultured under blue light (Husemann and Reinert, 1976).

Shoot formation. Cultured root segments of *Convolvulus arvensis* showed enhanced shoot bud development under a light regime, which only provided 10 s of red light (655 nm) per day (at an irradiance of approximately 0.6 Wm⁻²). This enhancing effect was reversed by far-red light (Bonnett, 1972). Under the same cultural conditions, the geotropic behaviour of roots of this weed was shown to be affected by the phytochrome system, as well as gravity. The roots grew horizontally in the dark, but showed a far-red reversible normal geotropic response on exposure to red light (Tepfer and Bonnett, 1972).

The involvement of phytochrome in shoot regeneration from callus was demonstrated by Bagga *et al.* (1985). When dark-grown leaf discs of *Brassica oleracea* botrytis, which had begun to form callus, were irradiated with only 5 minutes red light each day, they initiated shoots when transferred to continuous light. Explants, for which the red light treatment had been followed by 10 minutes far-red, did not. The cultures were grown throughout on Gamborg *et al.* (1968) B5 medium with 2 mg/l NAA and 0.5 mg/l BA.

An interaction between light and benzyladenine (BA) was demonstrated by Baraldi *et al.* (1988) for the promotion of shoot formation in *Prunus*. The number of shoots formed under blue, far-red and white light was highly dependent on the rate of photon fluence, but there was no difference in the rate of proliferation in different levels of red light,
suggesting that the BA induction of shoot formation is promoted by a low energy response of phytochrome.

The bulbing of tulip has been found to be enhanced under sources emitting light with a low red to far-red ratio (Alderson and Taeb, 1990).

Root formation. A phytochrome-mediated response was demonstrated in cultured pea roots by Furuya and Torrey (1964): low levels of incident red light would inhibit the initiation of lateral roots in cultured root segments, and the effect could be reversed by far-red wavelengths. In *Helianthus tuberosus* however, red light (optimum at around 660 nm) has been reported to induce adventitious root formation (Letouzé and Beauchesne, 1969). To explain these contrasting results, Thorpe (1980) suggested that the formation of lateral and adventitious roots might be influenced by light in different ways.

![Fig. 12.2](image)

Fig. 12.2 An hypothesis to explain how the colour of light and cytokinin may interact to modify shoot proliferation.

Other work has tended to support a phytochrome-regulated stimulation of adventitious root formation. The *extra vitrum* rooting of azalea micro-cuttings was consistently better if shoot cultures had been kept for two weeks in far red light followed by 2 weeks of red illumination, than if the red light treatment preceded the far-red (Read and Economou, 1983). This result was confirmed by Economou (1986), who obtained enhanced rooting of micropropagated *Rhododendron* shoots by giving cultures 15 minutes red light at the end of a 14 h cool-white day. Chèe and Pool (1989) obtained improved rooting of *Vitis* cuttings in red light or in fluorescent lighting supplying a relatively high proportion light in the red wavebands. Shoots of *Prunus ‘GF655/2’* kept in far red light required auxin for *in vitro* rooting, but others kept in red light did not (Baraldi et al., 1988).

Respiration. In protoplasts isolated from the leaf intercallary meristems of barley, respiration is partly controlled by phytochrome and a blue light receptor, blue light being able to reverse an inhibitory effect of abscisic acid (Owen et al., 1987).
10.2.3. Green-Yellow light

Light in the yellow-red wavelengths has been found to promote shoot proliferation of fruit tree cultures (Rugini et al., 1987; Loreti et al., 1991). Tran Thanh Van et al. (1987) reported that 75% of the hypocotyl fragments of Pseudotsuga menziesii formed adventitious buds when cultured under monochromatic light of 550 nm (green/yellow), whereas only 35% of similar explants produced buds in white light (170 μmol m⁻² s⁻¹), and light of 550 nm was found to suppress the growth of Parthenocissus crown gall callus (Klein, 1964). The combined results suggest that light of these wavelengths actively induces the destruction of auxin.

10.3. PHOTOSYNTHESIS

10.3.1. Light induced chlorophyll formation.

The development of chloroplasts. Chlorophyll, the green pigment in plants required for photosynthesis, is formed within the cell in organelles called chloroplasts. A chloroplast is one type of plant plastid, but plastids may become starch-containing (when they are called amyloplasts), or they may contain other coloured pigments (when they are called chromoplasts - found, for instance, in the cells of flowers and the skins of fruits), or oil, or stored protein. Given appropriate stimuli, amyloplasts can be converted to chloroplasts and vice versa. An undifferentiated plastid is sometimes called a ‘proplastid’. Seedlings germinated in the dark contain plastids in their leaves, called etioplasts. These are already partly differentiated into chloroplasts and although they do not contain chlorophyll, they do possess some other accessory carotenoid pigments, one or more crystalline centres (called ‘prolamellar bodies’) and some other characteristics of a fully differentiated chloroplast. Buds induced to form from callus in the dark by high cytokinin concentrations, form etiolated shoot systems in which the plastids are similar to etioplasts (Stetler and Laetsch, 1968).

By contrast, in dark-grown cells of suspension or callus cultures, the plastids contain starch, do not have prolamellar bodies, and have only a few thylakoids without pigmentation (Bergmann and Berger, 1966; Stetler and Laetsch, 1968). (Thylakoids are series of membrane sacs on which chlorophyll is packaged within a chloroplast). In this respect tissue-cultured cells are akin to the undifferentiated cells of a potato tuber, where the plastids are amyloplasts and take several days to begin conversion into chloroplasts after the tubers are exposed to light.

Chlorophyll formation in tissue cultures. When callus or suspension cultures are transferred to light, they may develop chloroplasts and begin photosynthesis, but seldom become autotrophic. Greening generally proceeds very slowly compared to the rate in the etiolated shoots of intact plants, and cultures may take 8 weeks to reach maximum chlorophyll content. The ability to form chloroplasts seems to depend on the presence of non-dividing cells within cell aggregates, because when green callus tissue is used to initiate suspension cultures, chloroplasts de-differentiate and the level of pigment is reduced (Yeoman and Street, 1977). Sometimes the formation of green areas on otherwise colourless calluses is a first sign of the commencement of morphogenesis.

The chloroplasts formed in tissue cultured cells tend to be more variable in structure than those in leaf cells. They may not develop at a simultaneous rate and can possess aberrantly-shaped thylakoids (Davey et al., 1971).

In a few plant species (e.g. some conifers), proplastids can become differentiated into chloroplasts in darkened buds (Sundqvist et al., 1980). Most plants though, require some sort of light stimulus to initiate the differentiation of chloroplasts and the formation of chlorophyll. Several pigment systems may be involved. Light may be intercepted by:

- the chlorophyll precursor, protochlorophyllide that is present in dark-grown leaves;
- the phytochrome system;
- by the pigment system sensitive to blue and near-U.V. light.

Generally in whole plants, and also in most tissue cultures (Blackwell et al., 1969), chlorophyll synthesis is particularly stimulated by red light. Protochlorophyllide has an absorption maximum at 634 nm and is converted by red light (or the red components of white light) to chlorophyll(ide) (Bjorn, 1976), the absorption maximum of phytochrome Pr being 650-660 nm. In tissue cultures, which may lack the biosynthetic precursors of chlorophyll, the phytochrome system is probably especially responsible for converting protochlorophyllide into chlorophyll (Satter and Galston, 1976) as it is in potato tubers (Morris et al., 1979). However, some plants require light in the near-U.V. to blue, part of the spectrum (i.e. 370-450 nm) for the development of chloroplasts. The inductive effect of
blue light is then often enhanced by red light treatment before or afterwards (Sundqvist et al., 1980).

Callus and suspension cultured cells of tobacco only develop chlorophyll in blue light (Bergmann and Berger, 1966; Kamiya et al., 1981), which affects both the nuclear and plastid genomes (Richter and Wessel, 1985). In Chenopodium rubrum, blue light promotes changes in the transcription of genes that regulate the de novo synthesis of plastid and nuclear RNAs (Richter et al., 1990). Chlorophyll retention of tobacco callus also requires blue light, for although photosynthesis occurs in green callus kept in red light, the quantity of chlorophyll in the tissues slowly declines (Bergmann and Balz, 1966).

Again emphasising the similarity between red-light and cytokinin-induced effects, cytokinins added to the medium have frequently been noted to promote chlorophyll development in callus or suspension cultures (Bandiera and Morpugo, 1970; Kaul and Sabharwal, 1971; El Hinnawy, 1974) or even to be essential for chlorophyll formation in light (Stetler and Laetsch, 1968; Tandeau de Marsac and Peaud-Lenoel, 1972a,b). Formation of photosynthetic enzymes is also promoted by cytokinins, or independently by continuous far-red light (Feierabend, 1969).

10.4. DAYLENGTH (PHOTOPERIOD)

Daylength influences plants in two ways:

- By regulating the amount of radiant energy intercepted. Growth of photosynthetically dependent plants is proportional to the length of time that they are exposed to natural sunlight or artificial light;
- Through a controlling mechanism whereby plants are able to recognise changes in the environment. For this purpose plants are able to sense changes in the duration of light provided each day (photoperiod).

Genuine photoperiodic effects on plants are energised by light of relatively low irradiance (ca. 0.3 Wm⁻², Cathey and Campbell, 1980) and are generally associated with the phytochrome system.

Where cultured plant organs or tissues are not autotrophic, and are grown under lighting of relatively low irradiance, the effects of varying daylength on in vitro cultures are most likely to be due to photoperiod. However, total intercepted light energy may govern the biosynthesis of key metabolic products in green cultures (e.g. in shoot cultures) even though the level of chlorophyll is low and photosynthesis insufficient to sustain normal growth. As the total light energy supplied by photoperiods of different intervals is variable when provided by light of the same flux density, it is not always possible to be sure which of the two mechanisms mentioned above is responsible for many effects described in the literature.

The most well known effect of photoperiod is the regulation of flowering in many plant species. Short day plants such as chrysanthemum, require to be exposed to short days (i.e. 8-10 h of light and 14-16 h of darkness per day) for flowering to be induced, while in long day plants (e.g. wheat and barley) flowering is only initiated when they are kept in 14-16 h of light per day. There are many variations on this pattern, including species where flowering takes place independently of day length (e.g. tomato).

As with other plant responses that are naturally regulated by light, some of the effects which daylength might have on morphogenesis, may be replaced by additions of synthetic growth regulators to the culture medium. Sometimes however, light of the correct daylength is indispensable: the induction of flower formation in cultured shoot apices or stem explants is the best example, and here, the same photoperiodic treatments as would cause flowering to occur in the intact plant, have generally been found to be essential in vitro.

Murashige (1978) pointed out that plants needing specific photoperiods for vegetative growth and development are very likely to manifest this need during in vitro culture. However, the photoperiod requisite for flowering may not be the same as that necessary for optimum regeneration of shoots and roots, or for shoot proliferation. For example, although entire plants of Kalanchoe pinnata flower under short days, they naturally produce foliar plantlets under long days. Shoot cultures of cucumber (a short day plant) develop maximum foliation under long days (Rute et al., 1978).

Both the formation and growth of vegetative organs may be influenced by the daylength under which tissue cultures are maintained. Some examples, which seem to be related to photoperiod are provided here, and other instances illustrating the effects of light and dark on morphogenesis have been placed in the section on irradiance that follows.

10.4.1. Daylength effects in shoot cultures

Benefit from long days. Haramaki (1971) observed that gloxinia plantlets regenerated from shoot cultures were etiolated and had small leaves when given 8 h illumination of 1075 lux daily. Longer 16 h daylengths gave thicker, stouter and darker leaves,
similar to those produced on plants grown under 3200 lux. Shoot cultures of *Pelargonium* have been established and encouraged to form multiple shoots in continuous fluorescent light of 500 lux (Debergh and Maene, 1977) and seedling shoot tips of *Pharbitis nil* (a short day plant) also grew and produced plantlets equally well in long days of 16 or 24 hours (Bapat and Rao, 1977). In 8 or 12 h photoperiods, shoot and root growth was inhibited. Roots grew well in the dark however, although of course in these conditions the shoots were etiolated. By contrast, apple shoot cultures required 16 h light of 60 μmol m$^{-2}$ s$^{-1}$ fluence for the maximum rate of shoot proliferation. The internode length of ‘Delicious’, ‘Triple Delicious’ and ‘Vermont Spur Delicious’ was less in 24 h than in 16 h days, although that of ‘Empire’ was greater (Yae et al., 1987).

Short day plants. Shoot cultures of ‘Rougen’ grapevine had a requirement for short days. They grew, and later shoots formed roots, only in 10 h days, soon becoming necrotic when the daylength was 15, 16 or 24 h (Chée and Pool, 1982a,b). Where, as in *Camellia japonica*, shoot multiplication in shoot cultures is as rapid in a 12 h day as in one of 18 h, propagation under the shorter photoperiod can lead to a saving in lighting costs (Samarin, 1989). However, although *Dianthus caryophyllus* can be propagated in 12 h photoperiods, Stimart (1986) reported that in commercial practice, shoots have been found to flower *in vitro* under these conditions: most shoots are vegetative in a 16 h day.

Interaction with temperature. An interaction between temperature and daylength was observed by Rahman and Blake (1988) in *Artocarpus heterophyllus* shoot cultures grown under light of 85 μmol m$^{-2}$ s$^{-1}$. An optimum number of axillary shoots was produced at 25°C in either a 12 or a 16 h day, but the maximum dry weight of harvested shoots occurred in a 12 h day at a temperature of 30°C. Photosynthesis appeared to contribute to growth, because shoot production was much less in the dark or in an 8 h day.

10.4.2. Adventitious shoot formation

Although shoot morphogenesis is generally stimulated by light, the most favourable daylength can vary from one genus to another. The following examples illustrate the kind of variation, which is experienced. In few, if any, of the cited experiments it was discovered whether the observed effects of daylength were due to photoperiod, or the total irradiance received by the cultures.

The formation of adventitious shoots from twin bulb scales of onion was more rapid in long days than in short days (Hussey and Falavigna, 1980), and this seems to be the case in lily too, where continuous light enhances shoot and root formation, and darkness promotes bulb growth (Stimart and Ascher, 1978). Under a PPF of 160 μmol m$^{-2}$s$^{-1}$ at 25°C, meristematic explants of *Capsicum annuum* formed adventitious shoots much more rapidly under a daylength of 12 h, than in 16 h days, or in continuous light (Phillips and Hubstenberger, 1985). Similarly, in the experiments of Pillai and Hildebrandt (1969), the callus of *Pelargonium* did not turn green and form adventitious buds in continuous high illumination (21500 lux from Grolux tubes and incandescent lamps). Shoot regeneration was optimal when these callus cultures were maintained in a photoperiod of 15-16 h. By contrast, shoot regeneration from *Brassica* callus was greater in continuous light than in a daylength of 16 hours (6000 lux, 20°C) (Jain et al., 1988) and shoots formed directly from leaf segments of *Peperomia scandens* in continuous light of 2700 lux (Kukuczanka et al., 1977).

Heide (1964) found that adventitious shoots were produced more freely from begonia leaf cuttings when the cuttings themselves and/or the mother plants from which they had been taken, were kept in short days. Callus derived from the anther wall of *Hevea* only gave rise to somatic embryos when grown under 8 h days or when transferred from a 16 h to an 8 h photoperiod (Wan Abdul et al., 1981), and although the formation of *Pyrus serotina* callus was not affected by daylength, shoot morphogenesis was promoted by short days or culture in the dark (Hiratsuka and Katagiri, 1988).

10.4.3. Adventitious root formation

The rooting of cuttings taken directly from stock plants is influenced by the length of the days in which the plants have been grown. Effects due to total incident radiation (availability of stored carbohydrates) and daylength (photomorphogenesis) can be seen (see Chapter 11).

10.5. ILLUMINANCE AND IRRADIANCE ('LIGHT INTENSITY')

Intensity is a property of a light source and, strictly according to physical definitions, describes its radiant or luminous flux per solid angle. The word ‘intensity’ is however colloquially used to describe either luminous or radiant flux density and appears widely in early plant tissue culture literature, especially when the physiological effects of light
were thought to be due to the total amount of energy that had been incident on an organ or tissue, rather than to daylength or phytochrome-controlled processes.

‘Intensity’ influences the total light energy received by plant cultures. The induction of chlorophyll formation in plant organs or callus or cell cultures, is accompanied by increased activity (or de novo synthesis) of key enzymes in photosynthesis (Koth, 1974) although, as explained previously, the level of carbon fixation which normally occurs in callus cultures is well below that of leaf mesophyll cells. However, the improved growth of some types of green callus in light can be due to the enhanced availability of photosynthetically derived carbohydrate (Bergmann and Balz, 1966).

Daylight may provide irradiance of ca. 200-700 Wm\(^{-2}\) (equivalent to an illuminance of ca. 50000-150000 lux, see Table 12.3), but plant cultures are typically grown in flux densities, which are about 10 times less than daylight and have a different spectral composition. There are several reasons why low irradiance light is used:

- provision of high levels of artificial lighting is expensive and generates unwanted heat;
- cultures in sealed vessels become overheated in high irradiances due to the glasshouse effect (Pierik, 1987);
- the technology of plant tissue culture has evolved using non-autotrophic tissues supplied with a carbohydrate.

As lighting technology advances there is more argument for using higher irradiances and allowing plants to develop more autotrophic growth (e.g. Zobayed et al., 2000). There is evidence that good quality plantlets can be produced and that some of the problems associated with the micropropagation technique can be avoided (Kozai et al., 1997).

Table 12.3

A comparison between units of Incident Radiant Flux. Approximate conversion factors are given below for three fluorescent light sources are commonly used in plant tissue culture growth rooms (after McCree, 1972a,b). To convert from lux (units of illuminance) into Irradiance or Quantum Flux Density units, divide lux by the following figures, depending on the type of fluorescent lighting tube

<table>
<thead>
<tr>
<th>Units</th>
<th>Warm white</th>
<th>Cool white</th>
<th>Grolux</th>
</tr>
</thead>
<tbody>
<tr>
<td>W m(^{-2}) = J m(^{-2}) s(^{-1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mW cm(^{-2})</td>
<td>390</td>
<td>370</td>
<td>280</td>
</tr>
<tr>
<td>(\mu)W cm(^{-2})</td>
<td>3900</td>
<td>3700</td>
<td>2800</td>
</tr>
<tr>
<td>mW cm(^{-2})</td>
<td>39</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>erg mm(^{-2}) s(^{-1})</td>
<td>39</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>erg cm(^{-2}) s(^{-1})</td>
<td>0.39</td>
<td>0.37</td>
<td>0.25</td>
</tr>
<tr>
<td>(\mu)mol m(^{-2}) s(^{-1}) ((\mu)E m(^{-2}) s(^{-1}))</td>
<td>83</td>
<td>80</td>
<td>59</td>
</tr>
<tr>
<td>(\mu)mol cm(^{-2}) s(^{-1}) ((\mu)E cm(^{-2}) s(^{-1}))</td>
<td>8.3x10(^{5})</td>
<td>8.0x10(^{5})</td>
<td>5.9x10(^{5})</td>
</tr>
</tbody>
</table>

10.5.1. Callus growth

Callus of many plants can be initiated and maintained in the dark and it has been said that there is no point in culturing tissues in the light if they do not contain chlorophyll. Indeed the callus of some plants may not grow at all in the light, or its growth may be severely inhibited (see above). In cultures intended for indirect shoot regeneration, callus is often initiated on explants in the dark at Stage I, and is then moved to the light at Stage II when organogenesis is to be instigated.

However, some callus tissues grow better in the light than in the dark. In geranium an optimum level of incident light for the growth of callus depended on the variety of plant from which stem explants were derived (Hammerschlag, 1978). In two varieties, growth was best when the tissues were illuminated with 1000 or 5000 lux, in another it was most rapid only in 5000 lux. In all three varieties growth was reduced when the callus was kept in 10000 lux. Inhibition of callus growth by high illuminance could be associated with increased production of growth inhibitors. The production of phenolic compounds is stimulated by light in callus cultures of some species (particularly those lacking chlorophyll), and greater amounts are accumulated as illuminance is increased (Davies, 1972).

10.5.2. Shoot growth and proliferation

From experiments with shoot tip propagation of several different kinds of plants, Murashige (1974) suggested that an optimum level of illumination for Stages I and II might be 1000 lux (i.e. approximately 14-15 \(\mu\)mol m\(^{-2}\) s\(^{-1}\)). From the literature, it seems
that, at these stages, cultures of many herbaceous plants are maintained in photon flux densities of 7-120 μmol m⁻² s⁻¹ (1.5-9.5 Wm⁻²; equivalent to an illuminance of about 0.5-10 klux). However, culture initiation under low irradiance may help to prevent blackening in the cultures of sensitive species.

Plants of many genera (e.g. aster, chrysanthemum and the Caryophyllaceae) require relatively high irradiances for optimum shoot multiplication, and culture in low-lighting causes shoots to become succulent and vitreous (hyperhydric), and hence of poor quality. Hosta shoot cultures require high light to commence proliferation, but thereafter are able to tolerate light of both high and low irradiance (Stimart, 1986). Brunnera macrophylla callus must be kept in complete darkness for adventitious shoot formation (Stimart, 1986). In some plants, shoot proliferation in shoot cultures, or direct shoot formation from explants, is enhanced by using high levels of irradiation at Stage II. Haramaki (1971) for instance, thought that Sinningia shoot cultures were best maintained at 3000-10000 lux (ca. 40-150 μmol m⁻² s⁻¹); in lower illumination the shoot tips formed callus. Dalton and Dale (1981) found that more tillers were produced from Lolium multiflorum in 12000 lux (ca. 35 Wm⁻²) than in 9600 lux, provided that BA was present in the medium.

High lighting levels are also required for some woody species. Axillary shoot proliferation in shoot cultures of an Ulmus hybrid required an irradiance of ca. 9.7 Wm⁻² (45 μmol m⁻² s⁻¹), but higher (possibly 14, and certainly 36.5 Wm⁻²) were inhibitory to shoot development (Fink et al., 1986). However, in Castanea shoot cultures, multiplication was most rapid at 27°C with 33 Wm⁻² irradiance, and the best shoot elongation occurred at 34°C in 22 Wm⁻² (Chauvin and Salesses, 1988). McGranahan et al. (1987) reported using 9.7-12.0 Wm⁻² (that is. 45-60 μmol m⁻² s⁻¹) for Juglans, while Evers (1984) obtained an optimum rate of growth of Pseudotsuga menziesii under 36.4 Wm⁻² or 24.5 Wm⁻², depending on the time of year at which isolations were made.

Cultures needing low irradiance. There are plants sensitive to high light in vitro and these can be multiplied satisfactorily in light of relatively low fluence: Dicentra spectabilis is an example. Gloxinia plantlets obtained through shoot culture were progressively larger and their leaf size greater, when illuminated with about 3200 lux, but in 10700 lux there was very little growth and leaves were small and discoloured. Callus was present in 320 lux, but absent at the higher flux densities (Haramaki, 1971).

Miller and Murashige (1976) showed that the rate of shoot proliferation of Cordyline terminalis was greatest in an illumination of only 300 lux, whereas three other tropical species of foliage ornamentals multiplied most rapidly in 3000 or 10000 lux. Cultures of Phalaenopsis orchids produced axillary shoots more freely from flower stalk cuttings in 0.25 Wm⁻² than in 2.34 Wm⁻² irradiance (Tanaka et al., 1988), but the rate of shoot multiplication in Lythrum virgatum cultures was no different in 0.3-3.2 Wm⁻² (Heuser, 1983).

Although Einset and Alexander (1985), Hildebrandt and Harney (1983) and Welander (1987) had mainly grown Syringa plants at 8-10 Wm⁻², Pierik et al. (1986; 1988a) utilised 4-5 Wm⁻² for single node cultures of S. vulgaris, because stems were more elongated at this irradiance. Shoots grown in 1-3 Wm⁻² had thin stems and very small leaves. In practical micropropagation work, it would be important to ascertain that any increased shoot production at higher lighting levels was cost effective.

Although the multiplication of axillary shoots of asparagus was satisfactory in 1000 lux, higher illuminance of 3000-10000 lux was essential at Stage III to cause shoots to initiate needle-like cladophylls. An illumination of 30000 lux was excessive (Hasegawa et al., 1973). Zygotic embryos of Populus deltoides grown in reduced light produced more vigorous shoots than those grown at higher light intensities (Kouider et al., 1984).

Storage. Where light is necessary for the storage of cultures, a PPF of 10-15 μmol m⁻² s⁻¹ is usually employed.

10.5.3. Morphogenesis

Flower buds. The formation of floral buds (rather than vegetative shoot buds) on cultured explants has usually been found to require the presence of light. In pieces of cold-treated chicory root, the inductive action of light took place during the first few days of culture and presumably during bud initiation. Very thin stem explants of tobacco consisting of just a few cell layers similarly required light to form flower buds, and unless light was supplied during days 7-10 of culture they formed vegetative shoot buds instead (Tran Thanh Van, 1980; Trinh and Tran Thanh Van, 1981). The formation of tobacco flower buds in this system appears to be promoted by long days and high flux densities (Tran Thanh Van, 1977). Red light was also more promotive than far-red light or darkness.
Adventitious shoots. Adventitious shoot formation can take place in the dark, but it is usually greater in the light; for example, more shoots were produced directly from strawberry leaf discs or from a short intervening callus phase, in light of 1000 lux illuminance, than in the dark (Nehra et al., 1988).

Direct shoot formation in endive leaf fragments was reduced by a short period of darkness during culture (Legrand, 1972). Continuous darkness was especially inhibitory if interrupted by 3 days of continuous 600 lux fluorescent light at the beginning or after the first 3 days (Legrand, 1974). A similar situation has been discovered in Heloniopsis orientalis, where morphogenesis was inhibited in darkness unless one of several sugars was added to the medium during the first few days of treatment (Kato, 1978a). From these results it seemed that shoot formation was dependent on photosynthesis, an hypothesis which appeared to be confirmed when it was found that in the absence of sugar, bud initiation was inhibited in CO₂-free air and by chemical inhibitors of photosynthesis. White, red, blue and far-red light were effective promoters, but not green light (Kato, 1978b).

Shoot regeneration from seedling leaf discs of Brassica oleracea did not appear to be influenced by photosynthesis, because more shoots were produced at 30 μmol m⁻²s⁻¹ than at 100 or 200 μmol m⁻²s⁻¹. The reverse was true for root segments (Lazzeri and Dunwell, 1986b).

Adventitious roots. The formation of adventitious roots on cuttings seems to be affected by light energy. In many plants, the induction of roots is promoted by darkness or light of low fluence, apparently because natural auxin levels increase in these conditions, whereas they are decreased by light of high fluence. For root formation and root growth though, cuttings or explants require high energy inputs, and supplying mother plants with supplementary illumination, culturing cuttings with sucrose, or placing cuttings with root primordia in high light prior to root induction, can all promote root growth.

Root formation from green photosynthetic Cymbidium protocorms appeared to depend on how they were illuminated. In the dark, or in light of ca. 1250 lux, protocorms gave rise only to shoots, whereas both roots and shoots were formed in ca. 2200-2500 lux (Ueda and Torikata, 1972). It was thought that root formation was associated with nitrogen metabolism which was enhanced as illuminance and photosynthesis increased.

Cotyledons of Cucumis melo cultured in the light formed either shoots or morphogenic callus, whereas those cultured in the dark, formed either roots or friable non-morphogenic callus (Mackay and Ng, 1988).

Morphogenesis in callus cultures. Light is not always essential for adventitious shoot formation from callus, although sprouting is frequently enhanced under illuminated conditions (e.g. in Anthurium - Pierik et al., 1974b). A strong correlation between carbohydrate availability and organogenesis in callus cultures has been reported (Mangat et al., 1990), and when optimum levels of sugars are provided, light may have only a regulatory effect (i.e. it is not required for photosynthesis). Shoot regeneration from Arabidopsis callus on an induction medium was enhanced if the tissue had been previously cultured in continuous low illuminance (less than 1000 lux), rather than in darkness, but higher illuminance (more than 4000 lux) greatly reduced the percentage of regenerating calluses (Negrutiu and Jacobs, 1978). Callus of tobacco grown on Lin and Staba (1961) medium, supplemented with 15% coconut milk and 2 mg/l kinetin, was induced to form somatic embryos by high illuminance (10000-15000 lux) (Haccius and Lakshmanan, 1965).

10.5.4. Flux densities for other stages of micropropagation

As with other aspects of the cultural environment, light ‘intensity’ at each propagation stage may need to be varied for particular plants or for methods of micropropagation other than shoot culture. Unfortunately, the most suitable level can vary even from one cultivar to another. In Begonia hiemalis, adventitious shoot formation of one variety was improved when cultured in 6000 lux rather than 3000 lux, but two other varieties did not respond in this way (Welander, 1978).

For the micropropagation of deciduous azaleas, Economou and Read (1986) found that 30-75 μmol m⁻²s⁻¹ was better than 10 μmol m⁻²s⁻¹. During the shoot multiplication stage 10-75 μmol m⁻²s⁻¹ was required (although 75 μmol m⁻²s⁻¹ produced shoots of less good quality); the highest percentage of rooted shoots was obtained when Stage III cultures were kept under an irradiance of 10 μmol m⁻²s⁻¹.

An illuminance of 3000-10000 lux (ca. 40-150 μmol m⁻²s⁻¹) was suggested by Murashige (1974) for Stage III to achieve maximum rates of transfer of shoots or plantlets to an exterior environment, and
many laboratories find that 40-75 μmol m⁻² s⁻¹ is adequate. In lower flux densities shoots may be etiolated with pale green leaves. Daylengths of 16 h are usually employed.

Sweet gum plants grown under high irradiances (50-315 μmol m⁻² s⁻¹ from metal halide lamps) either \textit{in vivo} or \textit{in vitro}, were found to have larger cells and a more compact mesophyll than those grown in low light. But all \textit{in vitro} plants had smaller, thinner leaves and smaller mesophyll cells than \textit{in vivo} plants, and except at 315 μmol m⁻² s⁻¹, significantly greater stomatal densities (Lee et al., 1988). High light levels can be beneficial for special purposes, such as germinating seedlings from which explants are to be excised (Lazzeri and Dunwell, 1986a,b), or germinating somatic embryos (McGranahan et al., 1987), when irradiances of ca. 135-200 μmol m⁻² s⁻¹ may be necessary.

10.6. Darkness

Although light is invariably essential for the growth of normal green shoots and plantlets, unorganised cell and tissue cultures can frequently be grown in its absence, and darkness may be beneficial to growth and morphogenesis. Darkness is also used to etiolate shoots. Treating light-grown seedlings to 2-3 days darkness can sometimes help to elongate hypocotyls or epicotyls before explants are excised (Jagannathan and Marcotrigiano, 1986).

Excised green leaves of \textit{Heloniopsis} grown in the light tend to produce a preponderance of shoot initials at the apex (distally). In darkness however, most green and etiolated leaves tended to develop buds at the base (Kato, 1978a). Scale sections of \textit{Lilium longiflorum} regenerated a small number of large bulblets in the dark, each having only a few leaves. Bulblets produced in illuminated cultures were small and bore many leaves, and leaf dry weight was double that of the bulbs (Leshem et al., 1982).

A short period of darkness sometimes promotes shoot morphogenesis. Adventitious buds did not form on swollen needle primordia of \textit{Picea pungens} unless cultures were kept in the dark for 8 days. Subsequent shoot development required 16 h under 1000 lux illumination (Misson et al., 1982).

10.6.2. Callus growth

Callus growth does not take place in some plants unless light is excluded from cultures, for example \textit{Hosta} scape explants only produce callus in the dark (Stimart, 1986). \textit{Magnolia} shoot tip callus ceased to grow if moved to even low light and would not resume growth until transferred twice to fresh medium during a 6 week period (Biederman, 1987). In other species, light may be necessary for callus initiation, but once callus has been obtained, it can be subcultured and maintained in the dark. Where light causes shoot formation to occur (e.g. in \textit{Anthurium scherzerianum}, Geier (1986)), shoot development may be at the expense of callus growth and so callus induction and multiplication may need to be carried out in the dark.

10.6.3. Morphogenesis

Light is often necessary for the formation of adventitious shoots from callus or explants, but this is not always the case. In \textit{Freesia hybrida}, the requirement for light or dark varied with the plant variety. Callus from young ovaries of some cultivars could produce shoots in the dark, while that from other cultivars required to be incubated in the light (Bach, 1987). Bhatt et al. (1979) failed to regenerate shoots from \textit{Solanum khasianum} in the light, but did obtain shoots and roots in the dark.

Sometimes light controls the type of morphogenesis which takes place. Callus from the gametophyte generation of the moss \textit{Physcomitrium coorgenese}, only regenerated sporophytes if cultured in the dark, but gave rise to both sporophytes and gametophytes in diffuse daylight (Lal, 1963). Leaf explants of \textit{Solanum melongena} produced callus and roots in the dark, but rooted shoots when cultures were moved to the light (Macchia et al., 1983).

However, in some species caulogenesis or embryogenesis can occur in continuous darkness. For example, fragments of the corms of \textit{Crocus sativus} cultured in darkness on an agar medium, formed miniature corms, which also proliferated (Homs et al., 1987). Sometimes darkness is essential to morphogenesis; for example, scape explants of \textit{Hosta} only form callus and adventitious shoots in the dark (Stimart, 1986). Embryogenic callus was seen on young leaflets of \textit{Euphorbia longan} after 2 months culture in the dark. Embryos grew to maturity after transfer to another medium in the dark, but required 16 h light per day for germination. There was precocious germination if embryos were exposed to light prematurely (Litz, 1988).
A brief period of darkness. Occasionally morphogenesis can be enhanced if explants are kept in the dark for a certain period. The formation of adventitious buds on young flower buds of *Freesia* was greatly improved if the explants were grown in the dark before being transferred to the light (Picrik and Steegmans, 1975). Similarly, keeping segments of apple leaves in the dark for the first three weeks of culture, strongly enhanced the subsequent regeneration of adventitious shoots and embryo-like structures (Welander, 1988). Meyer (1982) and Dai et al. (1987) found that more shoots were formed from *Rhododendron* floral explants if they were cultured in the dark for at least two weeks, before being moved to the light.

Maintaining anther cultures of some species in the dark for an initial period can increase the proportion of anthers producing somatic embryos or the frequency with which anther-derived callus is obtained (Sunderland and Roberts, 1977; Sangwan-Norrel, 1977; Nair et al., 1983).

10.6.4. Rooting

Treatment of mother plants or cuttings with a period of darkness, or light of very low fluence, frequently favours the initiation of adventitious roots on cuttings.

REFERENCES

Effects of the Physical Environment

DALTON C.C. & STREET H.E. 1976 The role of the gas phase in the greening and growth of illuminated cell suspension cultures of spinach (Spinacia oleracea L.). In Vitro 12, 485-494.

HEIDE O.M. 1965 Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18, 891-920.

HOMS J., LEGROS M. & JAZIRI M. 1987 Gas exchange in plant tissue cultures. pp. 57-71

HEIDE O.M. 1965 Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18, 891-920.

HOMS J., LEGROS M. & JAZIRI M. 1987 Gas exchange in plant tissue cultures. pp. 57-71

HEIDE O.M. 1965 Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18, 891-920.

HOMS J., LEGROS M. & JAZIRI M. 1987 Gas exchange in plant tissue cultures. pp. 57-71

HEIDE O.M. 1965 Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18, 891-920.

HOMS J., LEGROS M. & JAZIRI M. 1987 Gas exchange in plant tissue cultures. pp. 57-71

HEIDE O.M. 1965 Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18, 891-920.

KATO Y. 1978a Induction of adventitious buds on undetached leaves, excised leaves, and leaf fragments of Helonias orientalis. Physiol. Plant. 42, 39-44.

KÖNINGS H. & JACKSON M.B. 1979 A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z. Pflanzenphysiol. 92, 385-397.

KÖTH P. 1974 Änderungen in Enzymzümmern ergründeter Kalluskulturen von Nicotiana tabacum var. 'Samsun'. Planta 120, 207-211.

KRAZ T., OKI H. & FUJIIWARA K. 1987 Effects of CO2 enrichment and sucrose concentration under high photosynthetic photon fluxes on growth of tissue-cultured Cymbidium plantlets during the preparation stage. pp. 135-141 in Ducaté et al. (eds.) 1987 (q.v.).

MACCHIA F., SCARAMUZZI F. & PORCELLI S. 1983 Genetic and environmental effects on the growth and differentiation of wheat somatic cell cultures. J. Hored. 74, 353-357.

NORTON C.R. & NORTON M.E. 1986 Light quality and shoot proliferation in micropropagated Prunus, Spiraea and Rhododendron. p. 434 in Somers et al. (eds.) 1986 (q.v.).

STREET H.E. 1977b Laboratory organisation pp. 11-30 in Street H.E. (ed.) 1977a (q.v.).

TRAP THANH VAN K. 1977 Regulation of morphogenesis. pp. 367-385 in Barz et al. (eds.) 1977 (q.v.).

Tucker D.J. & Mansfield T.A. 1972 Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins. Planta 102, 140-151.

Vanderschaevege A.M. & Debergh P.C. 1987 Technical aspects of the control of the relative humidity in tissue culture containers. pp. 68-76 in Ducate et al. (eds.) 1987 (q.v.).

Vermeer E. & Evers P. 1987 A new technique to reduce labour by refreshing liquid medium automatically with a new container. pp. 264-266 in Ducate et al. (eds.) 1987 (q.v.).

Welander M. 1987 In vitro culture of raspberry (Rubus idaeus) for mass propagation and virus elimination. Acta Hortic. 212, p. 610.

Chapter 13
The Anatomy and Morphology of Tissue Cultured Plants

1. INTRODUCTION

Tissue culture plants, unlike zygotic plants, originate from existing axillary buds and somatic cells through either organogenesis or somatic embryogenesis, depending on the explant type and culture conditions. In the organogenic pathway only one organ, a root or a shoot, is initiated from a unipolar meristem, while in the embryogenic pathway a bipolar structure develops with shoot and root meristems. Plants developed via organogenesis have mostly arisen from buds that form adventitious roots after an induction phase. The vascular connections at the root-to-shoot interface are of major importance for the function of the vascular system and the viability and survival of the plants after transplanting. Plants that develop from somatic embryos have a root and a shoot system, which under optimal conditions, usually develop normal vascular connections.

The morphogenetic expression of root, stem and leaves in vitro results from an interaction between extrinsic and intrinsic factors and from various components of the cultural condition. The structure and function of a regenerated plant depend on in vitro developmental signals that are related to the environmental condition in culture. As yet we do not fully understand the signals that permit or direct the developmental chain of reactions. Developmental changes follow a sequence of events and are coordinated in time and space, and therefore any interruption in the signal-transduction chain may result in a disturbed morphogenetic expression. Furthermore, the isolation and culture of an explant in a defined medium not only changes internal existing gradients, but also alters the sensitivity of the tissue to triggering signals and to induction of stress, which alter the physiological state of plant tissue due to anatomical and morphological malformation (Kevers et al., 2004). This can shift meristematic activity to a pattern unlike the one initiated prior to these changes, or to the one that exists in the plant in vivo (Ziv, 1995; 1999).

The organization of the specialized organs and nature of the various tissues of cultured material, determine the survival potential of plants ex vitro. Most of the anatomical studies carried out on in vitro plants cover three major aspects: the first, the initiation phases of meristems and their development into either roots or bud apices; the second, phases of somatic embryo development and the evolving plantlet; and the third, relates to anatomical and histological changes or to the deformation – the phenomenon of hyperhydricity (‘vitrification’) – in organs and plants in vitro, and in plants after they have been transplanted ex vitro. Hyperhydric (or ‘vitrified’) organs appear to be water-soaked and are brittle with an abnormal structure. Hyperhydric shoots are easily damaged by desiccation and survive very poorly when subcultured or transferred to an external environment.

The present chapter discusses briefly the anatomy of meristemoid and organ initiation, and covers mainly the whole plant, describing the anatomy and histology of roots, stems and leaves in vitro, in relation to their development extra vitrum.

2. ROOT DEVELOPMENT IN VITRO

Micropropagated plants, originating through either somatic embryogenesis or an organogenic pathway, require a fully developed root system prior to transplanting ex vitro to endure the external environmental stress. Rooting of shoots can take place in vitro, or after transplanting as part of the acclimatization process ex vitro.

Adventitious roots can be induced in different types of tissue depending on the cultural conditions and the parent organs. The ratio between auxin and cytokinins in the medium may determine the type of morphogenetic response occurring in vitro. Usually, elevated auxin levels are required to promote rooting, particularly during the hardening stage. In general, adventitious roots that develop in agar are thin, but may thicken in high auxin media or in the presence of growth retardants (Roberts et al., 1992).

Adventitious root formation varies and depends on the genotype and on cultural methods (see Chapter 9). Generally, induction of roots is more difficult in woody species than in herbaceous species (Hackett, 1985). De Klerk et al., (1995) distinguished between three main phases in the rooting process in microshoots of apple (Malus domestica Borkh) - dedifferentiation; induction; and morphological differentiation. There is a controversy regarding the
general definition of the various phases in the rooting process. In some species (mungbean, poplar), when stem cuttings are taken, root initials are already present in the stems and are directly involved in the rooting morphological differentiation phase. Formation of root initials after an intermediate callus phase is obvious evidence for the occurrence of the three phases. An indirect rooting process through callus is usually associated with prolonged phases of dedifferentiation and re-differentiation (De Klerk et al., 1999).

2.1. ANATOMICAL PHASES IN ROOT DEVELOPMENT

Anatomical time-course studies have revealed differences in the response and involvement of various cell layers and organelles in adventitious root formation. Root formation can be either direct - from the plant tissue, or indirect – following callus formation (Apter et al., 1993; Harbage et al., 1993; Welander and Pawlicki, 1993; Jasik and De Klerk, 1997; Pinker, 2000).

Root primordia initiation and organized root development occur before the emergence of the root tip from the stem (Esau, 1977). Adventitious roots are often induced in parenchyma cells (Lovell and White, 1986). Microcuttings of *Malus domestica* have been used to study root formation to observe developmental events leading to root formation (Zimmerman and Fordham, 1985; De Klerk et al., 1995; Jasik and De Klerk, 1997). The duration and location of root development events between taxa and even between conventional and micropropagated material can vary (Lovell and White, 1986).

Anatomical studies of the stem bases of tissue cultured Asian jasmine (*Trachelospermum asiaticum*) revealed root primordia on the third day that appeared as groups of 25 to 75 cells containing darkly stained cytoplasm and nuclei. The cells originated external to the cambium in the phloem. Well-defined root primordia with xylem cells developed after a week and penetrated through the periderm (Apter et al., 1993).

In microcuttings of “Gala” apples, adventitious root initiation was detectable within 24 hours in phloem parenchyma cells that became densely cytoplasmic, containing nuclei with prominent nucleoli. Meristematic activity in the phloem parenchyma continued and advanced into the cortex forming root primordia with distinct cell layers at the distal end. These conically shaped primordia formed a well-organized root tissue system. The initiation of cell division in a rooting medium took place in parenchyma cells of the phloem, cortex, cambial region, xylem, and pith tissue. However, only the divisions of the phloem parenchyma cells resulted in meristematic regions, leading to root primordia. Meristemoids were initiated in the phloem tissue around the ring of vascular bundles (Harbage et al., 1993). Welander and Pawlicki (1993) found an increased cambial activity around the vascular bundles in apple rootstock Jork M9 stem discs. Cells with densely stained cytoplasm and enlarged nucleoli appeared between the vascular bundles, external to the phloem, forming meristemoids that later differentiated into root primordia. In some other studies of micropropagated woody species, the sites of root origin have been located in cells within or just external to the vascular cambium or adjacent to the cortex. Cells leading to root formation could have been phloem parenchyma or derivatives of cambial cells normally destined to phloem parenchyma formation (Hicks 1987; Iliev et al., 2001; Ranjit et al., 1988; Samartin et al., 1986).

Light, and electron microscopy studies, of *in vitro* root formation in stem slices of apple cv. Jork 9 (*Malus domestica* Borkh.) microshoots, revealed starch grains in the cambial region, in the vicinity of the vascular tissue and the primary rays. The nuclei in the cells were activated, and the density of the cytoplasm and the number of cell organelles increased, while starch was broken down. Cambial cells began to divide transversely, forming a continuous ring of isodiametric cells around the xylem, near the basal surface of the cutting. The cells that were rich in cytoplasm and organelles and lacked starch grains and a central vacuole, developed into root meristemoids in the primary rays. After emergence, the meristemoids were transformed into small, dome-like primordia and developed a typical root apex with root cap and root ground meristem. In stem slices, many cells participated in the early divisions, but only a few cells developed into root meristems (Jasik and De Klerk, 1997).

Histological studies of adventitious root formation in different aged cuttings of *Prunus kurilensis* and *Amelanchier lamarckii* revealed differences in rooting potential depending on the age of the shoots. The obvious differences in the vascular system, particularly the ray parenchyma, might be important for root induction. In easy-to-root *P. kurilensis*, the older stems formed more xylem and phloem vessels, with an epidermis and a phellem that later surrounded the stem. Starch grains were frequent in the pith and cortex in old stems. In difficult-to-root *A. lamarckii*, the stem vascular system developed very slowly and
the differences between stems were not obvious as in *P. kurilensis*. The extent of starch accumulation was lower than in *P. kurilensis*. With a prolonged subculture period some phloem cells collapsed. While root primordia formed in *P. kurilensis*, only primordia or meristemoids initials were formed in *A. lamarckii* (Pinker, 2000).

Soukup et al., (2004) investigated the lignification of the root system in fast growing cherry (*Prunus avium*) and slow growing oak (*Quercus robur*) during acclimatization and found different lignification patterns in the primary root tissues of the two species. The most conspicuous difference was the appearance of thickenings in the cortical layers next to the endodermis in cherry roots that appeared after transfer to *extra vitrum* conditions. Later, when secondary tissues appeared, lignified secondary xylem constituted most of the tissues of both species. Thin walled cells and less suberised dermal tissues were found in cherry plants while multi-layered and well-developed cork tissue was observed in oak plants.

Considerable progress has been achieved in rooting research, and has indicated that rooting is a process consisting of distinct phases, with specific requirements at each phase (De Klerk et al., 1999).

2.2. **THE ANATOMY OF THE ROOT-TO-SHOOT INTERFACE**

In woody species, roots that developed in agar-solidified media, had large hypertrophied cortical cells and lacked a secondary vascular system (McClelland *et al.*, 1990; Rogers and Smith, 1992). *In vitro* rhizogenesis in herbaceous plants is found to be easier than rooting in woody species. Smith *et al.* (1991, 1992) found that woody species often produced more roots per shoot, but the roots were underdeveloped, with limited secondary vascular cambium activity, which was resumed only after *extra vitrum* transplanting. The interaction of shoot quality and rooting potential (in particular, a poor vascular development at the root-to-shoot interface), has often been found to contribute to poor survival of plantlets during their acclimatization from tissue culture (Conner and Thomas, 1981; Pierik, 1987; Ziv, 1986; Pinker, 2000).

Smith *et al.*, (1991) reported that the vascular connections between new *in vitro* roots and the microcutting stems of maple, birch, and apple were often discontinuous, since the *in vitro* roots were often subtended by callus or emerged from callus. Some of the roots became blackened shortly after emergence, and failed to continue to elongate. Inspection of cross sections showed that the black color was restricted to a cuticular coating around the epidermal cells of the root. In plantlets of cauliflower (*Brassica oleracea* L.), vascular connections between roots and shoots were found to be poorly developed and very narrow (Grout and Aston 1977).

By contrast, in some other plants, for example Asian jasmine (*Trachelospermum asiaticum*), apple (Hicks, 1987; Harbage *et al.*, 1993; Jasik and De Klerk, 1997), *Pinus sylvestris* (Gronroos and Von Arnold, 1985), and black and white spruce (Patel *et al.*, 1986), vascular discontinuity between adventitious roots and parental shoots has not been detected. Early xylem cells with helical wall thickenings were evident at the root primordium base of Asian jasmine, and were connected to the secondary xylem tissue in the shoot system. Elongation of the emerging root and further xylem development within the adventitious roots and at the root-to-shoot interface continued for up to days 8 to 10. Afterward there was no evidence that xylem elements were not continued between the elongating primordia and the base of the primordia adjacent to the cambium (Apter *et al.*, 1993). Similarly, newly-developed root primordia or emerging roots on micropropagated shoots of apple (*Malus domestica* Borkh.), cv. Jork 9 (Jasik and De Klerk, 1997) and cv. Gala (Harbage *et al.*, 1993) were also found to have tracheid connections continuous with those of the shoot vascular tissue.

Auxin increased cambial activity and adventitious root formation on *Betula pendula* microcuttings. At the base of the roots, tracheid-like cells formed providing vascular connection between the root-shoot system (Iliev *et al.*, 2001).

The differentiation of the vascular tissue at the root-to-shoot interface needs to be further examined in relation to the function of the vascular tissue of plants regenerated *in vitro* and their subsequent survival *ex vitro*.

3. **LEAF DEVELOPMENT AND STRUCTURE**

Bud meristem development was observed by Bornman and Vogelmann (1984) to initiate from almost all the plant organs and tissues they isolated for *in vitro* establishment, but could be affected by various culture conditions at very early stages of leaf primordial development (Fig. 13.1). In most plants,
leaf primordia developed in vitro, contain all the various components of normal leaf tissue, but in many cases they are not fully developed and remain so for a long time after the culture period.

3.1. THE MESOPHYLL

Microscopically examined leaves of several tissue cultured plants have been observed to have distorted anatomy with a very thin palisade tissue. It often either consisted of only one layer of more rounded than elongated cells, or was absent altogether. Most of the mesophyll tissue consisted of spongy parenchyma with enlarged vacuolated cells, rich in intercellular spaces. In apple, the applets system was hyper-developed, increasing the volume of the tissue up to fivefold in comparison to normal leaves (Paques and Boxes, 1987; Ziv, 1991), whereas an increase in intercellular spaces within cultured carnation shoots was due to excess apoplectic water (Kevers and Gaspar, 1986). The cells in vitreous leaves were surrounded by very thin cell walls and contained a relatively thin cytoplasm, enclosing a large vacuole (Brainerd et al., 1981; Leshem, 1983). Many of the chloroplasts of sweetgum lacked the normal organization into grana and stroma and the chloroplasts of in vitro-grown plants lacked starch granules and were flattened with disorganized grana. However, chloroplasts with well-organized grana developed in the leaves when the light level during culture was raised from 50 to either 155 or 315 μmol.m⁻².s⁻¹ (Wetz-tein and Sommer, 1982, 1983; Lee et al., 1985). Analysis of electron micrographs of palisade cells showed that the functional area was largest in chloroplasts of leaves subjected to blue light and smallest in those exposed to red light (Saebø et al., 1995).

The hyperhydric leaves of a Eucalyptus hybrid had chloroplasts with small grana, an absence of starch grains and a higher density of endoplasmic reticulum in comparison to leaves in normal shoots (Fig. 13.2 A,B – Louro et al., 1999). However, the chloroplasts of carnation shoots cultured by Ziv and Ariel (1994) in liquid medium, contained large starch grains. The hyperhydric leaves of carnation had large vacuolated mesophyll cells, showing a hypertrophy of the cells with larger intercellular spaces than in normal plants. In these leaves cuticular wax was absent, and chloroplasts presented abundant plastoglobuli (Olmos and Hellin, 1998). ‘Compact’ hyperhydric leaves of eggplant contained one layer of slightly differentiated palisade cells, whereas in ‘lacunous’ leaves an increase was observed in the length of the spongy parenchyma cells, which was linked to an increase in intercellular spaces (Picolì et al., 2001).

3.2. EPIDERMIS AND CUTICULE STRUCTURE

In several species, leaf hyperhydrycity has been associated with defective epidermal tissue. The cuticle thickness and chemical nature were different from field or greenhouse grown plants. In these plants, the crystalline structure of epicuticular waxes on the leaves of micropropagated plants was significantly different to that on normal plants. Epicuticular waxes were deposited thinly and their composition in vitreous and normal leaves was significantly different (Preece and Sutter, 1991). Faulty deposition of cuticular waxes on vitreous leaves of cabbage, cauliflower and carnation was manifested in both quantity and quality of the waxes and the cuticle lacked the characteristic structure of in vivo normal plants (Grout, 1975; Grout and Aston, 1978; Sutter and Langhans, 1982; Sutter, 1985; Ziv et al., 1981, 1983). Epidermal cell areas were largest in plantlets subjected to blue light and smallest in those subjected to red light (Saebø et al., 1995). In Prunus...
The cuticle in normal leaves exhibited striation, which was not observed in hyperhydric leaves (Franck et al., 1997).

Leaves newly formed after transplanting develop increasing amounts of wax and more complex crystalline structures over time (Sutter and Langhans, 1982; Preece and Sutter, 1991) as has been shown with carnation (Sutter and Langhans, 1979), cauliflower (Grout and Aston, 1977), and cabbage (Sutter, 1988). The lack of epicuticular wax on these plants in vitro was due to the high humidity within the culture vessel. Sutter and Langhans (1982) produced cabbage plants with normal cuticle and structured wax by reducing the relative humidity in vitro to 35%. Wardle et al., (1983) produced cauliflower plants with clearly higher amounts of epicuticular wax by reducing the relative humidity in vitro by using a desiccant.

Leaves of grape plantlets treated with PEG (polyethylene glycol) in the culture vessel, had a greater deposition of epicuticular wax than plants grown in the greenhouse or the controls. Stomatal index did not vary among treatments but differences in wax deposition, leaf epidermal cell configuration and modified leaf surface anatomy, were associated with increased ex vitro survival after 4 weeks in the greenhouse (Dami and Hughes, 1997). Leaves of cabbage plants grown in vitro never became as glaucous as the new leaves that formed after removal from culture (Grout, 1975). There were less filiform trichomes on the abaxial surfaces of raspberry leaves grown in vitro than in transplanted plants grown in the greenhouse (Donnelly and Vidaver, 1984).

3.3. THE STOMATAL APPARATUS

In several plant species cultured in vitro, the guard cells in the stomatal apparatus of the leaf epidermal tissue did not function properly and remained open in darkness, even under water stress conditions (Ziv, 1991). This was associated with changes in the structure of the stomata which were raised, rounded (instead of elliptical, as in normal leaves), and had damaged cell walls as can be seen in Fig.13.3 (Ziv and Ariel, 1994). Abnormally large stomata were observed in geranium and rose (Reuther, 1988), and have also been seen on the leaves of Solanum laciniatum (Conner and Conner, 1984), rose (Capellades et al., 1990) and apple (Blanke and Belcher, 1989). The stomata of apple, carnation and cauliflower did not close in response to treatment with ABA, high CO₂, Ca⁺⁺ or hypertonic solutions of mannitol or sucrose, due to faulty...
deposition of cellulose (Brainerd et al., 1981; Fuchigami et al., 1981; Wardle et al., 1979; Ziv et al., 1987). Faulty orientation of microfibrils affects the stomatal aperture movement (Palevitz, 1981), which may explain the failure of vitreous guard cells to close.

Histochemical studies of guard cells from vitreous carnation leaves revealed lower levels of cutin, pectins and cellulose (Ziv and Ariel, 1992, 1994; Werker and Leshem, 1987; Koshuchowa et al., 1988). Callose deposits have been reported in the guard cells of vitreous cherry and carnation leaves. The cell walls lacked the normal orientation of cellulose microfibrils typical of guard cells in greenhouse or field grown plants (Ziv et al., 1987; Marin et al., 1988; Ziv and Ariel, 1992, 1994). An increase in light level from 25 to 80 μmol·m⁻²·s⁻¹ and a decrease in relative humidity from 100 to 75% resulted in the stomata of rose plants grown in vitro being similar to those on leaves formed in the greenhouse. However the stomata were depressed, more ellipsoid, and less abundant. Large starch grains in the chloroplasts of these rose plants appeared after transfer to 5% sucrose medium (Capellades et al., 1991). In a similar study, no change was found in the stomatal morphology of sweet gum when only the light level was altered in vitro (Lee et al., 1988). Stomata on leaves of raspberry plants removed from culture, and thus under a lower relative humidity than when in vitro, remained raised under low light and became sunken under a high light level (Donnelly and Vidaver, 1984).

The failure of the cell walls to contract in hypertonic solution was shown to correlate with the abnormal orientation of cellulose microfibrils and the high deposition of callose in the malformed guard cells of vitreous carnation leaves (Ziv and Ariel, 1992, 1994).

Thus, hypolignification, microfibril disorientation and the deposition of callose instead of cellulose in the cell walls could have contributed to stomatal malfunction and the phenomenon of hyperhydricity.

4. HYPERHYDRICITY AND MALFORMATION IN CULTURED PLANTS

Morphogenesis is affected by continuous changes of various signals from the immediate cultural environment. Conditions in vitro foster a high degree of cell plasticity, which in many plant species can lead to developmental aberration. Herbaceous and woody plants propagated in vitro are frequently affected by the redundant presence of various factors that lead to metabolic and morphological derangements and resultant hyperhydricity (Ziv, 1991, 1999).

Chestnut (Castanea sativa Mill) hyperhydric shoots were produced during successive subcultures when MS mineral medium was used. Xylem and sclerenchyma tissues were less differentiated with hypertrophy in the cortical and pith parenchyma. Examination of transverse sections from various regions of the stems of these shoots showed that certain tissues were less differentiated than normal. In the basal region, the perivascular sclerenchyma ring was usually reduced to small isolated groups of the fibers exhibiting hardly any lignification, and in some specimens the sclerenchyma was almost absent. Likewise, xylem tissue was comparatively less differentiated (and hence poorly lignified). In the cortex, there was an increase in both the number and size of the cells, with a particularly marked hypertrophy in the deep layers of the cortical...
parenchyma. Large intercellular spaces also tended to appear, lending the tissue a semi-disintegrated appearance. This greatly expanded cortex led to a larger than normal stem diameter. In addition, there was a basipetal gradient of lignification and development of xylem and sclerenchyma from the apical region, where there was no differentiated sclerenchyma ring and the xylem was reduced to lignified protoxylem and non-lignified metaxylem (Vieitez et al., 1985). Stem elongation of hyperhydric melon and carnation plantlets was retarded. Cells became hypertrophied, and the intercellular spaces were much larger than in normal cells (Leshem et al., 1988).

Compared to the leaves on normal shoots of Eucalyptus grandis × Eucalyptus urophylla, hyperhydric leaves on shoots with malformed stems possessed a reduced number of stomata on their adaxial surface and enlarged palisade cells. The hyperhydric stems showed chloroplasts with small grana, an absence of starch grains, and a higher density of rough endoplasmic reticulum at the ultrastructural level (Louro et al., 1999).

The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP (Binding Protein), an endoplasmic reticulum-resident molecular chaperone. The accumulation of BiP in hyperhydric shoots was consistently higher than in normal shoots. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system compared with their hyperhydric counterparts. Examination of transverse sections of hyperhydric stems revealed that they were larger in size and displayed cortical cells with large intercellular spaces and areas with thinner xylem and less lignified cell walls. Typically, hyperhydric cortex and pith displayed cells with irregular contours and hyperhydric stems displayed a significant increase in pith parenchyma area. Large intercellular spaces appeared in the cortex, and the expanded cortex and pith led to a larger stem diameter. A vascular cambium, differentiating lignified secondary xylem elements between the xylem and the phloem was observed. Therefore, hyperhydric eggplant stems displayed secondary vascular tissue that was less differentiated, resulting in a poorly lignified xylem tissue and a thinner vascular ring (Picoli et al., 2001).

Iliev et al., (2003) compared in vitro cultured normal and fasciated stems of Betula pendula Roth. Normal stems were rounded and had a well-developed cortex and vascular tissue, the concentric ring of the xylem consisting of 5-10 rows of xylem cells with well-developed secondary walls. By contrast, fasciated stems were elliptical or with irregular sharp edges on transverse sections. Their vascular tissues were less developed, or at a much earlier stage of differentiation than was normal and the differentiation of xylem was delayed. It was suggested that the appearance of fasciated stems might be caused by suppression of a gene under the influence of zeatin. The most striking difference between normal and fasciated stems was the shape of the vascular cylinder and the pattern of development of the vascular tissues.

4.1. MORPHOGENIC DIFFERENCES BETWEEN IN VITRO AND EX VITRO STEMS ROOTS AND LEAVES

The significant differences between plants in vitro and after transplanting extra vitrum, which are exhibited in the roots and leaves and to a lesser extent in the stems, are summarized in Tables 1 and 2.

Differences in morphogenetic development between in vitro and ex vitro stems and roots have been studied in raspberry, maple, birch, forsythia, apple, miniature rose and jasmine (Donnelly et al., 1985; Smith et al., 1991; Apter et al., 1993). Stems of in vitro red raspberry plantlets were smaller in diameter than control plant stems. In vitro stems had little collenchyma in the cortex, very few sclerenchyma fibers and no thick walled pith cells. Control stems had a continuous cylinder of collenchyma in the cortex beneath the epidermis, a thick layer of sclerenchyma in the phloem of the stele and both thin and thick walled pith cells. In vitro roots of red raspberry plantlets were smaller in diameter, white or pinkish in color and had little periderm. The roots were covered with fine root hairs and had a delicate appearance, while ex vitro roots of the control plants were brown in color and had a multi-layered periderm. In vitro red raspberry transplants that had been grown under high light intensities, had a larger stem diameter and had developed better support tissue (Donnelly et al., 1985). Cellular differentiation in excised in vitro pea roots began closer to the apex, the cortical and epidermal cells were shorter and the mitotic activity in the pericycle increased following exposure to salinity stress (Solomon et al., 1986).
Table 13.1 Anatomical and histological differences between roots and stems of plants \textit{in vitro} and after transplanting \textit{ex vitro}

<table>
<thead>
<tr>
<th>Plant Organ and Tissue</th>
<th>\textit{In vitro}</th>
<th>\textit{Ex vitro}</th>
<th>Species studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermis</td>
<td>Uniseriate</td>
<td>Uniseriate and multiseriate</td>
<td>Root and stem: \textit{Acer rubrum} L. \textit{Amelanchier lamarckii} \textit{Betula nigra} L. \textit{Betula pendula} Roth \textit{Brassica oleracea} L. \textit{Castanea sativa} Mill \textit{Forsythia x intermedia} Zab. \textit{Malus domestica} Borkh \textit{Pinus sylvestris} \textit{Pisum sativum} \textit{Prunus kurilensis} \textit{Quercus robur} \textit{Rosa chinensis minima} \textit{Rubus idaeus} L. \textit{Solanum melongena} L. \textit{Trachelospermum asiaticum}</td>
</tr>
<tr>
<td>Periderm</td>
<td>Limited</td>
<td>Multi-layered</td>
<td></td>
</tr>
<tr>
<td>Cortex</td>
<td>Broad, irregular enlarged, hypertrophied individual cells, numerous intercellular spaces; loose arrangement of cortical parenchyma; frequently contain plastids with chlorophyll and other pigments, starch grains</td>
<td>Uniform, compact cortical cell arrangement</td>
<td></td>
</tr>
<tr>
<td>Vascular bundles</td>
<td>Narrow, primary, immature development, limited secondary cambium activity</td>
<td>Cambium activity consistent</td>
<td></td>
</tr>
<tr>
<td>Xylem and Phloem</td>
<td>Poorly developed; multiple scattered xylem bundles with variable stele patterns, no or limited secondary xylem growth; phloem frequently contain plastids with chlorophyll and other pigments, starch grains</td>
<td>Secondary xylem formation arranged in diarch, triarch or pentarch stele patterns in different species.</td>
<td></td>
</tr>
<tr>
<td>Root hairs</td>
<td>Few or no, thick, short and straight, fine, delicate appearance, many fused together, usually abundant</td>
<td>Long, thin, slender, fibrous, wiry and formed an interwoven mat;</td>
<td></td>
</tr>
<tr>
<td>STEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermis</td>
<td>Limited development</td>
<td>Fully developed</td>
<td></td>
</tr>
<tr>
<td>Cortex</td>
<td>Limited development, little collenchyma, few sclerenchyma fibers; starch grains in old stem.</td>
<td>Fully developed with continuous cylinder of collenchyma</td>
<td></td>
</tr>
<tr>
<td>Vascular bundles</td>
<td>Poorly developed; lower activity of cambium or not initiated; large number of starch grains in the vascular bundles at the early stages</td>
<td>Fully developed</td>
<td></td>
</tr>
<tr>
<td>Xylem and Phloem</td>
<td>Roots frequently initiated in densely cytoplasmic phloem parenchyma; more xylem and phloem vessels in easy-to-root species; starch grains in the parenchymatous cells of the xylem and phloem at early stages.</td>
<td>Thick layers of sclerenchyma in the phloem of the stele.</td>
<td></td>
</tr>
<tr>
<td>Pith</td>
<td>Limited development, thin cell walls; starch grains in older stems.</td>
<td>Fully developed, having both thin and thick cell walls</td>
<td></td>
</tr>
<tr>
<td>Callus</td>
<td>Frequently accompanies root formation</td>
<td>Usually not produced</td>
<td></td>
</tr>
<tr>
<td>Root-to-shoot vascular connection</td>
<td>The connections were often discontinuous in maple, birch and apple \textit{(Malus domestica} Borkh – “McIntosh”); poorly developed in cauliflower. In jasmine, \textit{Pinus}, spruce, apple \textit{(Malus domestica} Borkh – “Jork”) vascular connection were observed.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
arranged cell layers, exhibiting the development of a non-pigmented secondary vascular system. Furthermore, these studies (Smith et al., 1991) indicated that in ex vitro roots the vascular cambium activity and secondary xylem formation were consistently arranged in either diarch, triarch, or pentarch stele patterns, depending on the species. By contrast, roots developed in vitro were found to have an immature vascular system, usually with multiple scattered xylem bundles having varied stele patterns and no secondary growth. Secondary tissue development in vitro was not only temporarily delayed as compared to plants that went through extra vitrum rooting but.

Table 13.2 Anatomical and histological differences between the leaves of plants in vitro and after transplanting ex vitro

<table>
<thead>
<tr>
<th>Plant Organ and Tissue</th>
<th>In vitro</th>
<th>Ex vitro</th>
<th>Species studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAVES</td>
<td>Small, succulent, brittle and hyperhydrated</td>
<td>Normal shape and size</td>
<td>Leaves: Actinidia deliciosa, Brassica oleracea botrytis, Brassica oleracea capitata, Chrysanthemum morifolium, Cucumis melo, Cydonia oblonga, Cynara scolymus, Dianthus Caryophyllus, Dicenfichia maculata, Eucalyptus grandis x E. europhylla</td>
</tr>
<tr>
<td>Epidermis</td>
<td>Deformed thin cell walls irreglarly shaped</td>
<td>Normal cell walls</td>
<td>Fragaria x ananas, Gerbera jamesonii, Gladiolus grandiflorus, Liquidambar styraciflua, Maranta leuconeura, Nephrolepis exaltata, Olea europaea, Pelargonium zonale, Philodendron burgundy, Picea stichensis, Prunus amygdalus, Prunus avium, Prunus cerasus, Prunus insititia, Pyrus communis, Pyrus malus, Rubus idaeus, Salix babylonica, Solanum lacinatum, Spathiphyllum floribundum, Spathiphyllum wallichii</td>
</tr>
<tr>
<td>Cuticle</td>
<td>Thin and discontinuous</td>
<td>Thick and continuous</td>
<td></td>
</tr>
<tr>
<td>Stomata</td>
<td>Irregular guard cells with thin cell walls, large stoma</td>
<td>Normal guard cells</td>
<td></td>
</tr>
<tr>
<td>Mesophyll</td>
<td>Irregular structure mainly spongy parenchyma</td>
<td>Regular structure</td>
<td></td>
</tr>
<tr>
<td>Palisade</td>
<td>Reduced palisade tissue</td>
<td>Normal palisade</td>
<td></td>
</tr>
<tr>
<td>Spongy Parenchyma</td>
<td>Highly vacuolated with large intercellular air-spaces</td>
<td>Normal cells with regular air-spaces</td>
<td></td>
</tr>
<tr>
<td>Vascular bundles</td>
<td>Immature and limited vascular development</td>
<td>Fully developed</td>
<td></td>
</tr>
<tr>
<td>Phloem</td>
<td>Limited secondary phloem, abundant starch grains</td>
<td>Fully oriented sieve tubes</td>
<td></td>
</tr>
<tr>
<td>Xylem</td>
<td>Reduced lignification in the xylem vessels and sieve elements</td>
<td>Fully developed xylem vascular tissue</td>
<td></td>
</tr>
<tr>
<td>Chloroplasts</td>
<td>Low chlorophyll, abnormal non-functional chloroplasts, limited formation of grana, abundant stroma, starch grains</td>
<td>Normal chloroplasts with typical granal structure, increased chlorophyll content</td>
<td></td>
</tr>
</tbody>
</table>

A comparison by Soukup et al. (2004) of the lignin content in roots of wild cherry and pedunculate oak, indicated that cell wall lignification increased in both species during the acclimatization period and reached levels similar to seedling grown in soil. In cherry roots cultured ex vitro phi-thickenings were observed in cortical layers just outside the endodermis, while suberised exodermis was present in oak but not in cherry, indicating a different response to acclimatization in the two species.
Adventitious roots grown in vitro frequently have a few or no root hairs (Preece and Sutter 1991). In Asian jasmine (Trachelospermum asiaticum), it was found that in vitro adventitious root hairs were morphologically thicker and their length was shorter by one-third to one-half of extra vitrum root hairs. However, there were no apparent differences in root-hair density between in vitro and extra vitrum plants. Morphologically, in vitro root hairs were shorter, thicker and straight compared to extra vitrum root hairs that were long, thin, wiry and interwoven as a mat (Apter et al., 1993).

Petioles of red raspberry plants that developed in vitro lacked collenchyma and had greatly reduced phloem fibers in comparison with field-grown plants (Donnelly et al., 1985). The vascular tissue of micropropagated birch leaves was greatly reduced in the midribs and petiole compared with leaves of greenhouse-grown trees (Smith et al., 1986).

During acclimatization persistent leaves of strawberry plants became thicker due to enlargement of the palisade cells (Fabbri et al., 1986), but there was no change in the number of layers of palisade cells, or in the amount of intercellular air spaces in the mesophyll. New leaves that formed during acclimatization had multiple palisade layers and, at a later stage, the youngest leaves became similar to those of field-grown plants.

Only new leaves that were fully formed after removal from culture resembled greenhouse-grown leaves (Grout and Aston, 1978; Brainerd and Fuchigami, 1981; Wetzstien and Sommer, 1982; Donnelly et al., 1985). The culture atmosphere during the last stage prior to transplanting can affect the anatomy of plants as was shown for carnation by Majada et al., (2001). Ventilation modified the anatomical characteristics of shoots and leaves as compared to plants grown in non-ventilated vessels: the cuticle became thicker and the supportive tissue had thicker cell walls. Anatomical variability of in vitro grown plants was demonstrated to be a consequence of ventilation.

Hydathodes are structures related to the leaf water status that are affected by humidity and culture condition. Differences were observed between in vitro and extra vitrum leaves. In micropropagated blackberry (Donnelly et al., 1987) and strawberry (Donnelly and Skelton, 1987), the hydathodes on the leaves were open, whereas those on leaves of greenhouse-grown plants were closed or had smaller apertures. Since the hydathodes appeared to be open and exhibited guttation, it was hypothesized that they might contribute to adaxial water loss.

Increasing light intensity in shoots of Kiwifruit (Actinidia deliciosa) plants cultured in vitro, resulted in an increase in the relative size of leaf mesophyll cells, and in a decrease in the number of chloroplasts and starch grains that they contained. Addition of sucrose to the substrate media had a negative effect on the size of the mesophyll cells under normal Mg concentration, but a positive effect under high Mg concentration (a 3-fold increase) (Dimassi and Bosabalidis, 1997).

In Prunus avium light and electron microscopy revealed that hyperhydric leaves had a lower number of chloroplasts in the palisade. The chloroplasts showed an irregularly arranged membrane system with evagination of different sizes along the plastid envelope (Frank et al., 1997). The laminar midrib of normal eggplant leaves contained vascular bundles with lignified xylem elements, while in hyperhydric leaves the vascular bundles were poorly lignified. The cell density observed was 185/μm in normal and 57/μm in compact hyperhydric leaves (Picoli et al., 2001).

Anatomical study of in vitro and ex vitro rooting process of Prunus davidopersica “Piroska” revealed that in vitro leaves were more loose and spongy at the end of rooting process. In the first newly developed leaf of an acclimatized in vitro-grown plant, the parenchyma was more developed and contained fewer rows of cells and air space as compared to leaves of field-grown plants. The in vitro developed roots had a broad cortex and a narrow vascular cylinder with less developed xylem elements. The vascular system became prominent in the roots at the end of the acclimatization phase (Jambor et al., 2001).

5. CONCLUSION

Normal plant development in vitro can be manipulated by controlling the microenvironment: humidity in the head space, water and osmotic potential in the medium, and the temperature and irradiance (George 1996). A well balanced mineral nutrient composition, adequate supply of carbohydrates and levels of growth regulators in the medium, are major factors in morphogenetic
expression \textit{in vitro}. In general, the \textit{in vitro} conditions
should mimic, as far as possible the optimal growth \textit{extra
vitrum} conditions. Acclimatization \textit{in vitro} prior to
transplanting, exposing the plants to semi-
stress conditions in the third culture stage, and the use
of low levels of growth retardants to alleviate
excessive growth and reduce hyperhydricity has been
recommended (Ziv, 1992).

REFERENCES

APTER R.C., MCWILLIAMS E.L. & DAVIS F.T. JR. 1993 \textit{In
vitro} and \textit{ex vitro} adventitious root formation in Asian jasmine
\textit{(Trachelospermum asiaticum I)}. Comparative morphology. J.

BLANKE M.M. & BELCHER A.R. 1989 Stomata of apple

BORNMAN C.H. & VOGELMANN T.C. 1984 Effect of rigidity
of gel medium on benzyladenine-induced adventitious bud form-
ation and vitrification in \textit{in vitro} \textit{Picea abies}. Physiol. Plant 61,
505-512.

BRAINERD K.E. & FUCHIGAMI L.H. 1981 Acclimatization of
aseptically cultured apple plants to low relative humidity. J. Am.

CAPELLADES M., FONTARNAU R., CARULLA C. &
DEBERGH P. 1990 Environment influences anatomy of stomata
and epidermal cells in tissue-cultured \textit{Rosa molliflora}. J. Am.

CAPELLADES M., LEMEUR R. & DEBERGH P. 1991 Effects
of sucrose on starch accumulation and rate of photosynthesis in
\textit{Rosa cultured in vitro}. Plant Cell Tissue and Organ Cult. 25,
21-26.

CONNOR A.J. & THOMAS M.B. 1981 Re-establishing plantlets
from tissue culture: A review. Proc. Intl. Plant Prop. Soc. 31,
342-357.

CONNOR L.N. & CONNER A.J. 1984 Comparative water loss
from leaves of \textit{Solanum laciniflum} plants \textit{cultured in vitro} and \textit{in

DAMI I. & HUGHES H.G. 1997 Effects of PEG-induced water
stress on \textit{in vitro} hardening of ‘Valiant’ grape. Plant Cell Tissue
Organ Cult. 47, 97-101.

DE KLERK G.J., KEPEL M., TER BRUGGE J. & MEEKES J.
1995 Timing of the phases in adventitious root formation in apple

DE KLERK G.J., VAN DER KRIEKEN W. & DE JONG J.
1995 The formation of adventitious root: New concepts, new

DIMASSI-THERIOU K. & BOSABALIDIS A.M. 1997 Effects
of light, magnesium and sucrose on leaf anatomy, photosynthesis,
starch and total sugar accumulation, in kiwifruit \textit{cultured in vitro}.
Plant Cell Tissue Organ Cult. 47, 127-134.

DONNELLY D.J. & SKELTON F.E. 1987 Hydathode structure
of micropropagated plantlets and greenhouse grown ‘Totem’

DONNELLY D.J. & VIDAVER W.E. 1984 Leaf anatomy of red
raspberry transferred from \textit{in vitro} culture to soil. J. Am. Soc.
Hortic. Sci. 109, 172-176.

DONNELLY D.J., SKELTON F.E. & NELLES, J.E. 1987
Hydathode anatomy and adaxial water loss in micropropagated

DONNELLY D.J., VIDAVER W.E. & LEE K.Y. 1985 The
atomy of tissue cultured red raspberry prior to and after
transfer to soil. Plant Cell Tissue Organ Cult. 4, 43-50.

ESAU K. 1977 \textit{Anatomy of Seed Plants} (2nd ed.) Wiley,
New York.

changes in persistent leaves of tissue cultured strawberry plants
after removal from culture. Sci. Hortic. 28, 331-337.

FRANCK, T., CREVECOEUR, M., WUEST, J., GREPPIN, H.
AND GASPARI, T. 1997 Cytological comparison of leaves and
stems of \textit{Prunus avium L.} shoots cultured on a solid medium with
agar or gelrite. Biotechnic & Histochemistry 49,32-43.

FUCHIGAMI L.H., CHENG T.Y. & SOELDNER A. 1981
Abaxial transpiration and water loss in aseptically cultured

\textit{In Practice}. Exegetics Ltd. Edington, Wesbury, UK.

GRONROOS R. & VON ARNOLD S. 1985 Initiation and develop-
ment of wound tissue and roots on hypocotyl cuttings of \textit{Pinus
sylvestris in vitro}. Physiol. Plant. 64, 393-401.

GROOT B.W.W. 1975 Wax development on leaf surface of
\textit{Brassica oleracea botrytis} cv. Currawon regenerated from

GROOT B.W.W. & ASTON H. 1977 Transplanting of cauliflower
plants regenerated from meristem culture. I. Water loss and water
transfer related to changes in leaf wax and to xylem regeneration.

GROOT B.W.W. & ASTON H. 1978 Modified leaf anatomy of
cauliflower plantlets regenerated from meristem culture. Ann.
Bot. 42, 993-995.

HACKETT W.P. 1985 Juvenility, maturation, and rejuvenation

HARVAGE J.F., STIMPART D.P. & EVERT R.F. 1993 Anatomy
of adventitious root formation in microcuttings of \textit{Malus

HICKS G.S. 1987 Adventitious rooting of apple microcuttings

ILIY L., KITIN P. & FUNADA R. 2001 Morphological and
anatomical study on \textit{in vitro} root formation of silver birch (\textit{Betula
pendula} Roth.). Prop. Orn. Plants 1, 10-19.

ILIY L., RUBOS A., SCALTOYIANNES A., NELLS H. &
KITIN P. 2003 Anatomical study of \textit{in vitro} obtained fasciated
shoots from \textit{Betula pendula} Roth. Acta Hortic. 616, 481-484.

JAMBOR B.E., KISSIMON J., FABIAN M., MESZAROS A.,
SINKO Z., GAZDAG G. & NAGY T. 2001 \textit{In vitro} rooting and
anatomical study of leaves and roots of \textit{in vitro} and \textit{ex vitro}
plants of \textit{Prunus x davidopersica} “Piroska”. Int. J. Hortic. Sci. 7,
42-46.

JASIK J. & DE KLERK G.J. 1997 Anatomical and ultrastructural
examination of adventitious root formation in stem slices of

KEVERS C. & GASPARI TH. 1986 Vitrification of carnation
\textit{in vitro}: Changes in water content, extracellular space, air volume
and ion levels. Physiol. Veg. 24, 647-653.

KEVERS C., FRANCK T., STRASSER R.J., DOMMES J. &
GASPARI TH. 2004 Hyperhydricity of micropropagated shoots:
A typically stress-induced change of physiological state. Plant
Cell, Tissue Organ Cult. 77, 181-191.

KOSHUCHOWA S., BOTCHER I., ZOGLAUER K. &
GÖRING H. 1988 Avoidance of vitrification of \textit{in vitro}-cultured

Chapter 13

INDEX

ABA
 adventitious shoot formation and, 237
 biosynthesis, 235
 embryogenesis, effect on, 237–238
 inhibition of callus growth, 237
 maturation and, 237
 mode of action, 235
 morphogenesis and, 237
 occurrence and activity, 235
ABA-aldehyde, 235
ABA INSENSITIVE3, 341
Abaxial, 295–296, 388, 390
abi, 307
ABI1, 341
ABI3, 341
Abnormal growth, 296
Abnormal plants, 297
 flowers, 48
 from callus, 54
 caused by growth regulators, 48, 53
 somatic embryos, 48
Abnormal structures, 465
ABP1, 183, 307, 358
Acclimatization, 234, 411, 465, 473–474
Active nutrient uptake, 67
Acylhexanediones, 234
N-Acetyl-D-glucosamine (GlcNAc), 347
Adaxial, 295–296, 317, 360, 387–388, 390, 471, 474
Adenine
 embryogenesis and, 216
 inhibition by, 217
 mode of action, 217
S-adenosylmethionine, 250
Adult explants, see Explants mature
Adult phase
 plants, 376, 405–406, 411
 propagation of, 411
 reversion, 409
Adventitious, 22, 31, 34, 39–40, 46, 73, 77, 151, 154
Adventitious buds, see Adventitious shoots
Adventitious embryos
 direct formation of, 20, 47, 120, 374
 indirect formation of, 51, 155, 418
Adventitious roots, 94–95
 genes involved, 314–315
Adventitious shoots
 adenine, effect on, 217
 cytokinin regulation, 216
 daylength effect-ethylene inhibition, 435
 direct formation of, 47
 explants for, 35–36
 gibberellic acid effect on, 12, 41, 119, 131, 418
 indirect formation of, 155
 juvenility and, 406–408
 light, effect of, 92, 211, 454
 medium consistency for, 424–425
 multiplication of, 387, 412, 418, 425–428, 430, 436, 450,
 452–454
 origin of, 36–37
 polyamines on, 175, 248–253
 see also Shoot
Adventive embryos, see Adventitious embryos
Acclimatization, 234, 411, 465, 473–474
AFLP (amplified restriction length polymorphisms), 414
AGAMOUS 1 (AG1), 299
Agar
 addition to media, 148
 brands, 154
 concentration, 154
 crumbled, 430
 effect on media pH, 128
 gelling of, 143
 and Gelrite mixtures, 153
 impurities, 68, 154
 inhibitory compounds in, 143
 media supplemented with, see Media semi-solid physical
 effects of
 pH on, 143
 Agarosepectins, 153
 Agarose, 152–155, 348, 349
 Age of cultures, see Period of culture
 Age of explants, 375–376
 Agitated media, 146, 156
 see also Shaken
AGL 20, 301
AGP
 epitopes, 347
 molecules, 346
Agrobacterium rhizogenes rolC, 413
Agrobacterium tumefaciens, 311
AHP proteins, 211
AINTEGUMENTAL (ANTI), 293
Air filtration, 5
Air flow culture system, 425
Air volume in culture vessels, 142
Aizoaceae, 87
L-α-Alanine, 80
Albino plants, 54
Alcohol burners, 243
Alcohols
 as sterilants, 414
 Alconox wetting agent, 414
 alf1, 314
 alf4, 315
4-Alkyl aminopteridines, 209
Alginans/alginate, 155, 157, 256
Allantoin/Allantoic acid, 69
Aluminium foil closures, 243

479
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium in media</td>
<td>96</td>
</tr>
<tr>
<td>Amides, 69, 176, 179</td>
<td></td>
</tr>
<tr>
<td>Amine, 80</td>
<td></td>
</tr>
<tr>
<td>Amino acids</td>
<td></td>
</tr>
<tr>
<td>beneficial effects of, 81–82</td>
<td></td>
</tr>
<tr>
<td>biologically active, 80–81</td>
<td></td>
</tr>
<tr>
<td>competitive inhibition, 80</td>
<td></td>
</tr>
<tr>
<td>on embryogenesis, 82–83</td>
<td></td>
</tr>
<tr>
<td>as media components, 83</td>
<td></td>
</tr>
<tr>
<td>as sole N source, 79–80</td>
<td></td>
</tr>
<tr>
<td>p-Amoinobenzoic acid, 119</td>
<td></td>
</tr>
<tr>
<td>1-Aminocyclopropane-1-carboxylic acid, see ACC</td>
<td></td>
</tr>
<tr>
<td>Aminoethoxyinylglycine, see AVG</td>
<td></td>
</tr>
<tr>
<td>Aminoindan-2-phosphonic acid, 194</td>
<td></td>
</tr>
<tr>
<td>4-amino-3,5,6-trichloropicolinic acid, 187</td>
<td></td>
</tr>
<tr>
<td>Ammonia, 69, 79, 86, 96</td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td></td>
</tr>
<tr>
<td>chloride, 82–83</td>
<td></td>
</tr>
<tr>
<td>chlorophyll inhibition by, 72</td>
<td></td>
</tr>
<tr>
<td>in embryogenesis, 77–78, 82–83</td>
<td></td>
</tr>
<tr>
<td>ion, 69–73, 77–79, 81–84, 143–145, 148, 152, 242, 250</td>
<td></td>
</tr>
<tr>
<td>effect on pH, 69, 71</td>
<td></td>
</tr>
<tr>
<td>as sole nitrogen source, 71</td>
<td></td>
</tr>
<tr>
<td>toxicity of, 84–85</td>
<td></td>
</tr>
<tr>
<td>uptake of, 66</td>
<td></td>
</tr>
<tr>
<td>nitrate, 79</td>
<td></td>
</tr>
<tr>
<td>sulphate, 71, 74, 77, 79, 90, 249</td>
<td></td>
</tr>
<tr>
<td>AMO 1618, 229</td>
<td></td>
</tr>
<tr>
<td>Amp1, 293, 298, 322</td>
<td></td>
</tr>
<tr>
<td>AMPHIVAL BUNDLES (AVB), 295</td>
<td></td>
</tr>
<tr>
<td>α-Amylase enzyme, 127</td>
<td></td>
</tr>
<tr>
<td>Amyloplasts, 131, 148, 473</td>
<td></td>
</tr>
<tr>
<td>Anaerobic bacteria, 432</td>
<td></td>
</tr>
<tr>
<td>Anaerobic conditions</td>
<td></td>
</tr>
<tr>
<td>for storing cultures, 434</td>
<td></td>
</tr>
<tr>
<td>Analytical grade chemicals, 91</td>
<td></td>
</tr>
<tr>
<td>Anatomy</td>
<td></td>
</tr>
<tr>
<td>of root-to-shoot interface, 467</td>
<td></td>
</tr>
<tr>
<td>of tissue cultured plants, 465</td>
<td></td>
</tr>
<tr>
<td>Ancyimidol, 153, 229, 234</td>
<td></td>
</tr>
<tr>
<td>Androgenesis, 23, 126, 259, 431</td>
<td></td>
</tr>
<tr>
<td>Aneunin, see Thiamine</td>
<td></td>
</tr>
<tr>
<td>Aneuploidy, 318, 381</td>
<td></td>
</tr>
<tr>
<td>Angiosperm, 23, 283, 286–287, 310, 335–339, 341, 345, 348, 412</td>
<td></td>
</tr>
<tr>
<td>Anion, 66, 69, 85–86, 88, 90, 97, 124, 144–146, 148–149, 153, 182, 188, 235, 250</td>
<td></td>
</tr>
<tr>
<td>Anoxia, see Anaerobic conditions</td>
<td></td>
</tr>
<tr>
<td>ANF, 293–294, 309</td>
<td></td>
</tr>
<tr>
<td>Anther</td>
<td></td>
</tr>
<tr>
<td>accessory embryos in, 47</td>
<td></td>
</tr>
<tr>
<td>callus, 2, 47</td>
<td></td>
</tr>
<tr>
<td>culture, 2, 47, 120, 137, 142, 149, 154–155, 190, 246, 259–260</td>
<td></td>
</tr>
<tr>
<td>Antiauxin, 190</td>
<td></td>
</tr>
<tr>
<td>Anticytokinin, 209, 218–219</td>
<td></td>
</tr>
<tr>
<td>Antigibberellins, 175, 229, 232, 257</td>
<td></td>
</tr>
<tr>
<td>Acylhexanediol, 234</td>
<td></td>
</tr>
<tr>
<td>Heterocyclic compounds, 234</td>
<td></td>
</tr>
<tr>
<td>Onium compounds, 234</td>
<td></td>
</tr>
<tr>
<td>Antioxidants, see Reducing agents</td>
<td></td>
</tr>
<tr>
<td>Anti-transpirant film, 34</td>
<td></td>
</tr>
<tr>
<td>APETALA 3, 299, 303</td>
<td></td>
</tr>
<tr>
<td>Apical dome, 82</td>
<td></td>
</tr>
<tr>
<td>Apical dominance, 412–413</td>
<td></td>
</tr>
<tr>
<td>overcoming, 413–414</td>
<td></td>
</tr>
<tr>
<td>Apical meristem</td>
<td></td>
</tr>
<tr>
<td>culture of, see Meristem & Shoot culture</td>
<td></td>
</tr>
<tr>
<td>fragmentation, 37</td>
<td></td>
</tr>
<tr>
<td>integrity of, 233</td>
<td></td>
</tr>
<tr>
<td>Apogamous buds, 139, 245</td>
<td></td>
</tr>
<tr>
<td>Apogamy, 139, 245</td>
<td></td>
</tr>
<tr>
<td>Apomixis, 29, 381</td>
<td></td>
</tr>
<tr>
<td>Apparent rejuvenation, 411</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis pm1–1, 307</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis Response Regulator, 299</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis thaliana, 85, 179, 182–183, 248, 283, 289, 294, 300, 306, 318</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis thaliana meristem layer (AtML1), 306</td>
<td></td>
</tr>
<tr>
<td>Arabinogalactan proteins (AGPs), 346, 350</td>
<td></td>
</tr>
<tr>
<td>Arabinose, 125</td>
<td></td>
</tr>
<tr>
<td>Areoles, 124, 360</td>
<td></td>
</tr>
<tr>
<td>ARF1, 311</td>
<td></td>
</tr>
<tr>
<td>ARGOANTE (AGO1), 289</td>
<td></td>
</tr>
<tr>
<td>ARR proteins, 211</td>
<td></td>
</tr>
<tr>
<td>ARTEMISIN, 256</td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid, 95, 118–119, 433–434, 445</td>
<td></td>
</tr>
<tr>
<td>Aseptic conditions, 2, 10–12, 30, 36, 57, 414</td>
<td></td>
</tr>
<tr>
<td>Asexual embryos, see Somatic embryos</td>
<td></td>
</tr>
<tr>
<td>L-Asparagine, 80</td>
<td></td>
</tr>
<tr>
<td>Aspartic acid, 79, 80–81, 84, 117, 176, 243</td>
<td></td>
</tr>
<tr>
<td>Asymmetric division, 305–306, 337, 343</td>
<td></td>
</tr>
<tr>
<td>ASYMMETRIC LEAVES (ASI), 294</td>
<td></td>
</tr>
<tr>
<td>ATHB, 295, 317</td>
<td></td>
</tr>
<tr>
<td>ATML1, 291, 306, 309, 341</td>
<td></td>
</tr>
<tr>
<td>Atmosphere above cultures, 152</td>
<td></td>
</tr>
<tr>
<td>Atmospheric pressure reduction of, 431</td>
<td></td>
</tr>
<tr>
<td>ATP, 81, 85, 88, 319</td>
<td></td>
</tr>
<tr>
<td>Augmentine, 138</td>
<td></td>
</tr>
<tr>
<td>Autoclaving</td>
<td></td>
</tr>
<tr>
<td>effect on pH, 128–129</td>
<td></td>
</tr>
<tr>
<td>media, 128</td>
<td></td>
</tr>
<tr>
<td>sugars, 132</td>
<td></td>
</tr>
<tr>
<td>Autotrophic cultures/growth, 124, 262</td>
<td></td>
</tr>
<tr>
<td>in cell and callus culture, 262–263</td>
<td></td>
</tr>
<tr>
<td>optimum environment for, 262</td>
<td></td>
</tr>
<tr>
<td>AUX1, 182, 315–316</td>
<td></td>
</tr>
<tr>
<td>Auxin</td>
<td></td>
</tr>
<tr>
<td>absorption by charcoal, 259</td>
<td></td>
</tr>
<tr>
<td>activity, 186</td>
<td></td>
</tr>
<tr>
<td>autotrophy and dedifferentiation, 298</td>
<td></td>
</tr>
<tr>
<td>binding protein, 183</td>
<td></td>
</tr>
<tr>
<td>biosynthesis, 178–179</td>
<td></td>
</tr>
<tr>
<td>and chromosome instability, 220</td>
<td></td>
</tr>
<tr>
<td>conjugation and degradation, 179</td>
<td></td>
</tr>
<tr>
<td>cytokinin and, 15, 41, 89, 139</td>
<td></td>
</tr>
<tr>
<td>for embryogenesis, 181</td>
<td></td>
</tr>
<tr>
<td>interaction, 185</td>
<td></td>
</tr>
<tr>
<td>ratio, 183</td>
<td></td>
</tr>
<tr>
<td>effects in tissue culture, 188–189</td>
<td></td>
</tr>
<tr>
<td>of different synthetic auxins, 187</td>
<td></td>
</tr>
<tr>
<td>embryogenesis, 186–187</td>
<td></td>
</tr>
<tr>
<td>induction of callus growth, 186</td>
<td></td>
</tr>
<tr>
<td>organ cultures, 186</td>
<td></td>
</tr>
<tr>
<td>endogenous, see naturally-occurring on enzyme synthesis, 178–179, 181</td>
<td></td>
</tr>
<tr>
<td>on ethylene biosynthesis, 175</td>
<td></td>
</tr>
<tr>
<td>ethylene interaction, 198</td>
<td></td>
</tr>
</tbody>
</table>
embryogenesis in, 23, 53, 83, 141
explants for, 391
 genetic stability of, 31, 44, 50, 51, 54
 origin of, 14, 36, 51, 207, 366
 subculture of, 7–8, 11, 14, 32, 51–52, 127, 219, 344, 379, 382
 friable, 14, 83, 124, 369, 431, 453
 genetically variable, 186
 ethylene on, 242–244, 250, 343
 genotypic effect on, 372–374
 light effect on, 21–22, 34, 45, 196, 205, 244
 initiation of, 32, 244, 251, 262, 373, 376, 454
 genotypic effect on, 372–374
 juvenile effects, 405–408, 411–412, 416
 of mixed genotypes, 91
 morphogenetic competence, 362, 374, 380
 organised, 43–45
 primary, 14, 49, 51–53, 230, 377, 382
 reorganised
 genetic stability of, 50–51
 shoot formation from, 82, 86, 230, 445, 453
 subdivision of, 49–50
 types of, 51–52, 151
 variation in, 45
 Calmodulin, 88
 Cambial
 activity, 316, 466–467
cells, 2, 316–317
Cambium
 periderm, 317
 phellogen, 312, 315–317
 vascular, 137, 314, 316–317, 466–467, 471, 473
Canalization, 357
Candela, 440, 441
Candle, 440, 441
CAPRICE, 312
Carbohydrate
 autotrophy, 124
 nutrition, 125
Carbon dioxide
 concentrations, 22, 157, 429
 effect on organogenesis, 435
 fixation, 72, 87, 429
 growth regulation and, 434–435
 growth regulatory effect, 434–435
 inadequate levels, 414
 non-autotrophic requirement for, 434
Carbon source, 22, 31, 124, 126–127, 130, 344
 Carotenoid pigments, 448
 Carpel, 299, 303, 367
 α-Carrageenan, 155
 Carvadan, see AMO 1618
 Caryophyllaceae, 452
 Casamino acids, see Casein hydrolysate
 Cascade grafting, 409
 Casein hydrolysate (CH), 6, 78–84, 119, 121, 129, 147, 346
 Catalase enzymes, 117
 Catechin, 196
 Catechol
 effects of, 195–196
 Cation, 66, 86, 88, 101, 129, 145, 154
 Caulogenesis, 216, 454
 see also Adventitious shoots
 CCC, see Chlormequat
 CDKs, 318–322
 cDNA libraries, 414
 CDTA, 101–102
 Cell
 aggregates, 1, 4, 15–17, 48, 50, 124, 155, 344–347–348, 350, 448
 cultures, see Suspension cultures
 cycle
 affecting drugs, 348
 growth regulator effect on, 321–322
 cytokinin requirement, 78
 abnormal, 293
 density, see Density
 differentiation, see Differentiation
 dispersion, 15, 18, 53, 152, 186
 division
 asymmetric, 305–306, 337, 343
 plane of, 286, 306, 319, 370
 fate, 288, 294, 296, 311–312, 314, 339–340, 392
 fusion, see Protoplasts
 growth, 15, 16, 19, 21, 44, 69, 77, 91, 123, 132, 137, 149, 178, 237, 246, 261, 318, 386, 425
 injury, 6, 192
 see also Wounding
 lines, 16–17, 20, 22, 124, 299, 343–344, 346, 411
 selection of, 15
 membranes, 80, 86, 88, 250
 nuclei, 213
 organelles, 466
 polyamines on, 248
 populations, variation in, 380–381
 separation, 15, 18
 strains, 14, 16, 207
 suspensions, see Suspension cultures
 wall/s, 15, 19, 88–89, 116, 128, 130, 135, 211, 255, 346, 468–469, 470–474
 acidification of, 343
 degrading enzymes, 19, 136
 formation, 19, 71, 336
 Cell cycle
 hormonal control, 321–322
 molecular control, 318–321
 progression, 211, 321
Cellobiose, 125, 129
Cellulase, 18–19
Cellulose gelling agent, 3, 91, 143
2-CEPA, see Ethephon
Cereals
callus from, 13, 54
morphogenesis in, 51
see also Monocotyledons
CHAP, 249, 252
Charcoal, see Activated charcoal
Chelated iron, 97–98
Chelating agents
alternatives to EDTA, 99
growth regulatory effects of, 100–101
inhibition of ethylene action by, 241
and pH, 85
structure of, 97
toxicity of, 101–102
Chenopodiaceae, 87
Chilling
requirement, 414
Chimeral
characteristics, loss of, 286
separation, 286
Chimeras
cell layers in, 283, 286
generation of
from apical buds, 286
from callus cultures, 286
from protoplasts, 20
horticultural value, 286
mericlinal, 286
periclinal, 286, 297
propagation, 286
by shoot tip culture, 365
from adventitious shoots, 286
propagation of, 44
sectorial, 286
Chloride ion, 86, 88, 90
Chlorine, 65, 90
Chlormequat, 229, 234, 418, 445
Chlorogenic acid, 192, 196
2-Chlorethanephosphonic acid, see Ethephon
4-Chlororesorcinol, 194
2-Chloro-3(2,3 dichlorophenyl) propionitrile, 188
4-Chlororesorcinol, 194
Chlorophyll
deciciency, 90
see also Albino plants
formation in vitro, 21–22
auxins on, 186
sugars on, 124, 130
synthesis, 72, 92, 130, 244, 448
Chloroplast
differentiation, 448
Chromatin, 298, 301, 391
Chromoplast, 448
Cinnamic acid, 191, 194, 249, 251, 254
Citrate/Citric acid, 72, 123–124, 144
Citrulline, 82
CKII, 211, 299, 358
2,6Cl-4PU, 210
CLAVATA (CLV), 341, 392
CLAVATA, 290, 292, 311, 340–341, 392
CLAVATA1 (CLV1), 290, 292
CLAVATA2 (CLV2), 290
CLAVATA3 (CLV3), 290
CLAVATA-like (CLE), 311
Cleavage polyembryony, 368–369
CLF (CURLY LEAF PROTEIN), 382
Clonal propagation, 48, 405
Clone, 2, 16–17, 29
see also Mericlone
Cloning of genes, 414
Closures for containers
effect on humidity, 142, 243, 435
CLV1, 290, 292
CLV2, 290
CLV3, 290
CM, see Coconut milk
Cobalt, 65, 90–91, 95, 246
ions, 240
Coconut milk/water
auxin activity, 122
components of, 117, 122
cytokinin activity of, 122
inhibitory factors in, 123
preparation of, 122–123
use of, 122
Co-culture, 181
Cold
conditioning, 6, 386
induction of flowering, 439
on morphogenesis, 452
pretreatment of bulbs, 437–438
treatment to reverse dormancy, 438
Coleoptile, 100, 185, 250, 341, 367, 371, 373
Collenchyma, 357, 471–472, 474
Combining ability, 446
Commitment
to flower, 363–364
see also Determination
Compensation point, 129
Competition
embryogenetic, 46
morphogenetic, 49–50, 357
Competent cells, 49, 52, 292, 356, 361–363, 366, 380,
403, 405
Competition
between meristems, 391
between somatic embryos, 391
Compositae, 87
Concentration of nutrients, see of macronutrient salts
Condensation, 439
Conditioning of media, 212, 347, 386
Conifers, 72, 131, 238, 253, 283, 317, 345, 364, 368–369, 404,
406, 412, 437, 448
see also Gymnosperms
Conjugation, 176, 179, 181–182, 189, 212, 235
CONSTANS, 301, 303
Containers
atmosphere within, 243
basal cooling, 415
carbon dioxide within, 429
ethylene within, 425
oxygen within, 428
size, 435
Contaminants, 2–3, 8, 32, 34, 82, 135
Continuous cultures, 15
Contour diagrams, 219
Cool-white tubes, 443
Copper
containing enzymes, 95
ions, 95, 241
Cormlets
formation in culture, 54–55, 390
Corn steep liquor, 119
Corn syrup, 127
CORONA (CAN), 295
Cortex, 131, 310, 312–313, 317, 338–339, 347, 376, 466, 470, 471, 472, 474
Cotyledon
culture, 127
explants, 156, 189, 253, 358, 383–384
p-Coumaric acid, 93, 232
Coumarins, 196
4-CPA, 188
CpG islands, 382
CPPU, 210
Crassulaceae, 87, 388
CRE/AHK/WOL, 211, 310, 315–316
CRE1, 211, 310, 316, 358
Critical cell density, 318
Crown, 93, 123, 129, 251, 315, 387, 438, 448
Crown-gall disease, 192
CTR1, 312
Culture/s
decline of, 7–8, 11, 49, 85, 96, 115, 128, 148, 179, 410, 416, 430, 436, 440, 449
density, see Density
environment, see Environmental factors
flasks/vessels, see Containers
initiation, 6, 7, 49, 373, 452
media, see Media
oxygen requirements of, 429–430
of single cell origin, 16–17, 364–365, 367–368
CUP-SHAPED COTYLEDONS (CUC2), 307
Cuticle, 405, 468–469, 473–474
Cuticular wax/es, 468
Cybrid, 20
CYCD cyclins, 319
Cyclase enzymes, 227
Cyclin-dependent kinases, 211
Cyclins, 318–321
Cycloartenol, 253
4-(Cyclobutylamino)-2-methylpyrrolo[2,3-δ]pyrimidine, 218
4-(Cyclobutylamino)-2-methylthiopyrrolo[2,3-δ]-pyrimidine, 218
Cyclohexammonium phosphate, see CHAP
Cyclophysis, 384
Cytdifferentiation, 20, 340
see also Differentiation
CYTOKININ RESPONSE1 (CRE1), 310
Cytokinins
activity of, 82, 122, 206, 209–210, 212–213, 216, 219
adventitious shoot formation and, 82, 214–216, 299, 418
analogues of, 209
antagonists of, 218–219
on apical dominance, 412–413
and auxins, 219
balance between, 219
interaction between, 219
biological activity, 205
biosynthesis of, 207–209
and carbohydrate metabolism, 212
biosynthesis of, 262
in coconut milk, 122
contour diagrams, 219
cell cycle and, 220
definition, 205
dependent tissues, 210
discovery of, 216
and embryogenesis, 214
habituated tissues, 261
inhibition of root formation, 214
inhibition of shoot growth, 247
and juvenility, 262
interaction with light, 211
mode of action of, 210–211, 217
for mother plant pretreatment, 258
naturally occurring (endogenous)207, 212–214
oxidase, 212–213, 263, 312, 316
in plant sap, 119
polyamine interaction, 251
promoted root formation, 252
properties and discovery, 205–206
red light equivalence, 211
and root formation, 214–216
and shoot proliferation, 211, 214–215, 219
specificity of action, 215
stimulation of cell division, 213–214
synthetic- metabolism of, 209
temperature dependence, 216
uptake and metabolism, 212–213
Cytological abnormality, 54, 337
Cytoplasmic
inheritance, 335–336
organelles, 337, 466
2,4-D (2,4 Dichlorophenoxyacetic acid), 343
Daminozide, 229, 234, 418
Darkness
brief exposure to, 455
establishing cultures and, 453–455
morphogenesis and, 455
Daylength, 449–451, 454
DCHA, 249, 251, 252
DCMU, 140
Deciduous trees, see Broad-leaved trees
Decline of cultures, see Culture
Decontamination, 8, 120
Dedifferentiation, 13, 186, 245, 251, 291, 298, 312, 314, 317, 321, 357, 381, 465, 466
DEFICIENS, 300, 303
Density
of cultures, 7
of inoculation, 6, 16, 85, 386
Desiccation
of cultures, 439
of embryos, 344–345
of medium, 427
Determine organs, 7–9, 298
Determination
of cells, 317, 403–404
embryogenic, 46, 187, 367, 370
IEDC, 367
PEDC, 365, 367
floral, 303–304
induction of, 360–363
morphogenetic, 357
reversal of, 357
Development
of roots, 94, 232, 311–312, 315, 465–466
of shoots, 43, 94, 129, 190, 230, 377, 436, 452, 454
DFMA, 249–252
DFMO, 249–250, 252
DFR (dihydroflavonol reductase) gene, 404
2,6-Diaminopurine, 218
DHPT, 101
Dicamba, 187–188, 246
3,6 Dichloroanisic acid, 187
2,4 Dichlorophenoxyacetic acid, see 2,4D
2,4 Dichlorophenylselenoacetic acid, 188
Dicotyledons, see Broad-leafed plants
Dicyclohexammonium sulphate, see DCHA
Diethyldithiochcarbamate acid (DIECA), 56, 58
α-Difluoromethylornithine, see DFMO
Differentiated cells, 1, 2, 6, 21, 186, 192, 298, 310, 320, 355, 357, 367, 376, 406
Differentiation
in callus and cell cultures, 3, 431
cellular, 6, 14, 21, 92, 194, 219, 232, 341, 356, 471
Diffusion
of gases, 3–4, 157, 428, 435
into media, 429–430
into plant tissues, 188, 428
of nutrients, 425
DIHB, 241
Dihydrozeatin, 206, 208, 212, 322
3,5 Diiodo-4-hydroxybenzoic acid, 241
Dikegulac, 258
Dimethylallyl diphosphate, 207–208
Dimethylsulfoxide (DMSO), 177
Dioxindole-3-acetic acid, 179
1, 3-Diphenylurea, 117, 210
Diploid, 51, 101, 142, 266, 304, 318, 335, 375, 381
Direct embryogenesis, see Somatic embryogenesis
Direct morphogenesis, see Morphogenesis
Direct organogenesis, see Organogenesis
Direct regeneration, 356, 361, 364, 373, 384
Direct secondary embryos, 47
Direct shoot formation, see Adventitious shoots
Discoloration of media, see Blackening
Disinfestation, 414–415
Dithiothreitol, 433
DL-α-Difluoromethylarginine, see DFMA
DNA
content of cells, 317–318, 391
demethylation, 381
methylation, 186, 263, 343, 382
Dopamine, 95, 219
Dormancy
of buds, 205, 235, 247
of bulblets, 55
of micropropagated plants, 31
of mother plants, 413–414
reversal of, 54, 438–439
of tropical species, 6, 452
DR5, 309, 311, 315
Drip feed, 6
DTMP, 101
Duration of exposure to regulants, 266
EDDHA, 100–101
EDTA, complexed with iron, see FeEDTA
E大道, see Redox potential
Einstein, 440–441
Elicitors, 175, 255–256, 261
Elite stock, 42
Elongation of shoots, see Shoot
Embryo
explants, 214, 369, 389, 391
maturation, 126, 238, 305, 337, 345
mutants, 306, 340
sac fluids, 119, 121
secondary, 47, 53, 342, 431, 445
seed (zygotic), see Seed embryos
Embryo culture
media for, 11
see also seed embryos
Embryogenesis, see Somatic embryogenesis
Embryogenic
callus, see Callus
capability
loss of, 51
competence, see Competence
cultures, 54, 88, 187, 190, 335, 339, 341–342, 345–347, 418
initiation of, 343–344
proliferation of, 344
determination, 46, 187, 367, 370
see also Determination
pre-determined cells, 342
Embryoids, 22, 53
see also Somatic embryos
Embryonal suspensor masses, 118, 368, 370
Embryo rescue, 10, 94
EMF, 301
Encapsulated embryos, 155
Endochitinase
gene, 346
Endogenous
growth substances, 264, 375, 384, 423
regulation of levels, 13, 263, 357–358, 424
Endomitosis, 319
Endopolyploid, 51, 318
Endoreduplication, 318–320
Endosperm, 10–11, 13, 23, 46, 121–122, 131, 227, 230, 304, 335, 341, 375, 377
Energy, of light, 440–441, 443, 449, 451, 453
Environmental factors, 205, 241, 373, 413
Enzymatic cell separation, 18
Enzyme activity, 232, 446
Enzymes, extra-cellular, 146, 356
Epicormic shoot, 408
Epicotyl, 234, 241, 379, 384–385, 387, 454
Epicuticular wax, see Wax
Epigenetic change, 14, 380–381, 404
expression, 403–404, 408
variation in, 346, 403
Erg, 440–441
Ericaceae, 150, 215, 413
ER-luminal resident protein, see BiP
Essential elements, 65, 97
Establishing cultures, 454
light for, 441, 443
plantlets, 215
see also Hardening
Ethane, 248
Ethanol in the gas phase, 245, 248
Ethenine, see ACC
Ethrel, see Ethephon
Ethylene
absorption of, 242
accumulation in culture vessels, 243
action and accumulation of metabolites, 241, 243, 247
anoxia and oxidation inhibitors, 240
on auxin biosynthesis, 239
on axillary shoot growth, 246–247
biosynthesis, 239, 242, 244, 247, 250, 261, 434–435
on bud dormancy, 247
inhibitors of, 239, 241, 244, 249–250
on callus initiation & growth, 244
on determination, 244
on embryogenesis, 246
on explant isolation, 243
growth stimulation, 244
inhibitors of action, 241
metabolism, 247
on morphogenesis, 244
polyamine interaction, 248
production by wounding, 245
production in vitro, 242–243
-releasing chemicals, 241–242
on root formation, 245–246
on shoot growth, 246–247
solubility, 242–243
on somatic embryogenesis, 246
Ethyl ether, 116, 177
eti5, 239
Etiolation
for inducing juvenility, 408–410
for reducing contamination, 408
Etioplast, 448
et1, 239
Euchromatin, 362, 381–382, 391
Euploidy, 318, 381
Excised root culture, see Root culture
Excision of explants, 403
Explants
accessory organs, 383
age of, 375–376, 379

Index
death of, see Necrosis
derivation of, 374, 383
differentiation of, 378
establishment, 3, 410, 416, 436
excision of
wounding during, 360
from field-grown plants, 414, 474
growth regulator specificity, 384
juvenile, 376
mature, 376
nature of, 383
and nutrition, 416
orientation of, 387
polarity of, 387
position
on medium, 386
on plant, 36
pretreatment of, see Pretreatment
reducing contamination of, 33
sampling of, 377
for shoot cultures, 377–378
size of, 384
terminalogy, 380
onvirus removal
small, 2
sterilisation of, 147

Explants of, 246
Exponential growth, 7, 213
extra vitrum, 34, 131, 440, 467, 474
rooting, see Rooting
Ex vitro
organs and, 472–473
F1 hybrid plants, 371
Fabric support, 20, 156
FACKEL (FK), 306
fackel, 340
Factorial experiments, 91
Far-red light, 211, 414, 417, 442–443, 446, 449, 452–453
Fate map, 340, 347–348, 350
Fatty acid ester, 119, 153, 258–259
FCA, 301, 303, 405
Feeder layer, 17
FEEDTA, 98, 101–102, 120, 150
ambiguous descriptions of, 99
sodium salt of, 99
Fermentation, 154, 175, 432
Fern’s, 44, 47, 96, 139–140, 245, 255
Ferric citrate, 98, 101, 148
salts/ions, see Iron
tartrate, 143, 148
Ferrous salts/ions, see Iron sulphate
Fibrin digest, 119
Field crops, 54
Field-grown mother plants, 414–415, 474
FILAMENTOUS FLOWER (FLL), 294
Filter paper
bridges, 45, 156
supports, 156, 426
FIMBRIATA (FIM), 294
Flasks, see Containers
Flavandiols, 196
Floral
bud/s, 78, 139, 252, 452
differentiation, 185
organs, 150, 177, 290, 292, 294–295, 299, 303, 407
structure, 42, 408
Floral meristem, 290, 294, 296, 299, 301, 303, 357, 436
shoot formation from, 42–43
vegetative growth from, 2, 42
FLOWERCAULA (FLO), 293–294, 296
Flower
bud culture, 9
bud explants, 377
bud formation, 78, 82, 452
effect of light on, 452, 455
effect of nitrogen on, 78
polyamines on, 252
commitment to, 373
formation, 407, 449
stem explants, 455
tissues, 436
juvenility of, 407
Flowering
induction of, 77–78
on juvenile explants, 437
of micropropagated plants, 411
regulation of, 252
in vitro, 411, 450
FLOWERING LOCUS C, 301, 303
Fluorescent lighting, 443, 447, 451
Fluridone, 141, 235, 237–238
Flux density, see Radiant flux
Foam-stoppered flasks, 243
Fog of water vapour, 34
Folic acid, 117, 119, 260
Foot candle, 440–441
Forced shoots, 408
Forcing
environment, 408
shoots, 415
Forest trees, see Trees
Fragmented shoot apices, 437
Free radicals, 89
FRIGIDA, 301, 303
Fructose, 77, 117, 125–126, 128–129, 135, 147
fruit juices and pulps, 65, 115, 119
Fruit species, see Soft and Tree fruits
Fruit trees, see Trees
FT (floral promoter) gene, 301, 303, 404–405
Fumarate/Fumaric acid, 123–124
Fungal infection, 86
Fus3, 307
FUSCA3 (FUS3), 341
Fusaric acid, 175, 254
FVE, 405
G0 stage of cell cycle, 297, 318, 356, 361–362, 382
G1 phase, 310, 316–319, 321–322, 433
G1 stage of cell cycle, 310, 316–319, 321–322, 433
G2 phase, 317
GA1, see Gibberellins
GA3, see Gibberellic acid
GA4, see Gibberellins
GA7, see Gibberellins
Galactosamine, 80
Galactose, 125–127, 132, 153, 243
Galacturonides, 255
Gametophytic development, 23
Gamma (γ)-radiation, 263
Gaseous, 243, 428, 430
aeration and, 430, 435
ambient, 124, 428–429
ascorbate and, 434
in containers, 3, 15, 19, 415, 424–425, 435, 440
differentiation, 431
diffusion into media, 428–430, 435
glutathione and, 433–434
growth and, 430
organogenesis and, 431–432, 435
oxygen requirements, 429
oxygen tension, 428, 430–432
photorespiration and, 429, 431
redox potential, 428, 432–434
respiration and, 429–432, 434
thiourea and, 433–434
variation in, 435–436
GCR1, 358
Gellan gum, 3, 65, 153–155, 157
Gelling agent, unusual, 156
Gelrite, 68, 133, 135, 143, 153–156
Gene/s
amplification, 414
cloning, 414
cytoplasmic, 20, 372
dominant, 372
homeotic, 299, 303, 392
interaction, 372
isolation, 283
nuclear, 317, 372
recessive, 297
regulation, 322, 339
repressor, 184, 301, 303, 320
silencing, 381, 382
transfer, 297
Genetic abnormality, see Genetic variability
Genetic control of in vitro growth, 374–375
Genetic engineering
methods of, 18, 20, 30
Genetic factors, 335, 372, 375
Genetic manipulation, 30
Genetic stability
of morphogenic callus, 153
in organised cultures, 12
of plants, 51, 54
Genetic variation
basis of, 295
in callus, 45
in cultures, 17
effect of medium on, 17, 45, 346, 380, 403
from protoplast regeneration, 345–346
induced by micropropagation, 45
and loss of morphogenetic capacity, 381
period of occurrence, 48
of plants, 45
Genome, 92, 207, 318, 341, 374–375, 391, 449
Genotype
effect on morphogenesis, 373–374
Genotypic effect
- on callus growth, 373
- on callus initiation, 373
- on direct morphogenesis, 376
- on indirect morphogenesis, 376
- on regenerative ability, 376
- on somaclonal variation, 364

Germination
- in vitro, 342
- of somatic embryos, 231

see also

Flasking

Germination
- in vitro, 342
- of somatic embryos, 231

see also

Flasking

Germplasm
- storage, 12

GH3 genes, 184

Gibberellic acid, see Gibberellins

Gibberellins
- and abnormal structures, 227
- activity of in media, 232
- biosynthesis of, 227
- detrimental effects, 233–234
- inhibitors of biosynthesis and mode of action, 227, 229
- juvenile and, 227
- use in meristem cultures, 232
- mode of action, 227
- on morphogenesis, 230
- naturally occurring, 227
- polyamine interaction, 248
- on reversing dormancy, 234
- on rhizogenesis, 230
- in shoot and node cultures, 232
- on shoot elongation, 233
- on shoot multiplication, 233
- on somatic embryogenesis, 246
- and Stage IV treatments, 234
- use in tissue cultures, 229

GLABRA, 42, 312

Glasshouse, see Greenhouse

Glassy shoots, see Vitrescence

GLOBOSA, 300

Gibberellic acid, see Gibberellins

Gibberellins
- and abnormal structures, 227
- activity of in media, 232
- biosynthesis of, 227
- detrimental effects, 233–234
- inhibitors of biosynthesis and mode of action, 227, 229
- juvenile and, 227
- use in meristem cultures, 232
- mode of action, 227
- on morphogenesis, 230
- naturally occurring, 227
- polyamine interaction, 248
- on reversing dormancy, 234
- on rhizogenesis, 230
- in shoot and node cultures, 232
- on shoot elongation, 233
- on shoot multiplication, 233
- on somatic embryogenesis, 246
- and Stage IV treatments, 234
- use in tissue cultures, 229

GLABRA, 42, 312

Glasshouse, see Greenhouse

Glassy shoots, see Vitrescence

GLOBOSA, 300

Globular bodies, 305, 336, 344
- stage of embryos, 305, 337

β-glucans, 255

Glucosamine, 80, 347

Glucose, 6, 13, 51, 77, 125–130, 135–137, 139, 147, 154, 175–177, 212, 235, 255, 432

Glucose-6-phosphate dehydrogenase, 212

Glutamate synthetase, 71, 73

Glutamic acid, 71, 80–84, 120

Glutamine synthetase, 71, 85

Glutathione, 88, 102, 184, 264, 433–434

Glutathione-S-transferase, 184

Glycerol, 179

Glycine, 79–82, 84, 91, 115, 118–119, 126, 140, 144, 177, 179, 189, 266, 374, 435

Glycolysis, 432–433

Glycophosphate, 258

GNOM (Gv), 306–307, 316, 340

Grafting
- serial, 408
- to induce juvenility, 408
- for virus detection, 55–56
- for virus elimination, 56, 58

Index

in vitro, see micrografting

Graphite, 260

GRAS, 306, 312

Grasses, 52, 97, 227, 246, 306, 312

Greenhouse-sown mother plants, 415

Greening of cultures, 22

Green-yellow light, 448

Grolux tubes, 443, 450

Growth
- curve, 7
- effect of oxygen on, 65
- inhibition, 71, 101, 121, 237, 244, 247, 430, 444–445
- osmotic potential on, 140
- retardants, see Antigibberellins

Growth regulators
- absorption by charcoal, 258–259
- for callus initiation, 244, 373, 376
- causing genetic variation, 263
- for different explants, 385
- duration of exposure, 384
- effect on redox potential, 428
- effect on respiration, 429–430
- genotype interaction, 424
- on growth and morphogenesis, 423
- interaction with medium, 424
- media without, see Media, unsupplemented
- for meristem tip culture, 36, 56, 232
- for mother plant pretreatment, 418
- overexposure to, 264
- and polarity of regeneration, 387
- pulse treatments, 264
- sequential application of, 366
- for shoot culture, 39
- for somatic embryogenesis, 427
- for stored cultures, 418
- timing of, 264–266

Growth retardants, 40, 175, 234, 465

Growth substances
- habituation for, 261–262
- transport of, 339, 365

GST, 184

Guard cells, 90, 469–470, 473

GURKE (GK), 306

gurke, 340

Gymnosperms, 13, 46, 49, 304, 335–338, 345, 348, 350, 369, 412

Gynogenesis, 23

Habituated tissue cultures, 261

Habituation
- causes and effects of, 262–263
- genetic control of, 263
- growth factor dependency, 262
- induction of, 262
- see also Auxin & Cytokinin

Hanging drop culture, 37, 425

Haploid plants, 2, 22–23, 101, 266, 417

Hardness of media, 121

HD-Zip genes, 341

Heart-shaped stage of embryos, 11, 238, 308

Hedging, 405–406, 409

Heller supports, 156
- see also Filter paper supports

Hemicellulase enzymes, 18
Index

Hemicellulose, 116
Heritability
 of morphogenesis, 22
Heterocyclic compounds, 234
Heterosis, 374–375
Heterotrophic growth, 127, 131, 261–263
Hexose monophosphate shunt, see Pentose phosphate pathway
High frequency somatic embryogenesis, 369
Histidine kinase, 211, 299, 358
hks3, 314
HOBBIT (HBT), 306
Homeobox genes, 288, 298, 312, 341
Homogenised tissues, see Maceration
Homokaryon, 20
Homozygous
 loci, 307, 341, 414
 plants, 290
Hormones, 92, 175–176, 182, 185, 205, 214, 227, 235, 237, 239,
 248, 253, 261, 283, 286, 298, 312, 316, 322, 360, 413, 424,
 428
8-HQ, see 8-hydroxyquinoline
Humidity, see Relative humidity
Hybrid vigour, see Heterosis
Hydathodes, 474
Hydrogen ion
 concentration, 143
 efflux, 149
Hydrogen peroxide, 192, 414, 433–434
Hydroponic culture, 95–96, 98, 101, 147
Hydroxyl ions, 144
9-Hydroxyfluorene-9-carboxylic acid, 191, 389
4-hydroxy-3-methyl-2-butenal, 206
4-hydroxy-3-methyl-trans-2-butenylaminopurine, 206
5-Hydroxymethylfurfural (HMF), 259
Hydroxyphenols, see Phenolic compounds
8-Hydroxyquinoline, 101, 415
Hyperhydric
 guard cells, 90, 469, 470
 leaves, 468–469, 471, 474
Hyperhydricity
 chloroplasts and, 468, 470, 471, 474
 metaxylem and, 471
 palisade cells and, 468, 471, 474
 sclerenchyma and, 470, 471
 vascular cambium and, 471, 473
Hypermethylation, see DNA
Hypertrophy, 468, 470
Hypochlorite solutions, 414
Hypocotyl
 explants, 46, 181, 189, 234, 237, 374, 384–385, 391
 explants, 46, 181, 189, 234, 237, 374, 384–385, 391
 hyposia, 152, 425, 430, 433
IAA (indoleacetic acid)
 4-chloro-, 176
 biosynthesis of, 93, 176–178, 181–182
 conjugates, 176
 degradation, 179, 182, 192, 196
 endogenous, 93, 179, 181, 187, 189, 214
 see also Auxin, naturally-occurring
 endogenous rhythm, 177
 ethylene inhibition of, 179, 240
 glucose esters, 176
 oxidase, 92
 inhibitors of, 92
 oxidation of, 192, 195, 211, 455
 uptake, 151
iAA, 412
iAA, 116, 412
IBA, 146, 151, 176, 182, 185–188, 194–196, 215, 217,
 230–231, 233, 243, 245, 252, 257, 259, 265,
 390, 418
ICK1, 319
IEDC, 367
Illuminance, 440, 443–444, 450–453
Illumination
 units of, 440
Imazalil, 54
Immature embryos, see Seed embryos
Immobilised cells, 443
Inbred plants, 375
Incandescents bulbs, 443
Incubation of cultures
 lighting for, 151, 230
 temperature for, see Temperature
Indeterminate organs, 7, 8, 9
 culture of, 9–10
Indirect adventitious shoots, see Adventitious
Indirect embryogenesis, see Somatic embryogenesis
Indirect morphogenesis, see Morphogenesis
Indirect organogenesis, see Organogenesis
Indole, 177, 178
Indole-3-acetaldehyde, 178
 dehydrogenase, 178
 oxidase, 178
Indole-3-acetaldoxime, 178
Indole-3-acetamide, 179
 hydrolase, 179
Indole-3-acetic acid, see IAA
Indole-3-carboxylic acid, 179
Indole-3-glycerol phosphate, 179
Indole-3-methanol, 179
Indole-3-propionic acid, see IPA
Indole-3-pyruvic acid, 176, 178
Indoleacetonitrile, 178
Indoleacetyl aspartic acid, 176
Indolebutyric acid, see IBA
Inflorescence
 explants, 52, 383
 tissues, juvenility of, 230
Inflorescence stalk explants, see Peduncle
Inoculation density, see Density
Inoculum size, 385–386
Inorganic salts, 11, 119, 132, 134
 see also Macro- and Micronutrients
INTERFASCICULAR FIBRELESS (IFL), 295
Internode explants, see Stem explants
Intumescences, 244
Inversion of sugar, see Sugars
Invertase enzyme, 128, 135
In vitro
 layering, 40
 see also Node culture
 organs and, 32, 74, 375
 propagation, see Micropropagation
In vivo, 8, 12, 21, 30, 35, 39, 44, 55, 57, 67–68, 85–86, 90,
 241, 286, 298, 367–368, 374–376, 418, 426, 428,
 431, 434, 439, 454, 465, 468
Iodide ions, 96
Iodine, 65, 96–97
Iodoacetate, 96
Ionic concentration of macronutrients, 67
Ions
- leakage of, 68
- uptake of, 144
Ioxynil, 241
IP3, 358
IPA, see iP
2-iP, see iP
Iron
- chelated forms of, see Chelated iron ions, 97
Irradiance
- cultures requiring low, 195, 443–444, 449, 451–452
Island diagrams, 219
Isolated pollen culture, see Pollen culture
Isolated root culture, see Root culture
Isolation phase, 1, 3, 19, 20, 136, 140, 291, 359–360
α-Δ¹ isopentenyladenine, 206, 209, 212, 343, 413
Isopentenyl transferase, 207, 413
Jasmonic acid, 175, 254–255
JIM8 antibodies, 347
Juglone, 196
Juvenile
- characteristics, 58, 406–408
- explants, see Explants
- juvenile form of leaves, 405
- in woody plants, 410
- phase, 404, 409–412
- plants, 262, 404–405, 413
- from adventitious shoots, 405–408
- from shoot tip culture, 38–39
- from somatic embryos, 404, 407
- reversion shoots, 407
- tissues, 406
Juvenility
- cone of, 406, 408, 416
- effect of growth regulators, 409–410
- effect of temperature, 409
- effect of temperature, 409
- effect on callus cultures, 411
- effect on leaf patterns, 404, 410
- effect on rooting, 408, 410–411
- induction of
- in shoot cultures, 410–411
- restoration of
- by micrografting, 408
- reversion to, 406–407, 409
KANAD1 (KAN), 295–296
KANAD2 (KAN2), 295
JSEK (JSE1), 295
Karyotype, 51
Karyotypic change(ref)

Index

- ent-Kaurene, 227, 229
- α-Ketoglutaric acid, 71, 72
- KNAT1, 290–291, 293, 296, 298, 322
- KNOLE (KN), 306
- KNOTTED (KN1), 289, 291, 341
- KNOTTED1 (KN1), 341
- KNOX, 290–291, 293, 296, 298, 346
- Krebs’ cycle
- acids, 72, 124
- KRP2, 315, 322
- L3 layer of corpus, 286
- L3 layer of corpus, 286
- Lactalbumin hydrolysate, 81
- Lactose, 125–127
- Lacunous leaves, 468
- Lag phase, 7, 81, 128
- L-Arginine, see Decarboxylase
- decarboxylase, 248
- LATERAL ROOT PRIMORDIUM 1 (LRP1), 315
- Lateral shoots, see Axillary shoots
- LCO, 347
- Leaf
- development, 292, 296, 467
- hyperhydricity, 153, 155
- see also Hyperhydricity
- midrib, 383
- polarity in, 295
- primordia, 1, 9, 37–38, 289, 292–297, 467–468
- structure, 1, 40
- surface, 230, 388, 469
- specificity, 372–373
- variegation, 286
- loss of, 286–287
- LEAFY (LFY), 293–294, 296, 301
- LEAFY COTYLEDON1 (LEC1), 341
- Leakage, 68
- LEC1, 341
- LeEXP18, 293
- Light blue, see Blue light
- conditions, 34, 139, 413
- for culture incubation, 230, 265
- for mother plants, 453, 455
- conversion factors for, 445
- cytokinins and, 446, 449
- daylength, see Daylength
- degradation of auxin, 182
- effects on morphogenesis, 453–454
- effects on tissue cultures, 450–451
- energy flux, 441
- green, see Green
- illuminance, see Illuminance
- inhibition of growth, 445
- inhibition of shoots, 445–446
- ‘intensity’, 34, 450–451, 453
- see also Irradiance
- interaction with temperature, 450
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>irradiance, 450–451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>luminous flux, 440–441, 443, 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nature of, 466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>photoperiod, see Daylength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>physical properties of, 450–451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiant flux density, 440, 441, 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiant intensity, 441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red, see Red light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements of plants, 441–442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sources for micropropagation, 443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>units of measurement, 444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV, see Ultraviolet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wavelength, see Wavelength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white, see White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignification, 261, 467, 470–471, 473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignin, 69, 93, 95, 130, 192, 431, 473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignotuber, 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPID TRANSFER PROTEIN (LTP), 306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipochitooligosaccharides, see LCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid culture/medium, see Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L layers of tunica, 283, 292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L layers of tunica, 283, 292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-leucine, 80, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Methionine, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-leucine, 80, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Methionine, 82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long day effect on cultures, 449–450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plants, 449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term cultures, 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lovastatin, 322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low density cell culture, 434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low frequency somatic embryogenesis, 369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Tryptophan, 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumen, 183, 237, 440–441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminous flux, 440–441, 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>density, 440–441, 443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lux, 139–140, 440, 441, 443–445, 449–454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maceration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of callus, 244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of tissues, 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroelements, see Macronutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macronutrient salts, 68–70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentrations, 69, 71–74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for rooting, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for special purposes, 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dissociation of, 134–135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>osmotic effect of, 136–137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sucrose interaction, 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macropagation, 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>techniques, 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in culture media, 65–66, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deficiency, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ions, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulphate, 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malate/Malic acid, 72, 86, 117, 123–124, 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malformations, see Abnormal structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malt extract, 115, 120–121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maltose, 125, 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPkinases, 392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matric potential, 133–134, 152–154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature phase, see Adult phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX1, 298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX2, 298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCA, 188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical cell separation, 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium/Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aeration of, 152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see also Oxygen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>buffered, see Buffered media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>choice of appropriate, 22, 39, 52–53, 362, 373</td>
<td>components, 65, 80, 83, 115, 322, 381</td>
<td>composition, 259, 286, 370, 386, 423</td>
</tr>
<tr>
<td>conditioned, 347, 386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consistency, 424–426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing NO₃ and NH₄⁺, 71, 73, 78, 83–84, 344</td>
<td>desiccation of, 439</td>
<td>differential effects, 426</td>
</tr>
<tr>
<td>two-phase, 427–428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>osmotic effects of, 132, 137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH, see pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>propagation rates and, 426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semi-solid, 49, 52, 65, 134, 344, 424–429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disadvantages of, 425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>support of explants in, 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>undefined supplements in, 66, 119, 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>viscosity, 153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water potential of, 127, 132–134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see also Macro- & Micronutrients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megagametophyte, 336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meiosis, 378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mericlinal chimera, see Chimera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meristem/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apical, 1, 9, 45, 376, 404–405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>culture, 1, 9–10, 32, 36, 58, 232, 377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see also Meristem tip culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>determination of, 9, 303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>excision of, 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>floral, 32, 42–43, 290, 294, 296, 299, 301, 303, 357, 436</td>
<td>formation in explants, 377–378</td>
<td>intercalary, 227, 317</td>
</tr>
<tr>
<td>secondary, 316–317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tip, 9–10, 36–37, 40, 44–45, 56, 126, 147, 151, 156, 216, 232, 373, 384, 410, 428</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
grafting, 55, 408

tip culture, 10, 36–37, 56, 232

explants for, 377

vegetative, 9

Meristematic

activity, 21, 93, 190, 283, 315–318, 337, 465–466

cells, 8, 20, 44–45, 131, 178, 287, 296, 302, 365, 369–370, 376, 388, 431

dome, 1, 9

nODULES, see Meristemoids

Meristemming, 1, 9, 232

see also Mericloning

Meristemoids, 44, 89, 139, 230, 365–366, 376, 466–467

Meristems, 391

MES, 72, 144–145, 148–149, 151

Methane, 248

Methanol, 177, 179

L-Methionine, 82

2-Methyl-4-chlorophenoxyacetic acid, 177, 187, 190, 343

Methylation, 29, 263, 301, 343, 381–382, 391

of cytosine residues, 381, 391

of DNA, see DNA

Methylcholesterol, 257

Methylcyclopropene, 241

Methyl laurate, 258

5-Methyl-7-chloro-4-ethoxycarbanylmethoxy-2,1,3-benzothiadiazole

see TH6241

5-Methyltryptophan

2-Methylthio-N6–(Δ2–isopentenyl) adenosine, 239

5-Methylthioadenosine, 239

MGBG, 249, 252

MGOUNI1 (MGO1), 290

Microbial contamination, 3, 408, 414

Microelements, see Micronutrients

Micrografting, 55–58, 408

see also Meristem tip grafting

Micronutrient

biochemical effects of, 90, 97

chromosome breakage and, 381

concentrations, 91–97, 99–102

Micro-organic supplements, 79, 115, 210

Micro-organisms, 2, 8, 30, 36, 120, 175

Micropropagation, 29

advantages of, 29–30

disadvantages of, 31

methods, 30–31

reliability of, 35

stages of, 31–35

techniques, 31

Microsatellite markers, 414

Microshoots, 68, 126, 146, 405, 408, 411, 418, 465–466

Microspores, 2, 22–23, 47, 101, 142, 154, 342, 367, 431

Minimum inoculation density, see Density

Minor plant nutrients, 65

Mist

intermittent, 406, 408

Mitochondria, 98, 102, 336, 469

Index

Mitosis, abnormal, 94, 185, 213, 220, 317, 319, 320

Mitotic crossing over, 310, 314, 316–319, 322, 430, 471

Mixed cultures, 36

Molarity, 133–134, 135

calculation of, 133–134, 142

Molybdenum, 65, 90, 92, 95

Monocotyledons

callus from, 116, 207

morphogenesis in, 373

variation in cultures, 13, 118, 187, 207

Monooxygenase enzymes, 239

MONOPTEROS (MP), 306–307, 311–312, 340

Monopetis, 306–307, 311–312, 340

Morphactin, 389

Morphogenesis

amino acids on, 3, 6, 68, 72, 77, 79, 80–84

auxin transport inhibitors on, 190–191

carbon dioxide on, 434

direct

applications for, 94, 176

effect of genotype on, 51

explants for, 2

for propagation, 2

see also Adventitious shoots

effect of auxin on, 189–190

effect of cytokinin on, 212

effect of ethylene on, 244

explant size on, 36

factors affecting, 6

gradients in, 387

indirect, 366

effect of genotype on, 374

explant age on, 375–376, 379

propagation by, 383

see also Adventitious shoots

light effects on, 441

micronutrients on, 90–91

nitrogen on, 68–70

osmotic potential on, 134

pH effect on, 128

promoted by darkness, 454

reproductive, 299

of roots, 94–95

of shoots, 43, 76

and starch deposition, 131

sucrose concentration on, see Sucrose

sugars, regulatory effect, 124–127

temperature effects on, see Temperature

Morphogenic, 49–50, 357

alteration, 338

capacity/potential, 8, 49–52, 179, 265, 362

loss of, 49, 53, 381

promoter, 315–316, 321

see also Competence

Morphogenic callus

genetic stability of, 50–51

preparation of suspensions from, 49–50

Mother plants

disease status of, 416

nutrition of, 416

pre-treatment of, 437

effect of light on, 455

effect of temperature on, 437
growth regulators for, 418
for protoplasm isolation, 136
reducing contamination of, 414
selection of, 426
treatment of, 410
variation, 424
M phase, 320–321
Mucilage, 425
Multiple shoots from ds, 11, 32, 41
Mutagenesis, 340
Mutant/s
solid, 364
Mutant lines, 291, 373
Mutant/s solid lines, 291, 373
Mycorrhiza, 12
N6-Δ2 isopentenyladenine, 206, 209, 212, 343, 413
NaOCl, 414, 415
Naphtalam, 189
Naringenin, 196
Natural growth factors, 178, 384
see also Auxin, Cytokinins, Gibberellins
Near UV light, see ultraviolet
Necrosis, 89–90, 102, 116, 233, 244, 405, 408, 433
Nernst layer, 146
NH4+ ion, 51, 66, 68–86, 90, 120, 123, 143, 145, 148, 150–151, 248, 344
see also Ammonium
Niacin, see Nicotinic acid
Nickel, 65, 72, 91, 95–96, 259
Nicotinic acid, 115–120
Nitrates
reduction, 69–70
as sole N source, 12, 68–69
Nitrates, 68–70, 72–74, 77, 144–145, 248
/ ammonium ion balance, 74
/ammonium ion ratio, 79
effect on pH, 145
on morphogenesis, 81–83
in embryogenesis, 73
uptake, 144
Nitratereductase enzyme, 69
Nitric oxide, 254
Nitrite ion, 70
Nitrite reductase enzyme, 69
Nitrogen
concentration, 77
on rooting, 74
deficiency, 83
effect on flower formation, 78
forms of, 68
and growth regulator effect, 78
metabolism, 69
reduced, 70
on embryogenesis, 77–78
on morphogenesis, 74
source, 76
uptake, 77
x sugar interaction, 77
NO APICAL MERISTEM (NAM), 290
Node culture
applications, 41
explants for, 40
growth regulators for, 41
variable plants from, 41–42
Nod factors, see LCO
Nodules, 21, 44, 52, 68, 152, 190, 347, 365, 369
2.5-Norbornadiene, 239, 241
Norflurazon, 235
NTH15, 289–290
Nuclei
fusion of, 20
Nucleic acid, analysis, 250–251
Nurse culture, 85
Nurse tissue, 17, 20
Nutrient media, see Media
Nutrient uptake, 67, 143
N-Z Amine, 81
OCT, 315
Octadecyl-polyethoxyethanol, see OPE
Octopamine, 219
Oligosaccharins, 175, 255–256, 261
Olomoucine, 211
Onium compounds, 234
Ontogenetic age, 376
Ontogeny, 301, 367, 403–404, 416
OPE (Octadecyl-polyethoxyethanol), 258
Orange juice, 72, 124
Orchids
protocorm-like-bodies (PLB), 13, 46–48, 130, 388
Organic acids
as buffers, 66, 72, 123, 143
as chelating agents, 123
nutritional role, 123–124
organic supplements, 79
uptake of, 143
Organic supplements uptake of, 129
Organised growth, 1, 9, 348
see also Morphogenesis
Organoid colonies, 44
Organs
indeterminate, 7–9
Orientation of explants, see Explant
Ornithine
decarboxylase, 248
Ortet, 29
Orthonil, 188
Orthotropic growth, 412
OSH1, 289, 293
Osmolality
conversion to osmotic potential, 133
Osmolarity, 131, 134–135, 260
Osmole, 133
Osmoregulation, 90
Osmotica for protoplasm isolation, 18
Osmotic effects of media components, 135
Osmotic potential
 of cells, 86
 of media, 19
 on morphogenesis, 138
 reducing growth by, 343
on root formation and growth, 139–140
on somatic embryogenesis, 140–141
on storage organ formation, 141–142
of sucrose solutions, 133–134
Osmotic pressure, 11, 131–133, 139
Ovule, 10, 11, 23, 303, 367
Oxidation
 during explant isolation, 118, 243
 inhibitors, 240
 mutagenic effect, 364
 of phenols, see Phenolic compounds
Oxindole-3-acetic acid, 179
Oxygen
 concentration, 152–153, 428, 430–431
 limitation, 432
 requirements of cultures, 429, 432
 tension, 424–426, 427, 430–431
 for ethylene biosynthesis, 240
 for storage, 152–153, 428
P450 enzymes, 298
Paclitaxel, 153, 156, 229, 231, 234
Palisade
 cells, 2, 468–469, 471, 474
tissue, 468, 473
Pantothenic acid
 habituation, 118
Paraffin overlays, 432
Parafilm closures, 244, 247
Parenchyma
 cells, 21, 182, 316, 405, 466, 468
Partial pressure, 240, 425, 428–432, 434
Passage, 7, 8, 32, 53, 72, 91, 118, 123, 129, 131–132, 135, 148, 189, 258, 287, 362, 376, 429, 440
Passive nutrient uptake, 67
PBA, 209, 215–216
PCD (Programmed Cell Death), 349–350
PeG proteins, 301
PCIB, 189–191
PCPA, 212, 243
Pectin, 116, 156, 470
Pectinase enzyme, 18–19, 256
PEDC, 365, 367
Peduncle explants, see Flower
Pedicle explants, 82, 437
 see also Scape
PEI, 341
PEM (proembryogenic mass), 342, 344, 348–350
PEM I cell aggregates, 348
PEM II, 348–349
PEM III, 349–350
Pentose phosphate pathway, 212, 432, 434
Peptone, 81
Periclinal chimera, see Chimera
Period of culture, 214, 360, 369, 376, 379
Periplasm, 384
Peroxidase enzyme, 179, 196, 434, 445
Petal, see Flower petal
Petri dishes, 16, 146, 152, 154, 156, 345, 426, 430
PGR, see Growth regulator
pH
 changes, 146–150
 intra-cellular, 78, 85, 126, 128, 150, 181, 187, 345
 measurement of, 149
 of media, 71, 73, 143, 147–148
 adjustment of, 72, 147
 control of, see Buffered media
 effect of autoclaving, 147, 151
 effect of charcoal, 260
 effect of storage, 147–148
 effect on cultures, 150–151
 initial, 148
 on morphogenesis, 151
 stabilization, 145
 starting, 146–147
 on uptake of ions and molecules, 144–145
 within the plant, 149–150
PHABULOSA (PHB), 295
PHANTASTICA (PHAN), 294–295
Phase of growth
 on establishment, 6
 on growth rate, 6–7
 on tractability, 347
 see also Juvenility
Phaseolotoxin, 249
Phasic development, 405–406
PHAVOLUTA (PHY, 295)
Phelloderm, 317
Phellogen, 312, 315–317
Phenols
 correlations with endogenous levels, 194
 effect of catechol, 195–196
 effect of phloroglucinol, 195
 growth regulatory effects, 192
 root formation, 194
Phenotypic variation, 403–406, 411
Phenylactic acid, 176
Phenylalanine, 80, 82, 117, 194, 196
Phenylpropionic acid, 189, 191
Phenylurea cytokinins, 210
 mode of action of, 210–211
Phloem
 parenchyma, 314, 315, 466, 472
Phloretic acid, 195
Phloridzin, 192, 195
Phloroglucinol, 192, 195, 411
Phosphate ion, 66, 85
 deficiency, 86
dihydrogen, 74
monohydrogen, 85
uptake of, 85
Uptake of, 85
Phosphatidylinositol cycle, 116
Phosphoinositides, 255
Phospholipase enzymes, 183, 392
Phosphorus, 85
Photomorphogenesis, 22
Index

Photon flux density, 440–442
Photoperiod, see Daylength
Photorespiration, 429, 431
Photosynthesis
 in inadequate CO₂, 157
 in inadequate light, 157
Photosynthetically active radiation, 442
Photosynthetic photon flux density, 442
Phototropism, 441–442
PHYA-PHYE, 414
Physical environment
 growth regulator genotype interactions, 424
 growth regulators and, 423–424
Physiological age, 73, 376, 381
Phytic acid, 85, 116
Phytoalexin, 89, 120, 256
Phytochrome, 89, 93, 211, 244, 245, 446–449, 451
Phytotropins, 175, 192, 254
Picloram, 187–188
PIN, 182, 294, 311, 314–316, 360
PINHEAD (PNH), 289
PINOID (PID, 294)
PISTILLATA, 303–304
Pith, 89, 138–139, 196, 213, 244, 262, 286, 298, 318, 369, 466, 468, 470–472
Plagiotropic growth, 412
Plant breeding, 20, 23, 51, 375
Plant growth regulators (PGRs), see Growth regulators
Plant propagation, 1, 2, 7, 9, 15–16, 22, 37–38, 48, 53–54, 65, 238, 355, 403, 405
Plant regeneration
 from protoplasts, 18–20
 via somatic embryogenesis, 342–346
Plant sap, 119
Plasmalemma, 98, 135, 188, 358, 387
Plasma membrane, 93, 98, 136, 154, 183, 211, 250, 387
Plasmid, 311
Plasmodesmata, 19, 21, 140, 291
Plasmolysis, 19, 140
Plastic
 film closures, 35
 foam plugs, 245
Plastid, 21, 69, 131, 208, 227, 235, 448–449, 472, 474
Plating density, see Density
Pleiotropy, 374
Ploidy, 318, 372–373
Poise, 143, 144, 432
Polar auxin transport, 94, 182, 185, 296, 315–316
Polarity
 and growth regulators, 388–389
 reversal of, 389
Pollen
 culture, 2, 22–23
 embryogenesis, 367, 431
 microspores, 2, 22–23, 101, 142, 367, 431
Polyamines
 biosynthesis, 248
 conjugates and cell division, 251
 effect in tissue cultures, 251
 and embryogenesis, 252–253
 and flowering, 252
 growth regulator interaction, 250
 inhibitors of biosynthesis of, 249
 interactions with other growth regulators, 250
 physiological activity, 249–250
 and rooting, 252
Polyembryogenesis, 47, 368
Polyembryony
 cleavage, 368–369
Polyester fleece supports, 156
Polyethylene glycol (PEG), 20, 54, 135, 137, 141–142, 238, 242, 345, 350, 469
Polyphenols, see Phenolic compounds
Polyplod, 318, 320
Polypropylene
 film, 428
 membrane support, 156
Polysoyomy, 318
Polyteny, 318
Polystyrene supports, 156
Polyurethane
 foam, closures, 156–157, 247
Porous materials
 for culture support, 156–157
Position of explants, see Explants
Potassium, 86
 chloride, 18, 141
 dihydrogen phosphate, 74
 hydrogen phosphate, 74, 85
 iodide, 96
 ions, 86, 387
 nitrate, 83
Potato
 extract, 120
PRB-8, 188
pRB proteins, 320
Precipitates in media, 85, 88, 91, 98, 102
Predetermination, embryogenetic, 365–366
Pressure potential, 132–133, 136
Pre-treatment
 of mother/stock plants, see Mother/Stock plants
 with growth regulators, see Growth regulators
Primordia timing, 341
Probability map, 340
Proembryogenic masses (PEMs), 342
Proembryony, 337
Proembryoid cells, 365
Proembryonal cell complexes, 368
Proembryos, 11, 46–47, 52
Prohexadione, 229, 234
Prolamellar bodies, 448
Proliferation, of shoots, see Shoot
Proline, 80, 82–84, 117, 136, 264
Promeristemoid, 365
Propagation
 from axillary buds, 35
 by direct organogenesis, 43
 rates, 30
 in vitro, 34
 advantages of, 30–31
 disadvantages of, 32
see also Micropropagation
Proplastid, 448
n-Propyl gallate, 240
Protein hydrolysate, 120
Protocorm, 448
by division, 31, 426
formation, 13, 37, 89, 386, 453
proliferation, 141, 432
variable plants from, 46–48, 209, 369, 388
Protocorm-like-budles (PLB), 13, 46–48, 130, 369
see also Orchids
Protons, see Hydrogen ion
Protoplasts
culture of, 19–20
fusion of, 20
isolation of, 18
preparation of, 18–19
separation from contaminants, 18
variation derived from, 18
Proximal, 12, 359, 384, 387–391
Pruning, 359, 406, 417
Pseudobulbils, 31, 369
Putrescine, 248, 250–253
Pyridoxine, 115–117, 120, 260
N′-Pyridyl-N′-phenylureas, 210
Pyruvic acid, 82, 176, 178, 432
QTL (quantitative trait loci) mapping, 414
Quantum, 440–441, 451
Quantum unit of radiant energy, 440
Quercitin, 192, 196, 254
Quercitrin, 196
Quiescent centre, 13, 207, 305, 309, 313–314, 338
rac, 192, 315
Radial patterning, 305–306, 311
Radiant energy, 440, 449
Radiant flux, 440–441, 450
density, 440–441, 450
Radicle, 338, 341, 373
RADP (Random amplified polymorphic DNA), 414
Raffinose, 125, 127, 132
Raft, see Filter paper
Ramet, 29
RAM, see Root apical meristem
raspberry, 307, 339–340
Rate of propagation, see Propagation rate
RCH1, 311
Recessive gene, 297
Recurrent somatic embryogenesis, 47
Red light
cytokinin equivalence of, 211
see also Far red light
Redox potential
effect on development, 432–434
Reduced nitrogen, see Nitrogen
Reducing agents, 192, 433–434
Reducing sugars, 85, 128
Reduction, 4, 68–69, 73–74, 88, 94, 98, 116, 125, 131, 141,
147–148, 151–153, 157, 179, 186, 214, 235, 244, 248,
252–253, 264, 294, 345, 363, 430–432, 439, 442, 444
Regeneration, 44, 345, 355–392
Regenerative ability, see Morphogenic capacity
Re-invigoration, 381
Rejuvenation
by in vitro culture, 411
symptoms of, 410
Relative humidity
calculation of, 412
and condensation, 439
in growth rooms, 439
within vessels, 439–440
RELP (Restriction fragment length polymorphisms), 414
Repetitive embryogenesis, 47
Re-rooting, 408
Respiration
inhibitor, 431
Reversion to juvenility, 407
REVOLUTA (REV), 295, 298
Rhamnose, 154, 179
Rhizogenesis, 230–231
see also Root formation
Riboflavin, 119, 196, 211, 445
Ribose, 125, 213
Ribulose biphosphate carboxylase, 431
RIM (root-inducing medium), 79, 231, 361, 363
RNA
dsRNA, 382
interference, 88, 382
mRNA, 250, 288, 291, 297–298, 319, 321–322, 341,
382, 404
polymerase, 92, 117, 392
Rockwool, 156
Root
culture, 1, 11–13, 44, 91, 115, 128, 140, 143, 145, 150,
251, 256, 320, 423, 430
media for, 37, 39, 41, 65, 73–74, 82, 96, 98, 121,
137, 140–141, 144, 150, 177, 232, 433
determination, 315–316
development, 465–467
anatomical phases in, 466–467
duration of, 466
location of, 466
direct shoot regeneration from, 12
explants, 390–391
formation, 139–140, 194, 245–246, 360, 374, 447, 450
effect of light on, 244
effect of temperature on, 216
ethylene on, 245
genotype on, 374
gibberellic acid on, 251
inhibition of, 214–215
osmotic potential on, 139
pH effect on, 151
polyamines on, 250, 253
See also Rooting
for germplasm storage, 12
growth, 74, 139–140

cytokinin stimulation of, 211, 218
effect of oxygen on, 430
inhibition of, 100, 259
osmotic potential on, 139
meristem, 11–13, 46, 191, 219, 283, 305–306, 310, 311,
morphogenesis, 22
genes involved, 288
structural organization, 283, 310
primordia, 118, 252, 312, 314–315, 379, 390, 405, 453,
466–467
suckers, 407, 410
tip, 11, 13, 153, 177, 207, 250, 310–311, 313–315, 317,
388, 390, 466
See also adventitious root

Root apical meristem (RAM), 283, 308, 310–311, 313, 314, 316, 338
Root hairs, 471–472, 474
Rooting
- concentration of nutrients on, 126
- of cuttings/shoots, 12, 30, 194, 315
- cytokinin inhibition of
- ethylene effect on, 243–244
- extra vitrum, 447, 473
- juvenility effect on, 408
- in vitro
 - growth regulators for, see under Auxin
 - temperature effect on, see Temperature
- lighting for, 450
- media for, 195
- phenolic compounds on, 95, 102, 194, 196–197, 445, 451
- re-(rooting), 408
- vitamin D promotion of, 119
rooty, 314
Roscovitine, 211
Rotated medium, 45, 156, 425–426
ROUGH SHEATH (RS1), 290
Salicylic acid, 192, 240, 246, 254
SAM, see Shoot apical meristem
Sanguinarine, 256
Sap, see Plant sap
Saprophytic organisms, 46
SAUR genes, 184
Scale-leaf explants, see Bulb scales
Scape explants, 454
SCARECROW (SCR), 306, 312
Scion, 55–58, 299, 408–410, 413, 418
Sclerenchyma, 470–471
Seminarin, 196
SCYLLINO-SORBITOL, 116–117
SD 8339, see PBA
Seasonal effects, see Time of year
Secondary embryos, see Adventitious embryos
Secondary products, 6, 16, 157, 446
Secondary shoot primordia, 45
Second messenger, 88, 116
Seedling
- explants, see Aseptic seedling extracts, 119
- somatic, see Somatic seedlings
- tissue explants, 121, 262, 373
Seeds
- decontamination of, 8
- dormancy of, 338, 413–414
- in vitro germination, 11, 13, 56, 91
- orthodox, 338, 345
- propagation from, 410
Selection in vitro, 375
Semi-solid media, see Media
SEPALATA, 303–304
Separated cells, 6, 17–18, 52
Sequestrene 330 Fe, 99
Serine, 292, 319
Serine-threonine kinases, 319
Shaken liquid cultures, 233
Shikimic acid pathway, 178–179
Shoot/s
- apex, 1, 8–9, 35–37, 39–40, 46, 55, 283, 288, 340, 376–377, 383, 388, 412
- clusters, 8, 10, 39–41, 152
- determination, 315–316
- elongation of, 39–40, 233
- explants, 36, 365, 408–410, 413, 418
- formation, see Adventitious shoot
- effect of light on, 244
- from floral meristems, 42–43, 357
- temperature effects on, 409, 417, 438, 450
- growth
 - effect of ethylene on, 244
 - effect of light on, 244
- meristem, 232, 338, 383
- meristems, see Meristem tip
- morphogenesis, 283–299
- pieces, see Fragmented proliferation
- effect of light on, 36–37
- effect of oxygen, 40, 451
- rooting of, see Rooting tips
- necrosis, 89–90
- trimming, 40, 55
see also Adventitious & Axillary
Shoot apical meristem
- and control of flowering time, 301
- cytophysiological zonation, 286–288
- and determination of floral organ identity, 303–304
- structural organization
 - genes and, 286
 - molecular basis of, 288–292
 - phyllotaxy and, 292–293
- structural rearrangements, 299–301
Shoot culture
- effect of adenine on, 214
- effect of cytokinins, 205, 215
- explants for, 35
- growth regulators for, see Growth regulators
- history of, 37
- juvenile plants from, 413
- in liquid media, 426
- media for, 39, 425–426
- methods, 38–39
- origin of shoots, 36–37
- variable plants from, 453–454
- of woody plants, 36
SHOOT MERISTEMLESS (STM), 288–289, 306, 341
Shoot proliferation
- regulation of, 36
Shoot tip culture, see Shoot culture
Short day
- effect, see Daylength
 - plants, 438, 449–450
Shr, 306
SHR, 306, 312, 339
Sieves for cell suspensions, 2
Signal/Signalling
- molecules, 288, 346–347
- transduction pathway, 183, 227, 241, 253, 255, 297, 318, 343, 358, 404, 465
abnormal, 237–238
ABA prevention of, 235, 237
adventitious, see Adventive embryos
auxin transport inhibitors on, 190–191
competition between, 391
conversion of, 238
desiccation of, 29–30
development of, 94
direct initiation of, 343
drying, 338, 345
germination
frequency, 345
growth of
control by ABA, 345
indirect initiation of, 342
origin of, 367
proliferation of, 369–370
single cell origin of, 367–368
stages of development, 370–371
storage of, 238

Somatic seedlings, 53 see also Somatic embryo germination

Somatic seeds, see Synthetic seeds

Somatic, see Somatic embryos

Sorbarods, 156, 157

Sorbitol, 93, 117, 127, 129, 135–137, 140–141, 153, 380
Spermidine, 248, 250–253
Spermine, 248, 251–252

S phase, 185, 211, 220, 315, 318–322

Spheroblast, 407
Spongy parenchyma, 468, 473
Sporophytic development, 23

Squaleane, 253

S stage of cell cycle, 315, 362
Stage 0, 31, 33, 39

Stage I
of direct shoot initiation, 35
of indirect shoot initiation, 214, 383
media, 120
of meristem tip culture, 36
of shoot cultures, 232

Stage II
of direct shoot initiation, 217, 383
of indirect shoot initiation, 39
of shoot cultures, 40
of single node culture, 40

Stage III
of shoot cultures, 145

Stage IIIa, 34, 40, 233

Stage IIIb, 34

Stage IV, 34, 234

Stages of micropropagation, 31, 33, 453

Starch
as carbohydrate source, 212
as gelling agent, 155
grains, 21, 310, 367, 466, 468, 471
metabolism, 468–471
and morphogenesis, 131

Static liquid cultures, 4, 156, 425–427, 430, 432

Stationary phase, 7, 22, 131, 218, 242, 381

Silicon, 91, 97, 430
Silicone overlays, 430
Silver ions, 241, 245
Silver nitrate, 241, 245, 247
Silver thiosulphate, 241, 243, 415
SIM (shoot-inducing medium), 50, 131, 179, 265, 361, 363, 382

Sinapic acid, 196

Single cell clone, 16–17
Single cell origin
of adventitious buds, 364
of embryoid, 367
of shoots, 364

Single node culture, see Node culture

Single node explants, 377–378, 417

Sitosterol, 257

Skotomorphogenesis, 442

Sodium
hypochlorite, 414
ions, 87
nitrate, 74
sulphate, 135, 138

Solidifying agents, 3, 65

Solid media, see Media

Somaclonal variation, 41, 318, 344, 346, 364, 413

Somatic embryogenesis
ABA stimulation of, 237
adenine on, 216
amino acid effect, 83
in angiosperms, 310
asynchrony, 253
auxin regulators for, 253
in callus cultures, 374
cytokinin effect on, 310
direct, 343
see also Adventitious embryos
effect of genotype, 372
ethylenes inhibition of, 343
in gymnosperms, 348–349
indirect, 367
induction of
by auxin, 343
by other factors, 335
in dicotyledons, 370–371
in monocotyledons, 371
and juvenility, 343, 367
loss of capability, 379
low frequency, 369
media for, 347
for micropropagation, 372
model for, 350
natural occurrence of, 118, 227, 263, 366
nitrogen, effect of, 347
occurrence in vitro, 367
osmotic potential on, 345
oxygen, 40, 391, 451
pH effect of, 343–344
polyamines on, 343
polyembryogenesis, 368
rate of, 369
redox potential on, 428, 432
secondary, 345
in suspension cultures, 53, 244, 246
tracking of, 347–348

Somatic embryos
Stem explants, 258, 355, 376, 437, 449, 451–452
Steradian, 441
Steroids, 253
Sterols, 175, 229, 234, 257
see also Vit. D
Stigmasterol, 257
Stirred cultures, 15
Stock plant
disease status, 416
effect of photon flux, 417
effect of photoperiod, 417
effect of temperature, 417–418
effect of wavelength, 417
nutrition, 416
plant growth regulator pre-treatments, 418
pruning, 417
see also Mother plant
Stolon formation
ethylene on, 247
Stomata, 34, 68, 235, 317, 429, 469–471, 473
Stomatal
closure, 235, 254
index, 469
morphology, 470
Stoppers, see Closures
Storage organs
formation of, 344
propagation from, 54
Storage products, 13, 213, 338, 344
Stratification, 301, 439
Strawberry, 74, 129, 156–157, 195, 233, 390, 453, 474
Subculture
techniques, 7–8
interval, 379
number, 49
Subdividing cultures, 10, 39, 49, 50
Succinic acid, 117
Suckers, 12, 407–408, 410
Sucrose
alternatives to, 125
concentration, 129
on embryoid germination, 137
on growth and morphogenesis, 138
limiting growth, 141
for media, 126
osmotic contribution of, 137
on root formation, 138
effect of autoclaving, 128
enzymatic breakdown, 128
hydrolysis, 127–128
inversion, 128
Suction pressure, 132
Sugar alcohol, 135
Sugars
autoclaving, 147
as carbon energy sources, 129
concentration of, 129
embryogenesis, 51
nitrogen interaction with, 68–69
osmotic properties of, 132–133
on photosynthesis, 72
uncommon, 132
uptake of, 129
and vascular element formation, 129–130
see also Sucrose
Sulphate ion
Sulphur, 65–66, 68, 88, 239
Superoxide dismutase, 92, 95, 264
superroot, 314
Supplemented media, 124, 126, 138, 196, 342–343, 453
Supports for cultures
semi-solid, 153
Supradome, 45
SUR2, 314
Survival, 3, 6, 34, 49, 56, 96, 115, 124, 131, 144, 215–216, 243,
345, 373, 381, 383, 410, 427, 436, 440, 465, 467, 469
sus2, 340
Suspension cultures
accessory embryos in, 47
cell aggregation in, 186
embryogenesis in, 53
ethylene production by, 242
genetic variability, 50
for plant propagation, 15–16
protoplasts from, 18
subcultures, 7
Suspensor, 22, 94, 118, 238, 305, 307, 336–340,
349–350, 355, 368–371
Synkaryon, see Homokaryon
Synthetic seeds, 155
Systemin, 175, 248, 254–255, 261
2,4,5-T, 187–188, 190
Tabersonine, 256
Tartaric acid, 98, 101, 194
TATA box, 298, 392
TDZ, 210, 343, 413
Temperature
on bulblet formation, 151, 443, 446
on culture establishment, 436
on culture storage, 452
on cytokinin activity, 122
daylight interaction, 449–450
on dormancy reversal, 413, 438–439
on genetic variability, 49, 50
for incubation of cultures, 3, 153, 429, 438
on juvenility, 408
low
on callus, 438
on dormancy, 438–439
on morphogenesis, 436
for mother plant growth, 417, 437
optimum for different species, 403
pretreatments, 437
for root cultures, 423, 427, 430
on rooting, 410, 455
sensitivity, 438
for shoot cultures, 450
Temperature-controlled rooms, 443
TEOSINTE BRANCHED 1, 297
Tetraploid, 372, 375
TfL, 301
TH6241, 241
Thallophyte, 13
Thiamine
dependent tissues, 118
habitation, 261
sufficiency, 118
Thidiazuron, 210, 212, 215–216, 246, 262, 343, 413, 424
Thin cell layers, 120, 139, 144, 149, 151, 245, 252, 265–266, 391
Thin films, 155
Thiourea, 433–434
Thorns, 405
Threonine, 80, 82, 117, 292, 294, 319, 340
Thylakoids, 21, 448
TIBA, 189–191, 258
Time of year, 383, 418–419, 452
Titanium, 91
2,4,5-T, 187–188, 190
2,4,6-T, 189–190
α-Tocopherol, see Vitamin E
Tomato juice, 119
Topophysis, 384
Torpedo stage of embryos, 305, 370
Totipotency, 2, 140, 262, 319, 380
Toxic substances, 81, 123, 155, 259
Tracheid formation, 21, 130
Traditional propagation techniques, see Macropropagation
Transfer, 34, 40
to external environment, see Establishing Cultures
see also Subculture
Transformation with Agrobacterium, 179, 413
Translocations, 86, 93, 126, 182, 256
Transposable elements, 311
Transposon, see transposable elements
Trehalose, 125, 130
Tricarboxylic acid cycle, see Krebs’ cycle
2,3,5 Triiodobenzoic acid, 189
2,4,5 Trichlorophenoxyacetic acid, 187
2,4,6 Trichlorophenoxyacetic acid, 189–190
L-Tryptophan, 188
True-to-type plants, see Genetic stability
Tryptamine, 176, 178
Tryptone, 81
Tryptophol, 176
ts11, 346
Tuber formation in culture, 141, 234, 252, 438
tissue explants, 234, 251
Tumour tissue, 251
TUNEL assay, 349
Tungsten bulbs, see Incandescent bulbs
Tunica, 283, 290, 292
Turgor potential, 212
Turgor pressure, 132, 345
twin, 307, 339–340
Two-phase media, 428
see also Media
Tyraine, 194, 219
Tyrosine, 80–82, 117, 123, 196, 320
Ubiquitin, 184, 358
Ultraviolet light, 177, 442
Undefined supplements, 118
Uniconazol-P, 229, 234, 253
Unorganised growth, 1, 7, 54, 348
Unorganised tissue culture of, 1, 2, 44, 118, 176, 359, 369, 430
UNUSUAL FLORAL ORGAN (UFO), 291, 294
Unusual regulants, 257–260
Uptake of media components, see Media
Urea, 22, 49, 81, 83, 95–96, 122, 210, 212, 215, 218
Urease enzyme, 72, 96
Ureides, 69
UV light, see Ultraviolet
Variability in cultures
effect of genotype, 30, 76, 372–373
temporary, 4
see also Genetic variation
Vascular bundles, 21, 46, 49, 185, 295, 362, 388, 405, 466, 472–474
connections, 49, 367, 465, 467, 472
development, 295, 307, 467, 473
elements, 129, 382, 391
system, 312, 315, 367, 465–467, 471–474
Vegetative propagation, 29–30, 286, 315, 335, 405, 407
Vermiculite, 56, 156–157, 408
Virus elimination, 56, 58
-free plants, 9
Vitamin B1, see Thiamine
Vitamin B2, see Riboflavin
Vitamin B4, see Adenine
Vitamin B5, see Pantothenic acid
Vitamin B6, see Pyridoxine
Vitamin B12, 95
Vitamin C, see Ascorbic acid
Vitamin D3, 119
Vitamin D3, 119
Vitamin E, 119, 433
Vitreous, see Hyperhydric
Vitrification, 192, 195, 384, 465
Vitrification (meaning glassy), see Hyperhydricity
VIVIPAROUS, 307
vp1, 307
Warm White tubes, 443, 451
Water evaporation, 152
loss from plantlets, 31
movement between cells, 132
Water potential of callus, 137–138, 211
of cell, 132, 136, 212
of medium, 133–134, 136–138, 142, 152
see also Osmotic potential
Wavelength, 417, 444
Wax, 34, 410, 468–469
WEREWOLF (WER), 312
Wetting agents, 414
White light, 211, 417, 443–448
WOODEN LEG (WOL), 310
Woody plants, 438–439
Wound reaction, 359
WOX5, 309, 311, 314
WUSCHEL, 340–341
WUSCHEL (WUS), 289, 291, 305, 307, 392
Xanthoxin, 235
Xylem, 1, 21, 68, 86, 123, 129–130, 137, 190, 208, 232, 253, 258, 313, 316, 322, 357, 365, 385, 466–467, 470–474
Xyloglucan, 255
Xylose, 125
YABBY3 (YAB3), 294
Yariv reagent, 346

Yeast extract, 119–120
Young tissues, see Juvenile
cis-Zeatin, 206
trans-Zeatin, 206
Zeatin riboside, 206–207, 209, 212, 243, 262
Zinc
EDTA disodium salt, 99
Zinc ion, 92–93
ZmABP1, 183
ZUM15 and ZUM18 antibodies, 346
ZWILLE (ZLL), 289, 291, 306
Zygotic embryogenesis
genes controlling, 305–307
and hormones, 307–310
pattern formation, 304–305
Zygotic embryos, see Seed embryos